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NONHOLONOMIC GEOMETRY OF GIBBS
CONTACT STRUCTURE

CRISTINA STAMIN, CONSTANTIN UDRISTE*

Lucrarea face legatura dintre teoria congruentelor a lui Vranceanu si teo-
ria autorilor referitoare la sisteme termodinamice neolonome de dimensiune
imparda. Pentru a construi metrica riemanniand, autorii folosesc congruente
cu semnificatie termodinamicd. Pe baza acestei metrici sunt construifi invari-
antii diferentiali ai spatiului neolonom Gibbs- Vranceanu-Riemann. Mai de-
parte, se demonstreazda cd coeficientii covariantilor biliniari si coeficientii
Ricci (cu trei gi patru indici) sunt signoame, iar vectorii tangenti la geode-
zice sunt functii rafionale. Ca noutate, se introduc gi se studiazd subva-
rietatea coeficientilor covarian{ilor biliniari, subvarietatea coeficientilor de
rotatie Ricci gi subvarietatea coeficientilor Ricci cu patru indici.

The paper connects the Vranceanu congruence theory with our theory of
odd-dimensional nonholonomic thermodynamic systems. To build the Rie-
mannian metric, the authors use certain congruences with thermodynami-
cal meaning. Based on this metric, the differential invariants of the Gibbs-
Vranceanu-Riemann nonholonomic space are built. Further, it is proved that
the coefficients of bilinear covariants and the coefficients of Ricci (with three
and four indexes) are signomials, and the tangent vectors to the geodesics are
rational functions. As a novelty, one introduces and studies also the submani-
fold of coefficients of the bilinear covariants, the submanifold of Ricci rotation
coefficients and the submanifold of Ricci coefficients with four indexes.

Keywords: Vranceanu congruences, nonholonomic thermodynamic system,
contact structure, geodesics, Ricci coefficients.
AMS Subject Classification: 53D35, 57R15, 74A15.

1. Introduction

Gibbs ([6]), Caratheodory ([2]), Hermann ([8]) and later Mrugala ([11],
[12]) and Udriste ([5], [16], [24], [25]) studied the thermodynamics from the
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differential geometry perspective, based on contact structure of thermody-
namic state space. The coordinates of this (2n+ 1)-dimensional space are de-
fined by n extensive variables, n intensive variables and one thermodynamical
potential. Using suitable differential forms, the first law of thermodynamics is
naturally incorporated into an original approach [20], [21]. Similar ideas has
been extensively used to study the properties of the structure generated by
the Weinhold metric ([4], [7]), the thermodynamic length ([18]) and the asso-
ciated Riemannian structure ([9], [17]). Rupeiner ([17]) introduced a metric
conformally-equivalent with the Weinhold metric, which later led to applica-
tions in black holes thermodynamics ([19],[27],[28]). Recently, to incorporate
the concept of Legendre invariance into the geometric description of thermo-
dynamics, a geometro-thermodynamic’s formalism has been developed ([14],
[15]).

A system whose state depends on the path taken to achieve it is called
nonholonomic. Such a system is characterized by a set of parameters subject
to Pfaff differential constraints, so that when the system evolves continuously
along a path in its parameter space, but finally returns to the original set of
values at the start of the path, the system itself may not have returned to
its original state. More exactly, a nonholonomic system is one in which (1)
there is a continuous closed circuit of the governing parameters, by which the
system may be transformed from any given state to any other state; (2) any
two points in the parameter space can be connected by a path (Carathéodory
Theorem).

2. Gibbs contact structure in nonholonomic description

In this paper we will use the Vranceanu congruences method ([3], [28],
29]) to the nonholonomic study of Gibbs contact structure (R?, dap, 0), R® =
{(U,T,5,P,V)}, 0 = dU — TdS + PdV, where we preserve the names U -
internal energy, S - entropy, T - temperature, V' - volume and P - pressure
for the independent variables, but neither is restricted to positive values as
in thermodynamics.

For mathematical convenience, we denote the coordinates by

2 =U 2*=T,2°=8, 2" =P, 2°=V. (1)
Then the differential 1-form 0 rewrites

0° = \2dx', i = 1,5, (2)
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where
M=1,A=)\=0, \)=—2% )\ =2
To this 1-form we add another four linearly independent Pfaff forms

0! = 22da?,

6? = x*da®,

02 = dot + 2°dat + 2*dad,

0* = dxt — 23da? — 2%da?,
which can be written as

0" = \¢dr', a =T, 4.

(3)

The Pfaff forms (2)+(3) determine a system of congruences (moving co-
frame), with the moments A? ([3], [28], [29]). Along the curves we can use
the Vranceanu notations ds® = 0%, a = 1,5. The congruences (2)+(3) are not
orthogonal in the Euclidean space (R®,d,p). The physical meaning of their

restrictions is

e ds' =TdS = dQ, the elementary heat of the system;

ds® = dU + PdV + VdP = dH, the elementary enthalpy;

ds® = dU — TdS + PdV, the Gibbs-Pfaff contact 1-form.

ds®> = PdV = dW, the elementary expansion work of the system;

ds* = dU — TdS — SdT = dA, the elementary Helmholtz energy;

To prevent contradictory discussions, we accept the dimensionless expres-
sion of the 1-forms. As example, the dimensionless form of 6 requires the

dimensionless ratio 2% = \ = 1,
ToSo
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On the region where the matrix of moments (A\?), a = 1,5; i = 1,5 is
nondegenerate, we introduce its inverse matrix (u¢). Explicitly,

0 O 22 0 0
0 O 0 0 z*
M)=11 0 0 a5 at |,

1 -2 —22 0 0

1 0 —22 0 2t

1 -1 0 0 1

o k0 ok

(ui): L0 o 0o o [,

A

0 L0 0 0

onD : det (\}) = —z?z?z"2® #0, D C R.

The components of these matrices are related by

Nt = 0, a,bi=1,5
s = 0%, i, j,a=1.5.

a

Also we remark that
0" = \¢da', a,i=1,5,

is equivalent to

dx' = pt0*, i,a = 1,5.

Given the system of independent congruences 0, a = 1,5, on (D C RS, d.p),
one can associate only one Riemannian manifold (D C R®, g, 6?) (with a
positive definite metric and a moving co-frame, framed manifold), in which
the system of congruences is orthonormal ([29], p. 260). The Riemannian
metric g;; is given by the square of arc element

ds?® = Sapds’ds’ = gyjdr'da?, a,b=1,5; i,j = 1,5,
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or by the matrix

3 —z3 =222 2P 97t
—2® 2 2% 0 0
(9i5) = (5ab)\?)\?) = | —222 2223 3% 0  —a274 ()
zd 0 0 5 g
2 0 224 pipd 34

In Riemannian mechanics, the components g¢;; of the metric are called
gravitational potentials. These determine the Levi-Civita connection, the cur-
vature tensor field, the Ricci tensor field, the scalar curvature, etc.

3. The coefficients of the bilinear covariants of the Gibbs-Vran-
ceanu-Riemann nonholonomic space

For a system of orthonormal congruences, the coefficients of the bilinear
covariants are

Wye =

a aAg o (9/\? (]
ozi ozt ) Mot

They verify the relation wi, = —w?% (skew-symmetric in the indexes b and
c). Also, the relations wy, = 0, a = fixed, indicate that the Pfaff 1-form 6% is
closed.

Now we apply this theory to the co-framed manifold (D C R, dap, 02).
Taking a, b, c=1,5; 4,7 = 1,5, we find

Theorem 1 The coefficients of the bilinear covariants are zero excepting the
following signomials:

1 _ 1 1 1 _ 1 _ 1 1 _ 1 _ 1
Wi = —Wy1 = — 33, Wiy = — Wy = — 23, Wis = W51 = 2.3
2 _ 2 _ 1 2 _ .2 _ 1 2 _ .92 _ 1
Wig = —W31 = jags, Waz = —W3p = a5, Woys = —Wse = — a5,

5 _ .5 _ 1 1 5 _ .5 _ 1 5 _ .5 1
Wiy = =Wy = a3 + —az5, Wiy = —Wy; = a3, Wis = —W5 = — 33,

5 _ .5 _ 1 5 _ .5 1 5 _ .56 __ 1
Wog = —W39 = a5, Wos = —Wgy = — a5, Wiz = —Wsy = — 2.3
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Obviously, the 1-forms 2, 0* are closed.

Returning to the thermodynamic restrictions, the non-zero coefficients of
the bilinear covariants rewrites:

wb: w%l_ T157 wh— wil_ T15> w%5— wél—%v

w%2 = w%l = Plvv w%:,, = w§2 = ﬁ7 w%s = w52>2 = plvv
wi’2: wgl—Tfs"‘pilva w‘i’4= wilz%sﬂ w?5: wgl__T{q’

Wy = —w3y = ﬁ7 Wy = —w3y = _ﬁ7 wys = —w3; = _%s-

In other words, the coefficients of nonholonomicity depend only on two ther-
modynamic potentials (parameters with dimension of energy): energy from
environment T'S and expansion work PV'.

Remark. To show that the phenomenological thermodynamics equilib-
rium is a superposition of symplectic structure of the phase space and of latice
structure of thermodynamical potentials, the paper [10] used the potentials
TS and PV. From our point of view, the appearence of these potentials
in the nonholonomic geometry of Gibbs-Pfaff structure gives strength to the
Vranceanu point of view.

4. The Ricci rotation coefficients of the Gibbs-Vranceanu-Riemann
nonholonomic space

The components of the Levi-Civita connection Fj-k are determined by the
Riemannian metric g;;. The associated components on the considered sys-
tem of orthonormal congruences, are the Ricci rotation coefficients of these
congruences ([28], p. 267):

= 5 (0, + by ), (5)

where wj.,. are the coefficients of the bilinear covariants.
The Ricci rotation coefficients of the 1-forms (2)+(3) verify the relation
/ch - 7(?1) - wgc = 07 (6)
which means that the Riemannian connection closes the infinitesimal paral-
lelograms. Moreover,

IYI?C + 72(: =0= /7:11(: =0, ’ch - —7367 (CL 7é b)?

i.e., the Ricci rotation coefficients are skew-symmetric in the indexes a and b.
Applying this theory to the framed manifold (D C R, dap, 6?), we find:
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Theorem 2 The Ricci rotation coefficients associated to the orthogonal con-
gruences (2)+(8) are zero, excepting the following signomials:

7211 = _7121 = ﬁa 7212 = _7122 = _ﬁ7 ’7215 = _7%5 = _ﬁ - ﬁ7
’Vil = _’Yfl = ﬁ) %}5 = _7%5 = _ﬁ7 7&%1 = _7151 = _lema»

7%2 = _7152 = _ﬁ - ﬁa 7%4 = _7154 = _ﬁa 7%5 = _Vir)s = ﬁa
7?%2 = _75’2 = _lezfn 7%5 = _735 = _ﬁ7 7%1 = _731 = ﬁ + ﬁa
Vo = Vs = gagsy Vos = Vo3 = —apigss Vo5 = Vo5 = iges
7?2 = _7??2 = ﬁv 7?1 = _72?1 = ﬁ

Remark. This is an important example of Ricci rotation coefficients
which are linear in two parameters u = ﬁ, v o= $41$5 (the first example
of the theory in [12], [22]). From thermodynamic point of view, the Ricci
rotation coefficients depend only on the products with dimension of energy

TS, PV.

5. The geodesics of the Gibbs-Vranceanu-Riemann nonholo-
nomic space

Generally, it is known that on a Riemannian manifold, the autoparallel
curves of the Levi-Civita connection are geodesics, and conversely. Taking s
as the arc of autoparallel curves (s = ty/c + to, ¢ being a positive constant),
the equations of geodesics can be written as follows ([28], p. 274):

dz’ . du®

0 _ a,b c
ds  Har Tgg T et

ds®

where u® = —— are the consinuses of the angles which the tangent to the

s
curve makes with the five orthogonal congruences, and ;. are the previous

Ricci rotation coefficients (signomials of variables — 3 4—5). The tangent
x2x3’ rix

vectors to geodesics are rational functions.
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6. The Ricci coefficients with four indexes of the Gibbs-Vranceanu-
Riemann nonholonomic space

The components of the curvature tensor field on the previous orthogonal
congruences are the coefficients of Ricci with four indexes,

a afyac 87a a . J a . J a, ,J
Vocd = asl; - asbcd + V5 Vba — Vi Ve + Vo Whas (7)

0

where —— =p1

0

7
a i)

and ;. are the Ricci rotation coefficients (5). The Ricci

coefficients with four indexes satisfy identically

’chd + 720(1 = 07 ’yl?cd + ’yl?dc = 07

Voed + Voo T Vape = 0

and consequently vi.; = Vi.- Now we apply this theory to the framed mani-
fold (D C RS, dap, 62) and we find:

Theorem 3 The coefficients of Ricci with four indezes associated to the or-
thogonal congruences (2)+(3) are zero, excepting the following signomials:

Va1 = —Vaz1 = —Viie = Vim = _290230%1415 - 4962?9632 - 4x4§z527
7%13 = _72131 = —71213 = ’71231 = _m,
’72114 = _’7%41 = _7%14 = 7%41 = _4x2x§z4x5 - 4x2§m327
Ya15 = —Yas1 = —Vi1s = Vis1 = 129;32304;,35 + 21,2215032 + 2x421$527
Vi3 = V32 = —Vies = Vizz = _4x2x§x4x5 - 49045)3652;
7%24 = —72142 = —71224 = 71242 = _m,

1 1 2 .2 _ 2 1 1
Vao5 = ~V252 = T V125 = V152 = 12adata5 T 922,37 T 542,570
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72134 = _7%43 = _7%34 = ’7%43 = mv
'72135 = _7%53 = _7%35 = 7%53 = _gx2x§x4$5 - 29642196527
7%45 = _72154 = _7%45 = 71254 = 2x2x§z4zs + 2352%13%
7:*112 = _7521 = _7:1312 = 7%21 = _m,
7?115 = _7§51 = _7?15 = 7%51 = _m,
7%24 = _7§42 = _719’24 = 7%42 = _m,
Va2 = —Vao1 = —Viie = Vim = _4$2$§z4$5 - 4x2§x327
Vi = Vi =~V = Y = —ﬁ7
%115 = _’74151 = _7%15 = 7%51 = Wﬂ
%}23 = _%}32 = _7%23 = 7%32 = _ma
%}25 = _%}52 = _7%25 = 7%52 = szx%x%zs + 2x221x32a
7?}24 = _7:%42 = _7%24 = 7?42 = _ma
Viss = ~Visa = ~Vi1s = Visa = ma
V2 =~V = —Vh2 = Vim = m2x32x4w5 + 2w221$32 + 2:54%3552’

1 1 .5 A5 1
V513 = —Vs31 = TV113 = V131 T T 22232455
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1 _ 1 _ .5 _ .5 _ _ 1
V514 = ~ V541 = T V114 = V141 T 527 325
2x%
1 _ 1 .5 .5 _ 3 1 1
V515 = ~Vss1 = TV115 = V151 = 22703zim5 T 5,27,57 T 142,57
1 _ 1 .5 _ .5 _ 1 1
Vs23 = ~Va32 = —V123 = V132 T %aZgtais T 5pa7 570
1 _ 1 _ .5 _.5 _ _ 1 __ _ 1
V525 = ~Vs52 = 125 = V152 = 2232 12 57
2" x 2z x
1 _ 1 _ .5 _ .5 _ __ 1 1
V535 = T V553 = T 135 = V153 T T 15232855 | 4425527
1 _ 1 .5 _ .5 _ __ 1
Vsa5 = T V554 = T V145 = V154 T T 522,325
2 _ _ .2 _ _ .3 _,.3 _ __ 3 _ 3
V312 = T V321 T TV212 T V221 T T 42534055 44255200
2 _ .2 _ .3 _ .3 _ __ 1
V314 = TV341 = T V214 T V241 T T 352370550
2 _ .2 _ .3 _ .3 _ 1 1
Y315 = TV351 = V215 = V251 = 2u2800a5 T 517570
2 _ _ .2 _ .3 _ .3 _ 3
V323 = T332 = T7V223 = V232 T T a2,
2 _ .2 _ .3 _ .3 _ 1
Y325 = TV352 = V225 = V252 = S a%.570
2 _ .2 _ .3 _ .3 _ 1
V335 = V353 = ~ V235 = V253 = T 542,52
2 .2 .4 _ .4 _ 1
Ta12 = TTa21 = V212 T V221 T T 225844550
2 .2 4 _ .4 _ 1
Ya13 = ~Va31 = 77213 T V231 T T 132432155

3 _ .3 _ 4 _ .4 _ 1
Yar2 = —Va21 = TV312 = V321 T IZ5a4a5 0
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7213 = —’7331 = _7313 = 7331 = _m,
’7325 = _7252 = —75125 = 7352 = _ma
Vo2 = —Vha1 = —Vo12 = Vam = m2$32m43£5 + ZIQ%Igz + 214%9:52,
Ve =~V = Vo4 = You = 2x2x§$4x5 + 290221132’
Va5 = —Vas1 = —Vor5 = Vos1 = _22:2213032 - 2334211252’
Vias = —Vis2 = —Vao3 = Voz2 = m;
75%24 = _7342 = _7324 = 7342 = _m,
Vios = —Vis2 = —Voos = Yoz = 2x2x§x4x5 + 4m221132 + 2z421x52?
Vess = Vi3 = — Vo35 = Vosy = m:

Vaus = —Visa = —Vous = Vosa = 4x221x32 + 4121%954935’
V12 = —Voa1 = —Vhe = Vi = _2x4213352 - 2x2$%$4$5,
Va5 = — Vs = — Vs = Vas1 = _4964%3352 - 4w2x%$4x5’

Voo = —Vos2 = — Vo3 = Vaze = _m7
Voas = Va2 = — Vo5 = Vasz = m’

3 A3 B a5 1
V535 = TV553 = T V335 = V353 T 1 aZ,5%0
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4 _ A _ 5 _ .5 _ 1 1
Vo12 = ~Vs21 = ~Va12 = Va21 = 527,37 Tt au7gsga0

4 _ A _ 5 _ a5 1
V514 = TVsa1 = T a4 = Vaar T 527 37

4 _ 4 _ 5 _ .5 _ 1
V515 = T V551 = T V415 = V451 T T 522,32

4 _ A _ .5 _ .5 _ _ 1 1
Vs2s = ~Vas2 = —Vazs = Vas2 = ;27,57 + TZasaiss

Vaas = ~Vssa = — Va5 = Visa = m'

Remark. This is an important example of Ricci coefficients with four
indexes which are square functions in two parameters u = xz—lﬁ, v = x41x5
(see [13], [23]). From thermodynamic point of view, it can be observed that
the Ricci coefficients with four indexes depend only on the products with

dimension of energy 7'S, PV, and their product TSPV

7. The Ricci tensor and scalar curvature of the Gibbs-Vranceanu-
Riemann nonholonomic space

The Ricci tensor field is the trace (28], p. 294):
Yod = Vpad-
Using the Theorem 3, we find:

Theorem 4 The nonzero components of the Ricci tensor field, associated to
the orthogonal congruences (2)+(3), are the following signomials:

2 2 2 .2 2 a2 2 2
222345 204 25T — 27 3 _ o _:r2 23" 424" 25
Y11 = 2022 732 742 757 y V12 = Y21 = 022 732 A2 752 )
R e 223 —gztad

M3 = V31 = 5 5,3,42,520 V14 = Va4l T 5 5237 4 5

2 a2 2 2 2 2 2 a2
v =7 _ _332 237 42247 257 422232425 7y o 2x2a3xtad —ad 25" —242 13
15 51 0222 1,82 ;42 152 s 122 4222 82 A2 52 )
. S . 2223 4tgb

V23 = V32 T 5 5,a7,570 V24 T VA2 T T 5752 4 5
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2 2 2 (2 P 5
_ _ 222 2% 4t 2% +4a2x3a%ad _ 1
Y25 = V52 = 022 82 742 ;57 » V88 = T a2 5%
2.3_,.4.5
_ _ xz—x"z _ 1
Y35 = V53 = 2342 552 ) V44 = _21’22@‘32’

2 .2 2 .2
_ o atab—x243 22 a3 a2 32223240
Va5 = V54 = 02522 532 745 ) V55 = 222 532 pA2 152 .

Returning to the notations (1), the nonzero coefficients of Ricci tensor
rewrite

__ 2T SPV—2P%V2_T252 _ __ T?524p%y?
T = 27252 p2y?2 y N12 = Y21 = 2T252p2Vy2 )

_ __ TS+PV _ _ TS-PV
Y13 = Y31 = 2TSP2V2) Y14 = Va1 = 2T2S2pPV »

_ _ _T252+2P2V2+4TSPV __ 2TSPV—P?v2_-27252
Y15 = V51 = 2T282 p2y/2 y Y22 = 4T252 p2y/2 )
_ _ TS-PV _ _ TS+PV
Y23 = V32 = 2TSP2V2> Y24 = Va2 = T 9T252pYy
_ _ 272824+ P2V244TSPV _ 1
Y25 = V52 = 29T282 p2Y/2 y V33 = T op2y2s
_ _ TS-PV _ 1
Y35 = V53 = 2TSP2V2> Y44 = T 9T2582)
_ _ pPV-TS _ T?S24P2V243TSPV
Y45 = V54 = 2T282PV V55 = T252 P22 .

Remark. This is an important example of Ricci tensor coefficients which
are square functions in two parameters u = ——, v = ——= (see [13], [23]).
From thermodynamic point of view, it can be observed that the Ricci tensor
coefficients depend only on the square of the products with dimension of
energy T'S, PV, and their product T'SPV .

The scalar curvature ¢ = §*y,, is given by

32, 42 52

5$2345 ¥

22

rritr? — ¥

c= 2 2 2 2
R R et A

This is an important example of scalar curvature which is a square function

in two parameters u = ——, v = ——= (see [12], [22]).



166 Cristina Stamin, Constantin Udrigte

From thermodynamical point of view, it can be observed that the scalar
curvature depends only on the energies T'S, PV and their product T'SPV.
On the other hand, the scalar curvature

5 11
- TSPV P2V2 252

C

reflects the saddle shape (behavior) in R? = {u =4 v= 2, c} via the
submersion 7 : R® — R?, n(U,T,S,P,V) = (u,v), u

8. The submanifold of the coefficients of bilinear covariants:
what is it, and from where did it come?

Let us introduce an Euclidean space R'?® whose points are of the form
(wg), a, b, ¢ =1,5. Then the Cartesian implicit equations

wgc + wgb =0
describe a vector space (hyperplane) H of dimension 50.

Theorem 5 Suppose we are in the conditions of Section 3. Then, the sub-
manifold of the coefficients of bilinear covariants in H is 2-dimensional.

Proof. The parametric equations in Theorem 1, Section 3, depend lin-
early on two parameters

1 1
v =

u =

x2x3’ xhrd’

The rank of the associated Jacobi matrix is 2.
What properties of the previous submanifold in R'?® have connection with
the geometry of 1-forms 0, a = 1,5 in R??

9. The submanifold of Ricci rotation coefficients: what is it, and
from where did it come?

Let us introduce an Euclidean space R'?® whose points are of the form
(7)), a, b, c =1,5. Then the Cartesian implicit equations

Yie + Vae =0

describe a vector space (hyperplane) H of dimension 50.
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Theorem 6 Suppose we are in the conditions of Section 4. Then, the sub-
manifold of Ricci rotation coefficients in H is 2-dimensional.

Proof. The parametric equations in the Theorem 2 of Section 4, depend

linearly on two parameters

1 1
v =

u =

x23’ xhad’

The rank of the associated Jacobi matrix is 2.

The results in this section are related to the theory of connections whose
components are polynomials (see also [13] and [23]).

What properties of the previous submanifold in R'?® have connection with
the geometry of 1-forms 0%, a = 1,5 in R®?

10. The submanifold of Ricci coefficients with four indexes: what
is it, and from where did it come?

Let us introduce an Euclidean space R%?® whose points are of the form
(), a, b, ¢, d=1,5. Then the Cartesian implicit equations (a complete list
of symmetries)

Vooa F Voed = 0, Voog + Voae = 05 Viog + Yoy + Vope = 0

describe a vector space (hyperplane) H of dimension 50.
Now we define a generalized Steiner hypersurface as the image of a rational
parametrization of two variables (for Steiner surfaces, see [22]).

Theorem 7 Suppose we are in the conditions of Section 6. Then, the sub-
manifold of Ricci coefficients with four indexes in H is a generalized Steiner
hypersurface of dimension 2.

Proof. The parametric equations in the Theorem 3, Section 6, depend
quadratically on two parameters

1 1
v =

u =

x2x3’ xhrd’

The rank of the associated Jacobi matrix is 2.
Can we create a geometry of the previous generalized Steiner hypersurface
in connection with the 1-forms 6%, a = 1,5 in R°?
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11. Conclusions

A new approach to the thermodynamical systems based on the Gibbs-
Pfaff differential 1-form, including the congruences theory of Vranceanu com-
bined with the Udriste’s theory concerning odd-dimensional nonholonomic
equations, has been presented. The physical meanings of the used congru-
ences are underlined and a Riemannian metric of orthonormalization is built.
The proofs that the coefficients of bilinear covariants and the coefficients of
Ricci (with three and four indexes) are signomials and the tangent vectors
to geodesics are rational functions are also given. As a novelty, the authors
introduce and study the submanifold of the coefficients of bilinear covariants,
the submanifold of Ricci rotation coefficients and the submanifold of Ricci
coefficients with four indexes.
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