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IMPROVED ALGORITHM USED FOR DEMAND
PREDICTION AND SCHEDULING OPTIMIZATION OF
SHARED BICYCLES

Lu YUJUN?, Luo DONGMEI?, Pan WENWEI?

Aiming at the problems of low user satisfaction and high operating cost of
shared bicycle systems, the corresponding strategies are proposed from two aspects:
demand forecasting and bicycle scheduling path optimization. Firstly, the influences
of time, space, and weather factors on shared bicycles' demand are analyzed. The
generalized opposition-based learning strategy is introduced into the improved Grey
Wolf Optimizer (GWO) algorithm based on dynamic weight allocation and a new
control factor to optimize the Back Propagation (BP) neural network. Secondly,
taking the total cost of dispatching shared bicycles and user satisfaction as the
optimization objectives, establishing the scheduling path optimization model of
shared bicycles with multi-scheduling centers, a discrete GWO algorithm based on
Large Neighborhood Search (LNS) is proposed for solving. Finally, the effectiveness
and efficiency of the proposed methods are verified via simulation.

Keywords: Bicycle-sharing system; Improved GWO algorithm; BP neural
network; Demand prediction; Scheduling path optimization

1. Introduction

The rapid development of bicycle-sharing has triggered the problems of “no
bicycles available” and “idle vehicles piling up” at a large number of stations[ 1],
and accurately predicting the borrowing/returning capacity of sites and scientific
scheduling has become the hot spots of research in related fields.

Many studies have focused on bicycle-sharing scheduling path
optimization. Kadri et al. established a static scheduling model with the
optimization objective of minimizing the total waiting time in the stations[2]. Yang
Jiahui et al[3] abstracted the shared bicycle scheduling problem as a multiple
traveling salesman problem (MTSP) with local paths repeated, established a model
to minimize the total cost of scheduling. Besides, some scholars have studied the
loan/counterweight prediction of shared bicycle sites. Jian et al. developed a
Markov model to reasonably predict the number of bicycle borrowing/returning at
rental sites considering the return and borrowing rates[4]. Wu Manjin[5] developed
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amulti-logit improved model to estimate bicycles’ share in total passenger transport
and predicted the natural demand for borrowing and returning at stations using
historical data.

In summary, these studies provided a variety of implementable ideas for
shared bicycle scheduling optimization, but the following problems still exist:
lacking overall consideration of factors influencing the demand for shared bicycles;
focusing on forecasting or scheduling optimization unilateral research; scheduling
optimization has the company's cost as the primary goal and lacks research on
customer satisfaction. This study establishes the shared bicycles demand prediction
and scheduling optimization models for improvement.

2. Data Set Analysis

The data in this study came from the 2017 Mobike Cup Algorithm
Challenge[6], processed and analyzed by SQL Server. Fig.1 presents the analysis
of factors influencing demand for shared bicycles, a presents the Daily demand for
bicycles, showing the demand was much higher on weekdays than on rest days. b
showing the bicycle borrowing/returning at each station during the 23:00 to 7:00
interval was negligible. Kong Jing[7] divided bicycle-sharing sites into six
categories, as shown in c, there were apparent differences in the average daily
borrowing and returning volume of each site. For the weather information from
2017/5/10 to 5/24, the demand for shared bicycles varies significantly under
different weather conditions as ¢ was shown. In summary, factors (time, space, and
weather) have significant effects on the demand for shared bicycles, so the dataset
was processed in this study based on an overall consideration of these attributes.
we established a shared bicycle borrowing/returning volume prediction model with
a single site as the study object and divided the study time from 7:00 to 23:00 into
2h per period, i.e., a total of 8 time periods per day in this study. The date attributes
were represented by 0/1, 0 being a day off and 1 being a weekday; the weather
attributes were expressed as -1 / 0 / 1, corresponding to rainy, cloudy, and sunny
days, the information on the number of shared bicycle borrowing/returning is
shown in Table 1.
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Fig.1. Analysis of factors influencing demand for shared bicycles
Table 1.

Data set of loan/return volume of the Dawanglu site

date 510 511 512 513 514 515 516 518 519 520 521 522 523 524

date attribute 1 1 1 0 0 1 1 1 1 0 0 1 1 1

weather attribute 1 0 0 1 0 0 1 1 1 0 104 -1 0
07000900  70/101 62/92  60/87 35/32 30/26 58/89 73105 68/103 7599 3U30 17/15 40/45 3848  61/88
09:00-11:00 443 30133 3435 2% 16/18 334 4548 4345 47/43  18/16  9/8 15/17 1820  30/36
11:00-13:00 4549 3339 3136 2322 1817 30037 4641 4446 4844 17/18 89 1519 17/18  34/33
13001500 549 4040 4339 2528 17/19 42039 50/43 5446 56/50 1917 99 2120 2319 423
15:00-17:00 36/35 23027 2815 20123 1315 26/26 W3 PR 3634 1513 77T 913 1015 26/28
17001900 135130 120/116 114/121 40/37 26/23 118/119 138/135 133/132 140/128 23/60 11/14 98/60 103/66 121/117
19:00-21:00 95/80 8370  80/66 30/26 2017 7968  98/83  97/78  96/76 17/34 811 55/34 5832 8UTL
21.00-23.00 7351 57/39 5937 22024 1V14 58038 7545 7447 7053 14/19 7/6 3519 3922  58/40

3. Bicycle sharing site borrowing/returning volume prediction model

3.1. Improving GWO algorithm based on multi-policy

The GWO algorithm is an intelligent algorithm proposed by Mirjalili and
Lew([8], simulating gray wolves' hunting behavior. For the leadership hierarchy
relationship among a. B. o is not reflected in the hunting process, Guo et al [9]
proposed an improved GWO algorithm by introducing a dynamic assignment
strategy of weights. However, the above improved GWO algorithm has problems
such as failure to guarantee population diversity, insufficient search, and room for
improvement in balancing local and global search. In this study, we propose a multi-
strategy improved GWO algorithm, i.e., introduce generalized opposition-based
learning strategy based on the GWO improved by the dynamic weight assignment
strategy, and propose a new control factor to improve the probability of obtaining
the global optimal solution.

(1) Generalized opposition-based learning strategy. The existing GWO
algorithms use random initialization to obtain the population, which cannot
guarantee population diversity. We use a generalized opposition-based learning
strategy to improve the population initialization of the GWO algorithm and select
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the top N (population size) individuals by randomizing the initial population and
the merit ranking of the corresponding inverse population. Without increasing the
search space, improve the probability of the algorithm to obtain the global optimum.
The generalized opposition-based learning strategy means that the individual
Xi=(Xi.1, Xi2--Xin)in the n-dimensional space generates the corresponding reverse
solution according to Eg. (1)[10].

5;=k(aj+b;)=x;;,(7=12, ..., n) (D
where k is a random solution uniformly distributed between (0,1), and the
dynamic search range of individual xi in the jth dimension is [aj, bj]. If x;; is beyond
the search range, it is randomly generated within [a, bj].
(2) Nonlinear convergence factor. The nonlinear convergence factor al (Eq.
(1)) is proposed in this study decays slowly in the early iterations and intensifies in
the late iterations. Assuming the maximum iterations is 100, Fig. 2presents the
variation of control factors, showing al is more effective in coordinating the global
and local search capabilities through its variation than the linearly decreasing
control factor a2 in the GWO algorithm[8] and the non-linearly decreasing control
factor a3 in the improved GWO algorithm[9].

al=2% cos( i *2)1/2 (2)

it max 2

Where it is the current iteration and it_max is the maximum iterations.

- at1=2'cos(it/100'pir2). 0.5
——a2=2-2"(it"100)

a3=2-2"(1(exp(1)-1)"(exp(it'100)-1))

|
0 20 40 60 80 100

Fig.2. Control factors comparison

3.2 Construction of shared bicycle loan/repayment prediction model

We propose a shared bicycle borrow/return prediction model with the
optimized BP neural network based on the multi-strategy improved GWO
(MIGWO-BP), as shown in Fig.3.
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Fig.3. Shared Bicycle loan/repayment prediction model

The borrowing/returning volume data, date and weather attributes of each
period of 3 days before the predicted day, date, and weather attributes of the day to
be predicted are taken as the original data. The dimensionless processing ensures
data are all between (-1,1) (Eq (3)) and then predicted by the model. Finally, the
prediction results are obtained by the renormalization processing (Eg. (5)).

2 - (Xppin)
= Xmax~Xmin 1 (3)
— 1 . e 1
9, (x) N arctan(x)+1’ ) (X) 1+ex (4)
(+1) ‘(ymax_ymin)
y=——"pe-] (%)

2

The BP network structure is 32-12-8, X is the dimensionless data, X is the
original data, Xmin and Xmax are the minimum and maximum value in the original
data, y is the predicted value, Y is the output value of the BP neural network, Ymax
and ymin are the maximum and minimum value in the output value.

Other parameters: learning rate is 0.001, training function is traingdx
function, performance function is mean square error (MSE), error precision is 1x10°
® Population size is 30, number of iterations is 5, and maximum of training is 5000.

3.2.1. MIGWO-BP

BP neural networks have been widely used due to their excellent stability in
solving fitting and classification problems but suffer from the drawback that the
selection of initial connection weights and thresholds significantly impacts the
training results and cannot be obtained accurately[11]. We use the improved GWO
algorithm based on multi-strategy to optimize the initial weights and thresholds of
the BP neural network to improve its prediction accuracy. The MIGWO-BP flow
chart, as shown in Fig.4.
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Fig. 4. Flowchart of the MIGWO-BP

Step 1: Determine the BP neural network topology. The number of network
layers, nodes, weights, thresholds, maximum training times, transfer function, and
training function is determined according to the input/output parameters.

Step 2: Determine the fitness function (the error between the actual and
predicted values).

Step 3: Multi-strategy improvement of grey wolf algorithm initialization.
Determine the individual dimension, number, maximum iterations, and activity
range of wolves according to the weights and the number of thresholds, and
generate wolf location information combined with the generalized inverse learning
strategy.

Step 4: Calculation of individual fitness values and classification into 4
classes a, B, cand w Step 5: Update location information of wolves and
parameters A, a, C.

Step 6: Satisfying stopping criterion, namely, reach the number of iterations,
output the optimal solution corresponding to the weight threshold, otherwise return
Step 4.

Step 7: Using obtained the weights and thresholds as the initial values of the
BP neural network.

Step 8: Input testing datasets into the trained model to get the prediction
results.
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It is worth noting that the MIGWO-BP algorithm is an enhancement of the
solution stability of the BP neural network, which can also be applied to solve other
problems by adjusting relevant parameters in addition to being applied to predict
traffic flow. For example, for the distribution existing fault selection model studied
by Zhao Jie[12], the fault selection feature quantity can be used as the input
parameter of the MIGWO-BP algorithm to output the fault selection result and
achieve accurate judgment of the faulted line. For the intelligent equipment life
prediction model proposed by Jian Ma[13], the main environmental stresses that
affect the basic error value of intelligent power metering equipment are taken as
input parameters, and the basic error value is output to predict the degradation trend
of intelligent power metering equipment. The algorithm is also applicable to the
settlement of box culverts in large water transfer projects, using internal and
external pressure and temperature as input values to predict the settlement of box
culvert foundations[11].

3.2.2 Case verification

The model shown in Fig.3 was constructed using MATLAB to predict the
borrowing/returning volume of Dawanglu Station in each period on May 24. We
split the data into two parts: the training (5/10-5/16 and 5/18-5/23) and testing
datasets (5/22-5/24). The effectiveness of the optimized BP neural network model
based on the multi-strategy improved GWO algorithm is verified by the borrowed
bicycle data of Dawanglu Station. Fig.5 presents the mse curves obtained by the
different models, and this model converges to 0.0083 in the 168th generation that
significantly best. The results of each model's output compared with the actual
situation, this model is closer to the actual results than other models, and the
corresponding residual curves fluctuate most smoothly by predicting the borrowing
volume, as shown in Fig.6. Based on verifying the validity of the model, it was
applied to predict the return volume of the Dwanglu Station on May 24, and the
result is shown in Fig 7.



130

Lu Yujun, Luo Dongmei, Pan Wenwei

BP Best Validation Performance is 0.19794 at epoch 144

0 R
Eq —Train
. — Validation=g=
g —Test
o —Best
9 — Goal
g I
o
0
S e ———
]
2 I I |
0 50 100 150
150 Epochs
IGWO-BP Best Validation Performance is 1.022 at epoch 128
[}
g —Train
g W —Validation
£ —Test
% Best
5 Goal
&
B0’
€
|
[}
E 1 1 1 L

GWO-BP Best Validation Performance is 0.5834 at epoch 157

0
£ 0 —Train
g 10°F —Vglidation +e—
“‘j —Test
g Best
3 Goal
510‘2‘
c
§
0 0 40 60 80 100 120 140 160

163 Epochs

Best Validation Performance is 0.0083876 at epach 164

Mean Squared Error (mse)
=
-

)] —Train
1 L
! ———— —Validation —
— f
—Test |
Best }‘
Goal |

20 40 [ 80 100 120 0 2 0 60 80 100 120 140 160

134 Epochs 170 Epochs
Fig. 5. Mse curves obtained by the different model

140 T T T T T

“— MIGWO-BP predicted value 2
120 #— Observed value i
—— IGWO-BP predicted value
100 -

Load value
©
o

(=2}
o

40

—%— GWO-BP predicted value

—&— BP predicted value

20 1 1 1 | 1 1
7:00-9:00 9:00-11:00  11:00-13:00 13:00-15:00  15:00-17:00  17:00-19:00 19:00-21:00  21:00-23:00

Return viume

T

Time

Fig. 6. May 24 borrowing volume forecast results

T T

T
— &~ MIGWO-BP predicted value
—#— Observes value

20 L 1 L
00-9:00 9:00-11:00 11:00-13:00 13:00-15:00

Time

Fig.7. The forecast results of return traffic volume

4
15:00-17:00

I
17:00-19:00 19:00-21:00 21:00-23:00



Improved algorithm used for demand prediction and scheduling optimization of shared (...) 131

4. Bicycle-sharing scheduling path optimization model

4.1. Construction of scheduling path optimization model

Based on the demand d; of shared bicycles obtained by Eq. (6), we propose
a bicycle-sharing scheduling path optimization model, and the cost function (Eq
(11)) consists of minimizing the cost of dispatching vehicles and maximizing
customer satisfaction. Besides, the cost of dispatching vehicles consists of a fixed
cost Cs for starting vehicles and a variable cost Cy that changes with the travel time
and the operating time for tasks. The penalty cost pi(ti) represents the cost that a
vehicle i arrive at the station beyond the time window [¢4,tLi], and the total
scheduling penalty cost Cr is represent customer satisfaction, namely, the lower the
penalty cost, the higher the customer satisfaction.

dFP;[Qﬁ(%'fJ] (6)

C=C - Y X Xi X (7)

C,=E '[Zzilzjilz:f:lxijh 1 +Z§\i1(|di|+f,-) 'f] (8)
MAX t,<tE;

p(t)=1 0  (Est; <tE) 9)
MAX t;>tL;

C,=Xp,(®) (10)

Min a-(C/+C,)+B-C, (11)

Where pi and ¢; are the demand and return of bicycles at the next stage
obtained by the bicycle borrowing/return prediction model, aiand fi are the number
of shared bicycles and the number of faulty bicycles obtained from the shared
bicycle information collection system for this period at the station. M, N, and H are
the dispatch center collection, the shared bicycle station collection, and the dispatch
vehicle collection, respectively. P is the set of dispatch centers and stations, i.e.,
P=MWN, xijn is a 0-1 variable, when the vehicle h travels from the station
(dispatching center) i to station (dispatching center) j is 1, otherwise 0. C is the
fixed cost of each vehicle activation, E is the variable cost per unit of time, and f; is
the number of faulty bicycles transferred out of shared bicycle station i. tj is the
travel time of the dispatched vehicle from station i to j, and tij=d;j/v, v is the average
speed of the vehicle. MAX is a large enough positive number.

Z{LI Z/]\il Xmjh <H, VmEM (12)
S T x=0 VhEH (13)
S Xmin= Xt <1 Vm EMh EH (14)

0<XP, X5 xjdy <L VhEH (15)
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0< 23 Bty rin + 23 2 rfpsQ VijEPhEH (16)
Y X = S XE gy +d; V) EN (17)
yiRpYy- e YL X " Vi EN (18)

= PRSP N xy‘h'[fi+fij'+f'(|di|+ﬂ)] Vi EN (19)
tE<t;<tL; ViEN (20)

Where dj; is the Euclidean distance between two points, rij is the available
single load of the dispatching vehicle h on the way from the site i to j, and rfijn is
the number of faulty bicycles loaded on the way of the vehicle h from i to j, t is the
time required to transfer a single shared bicycle to/from a station (including the
dispatching behavior of available bicycles and faulty bicycles).

Constraint (12) guarantees that dispatched vehicles' demand cannot exceed
the number of vehicles in the corresponding center. Constraints (13) and (14) ensure
that the vehicle departs from the dispatch center and returns to the original dispatch
center after completing its task. Constraint (15) indicates that the dispatching
vehicle cannot exceed its maximum mileage L. Constraint (16) guarantees that the
number of available (r) and faulty (rf) bicycles that each vehicle carries could not
exceed its capacity Q. Constraints (17) and (18) are available and faulty vehicle
flow-conservation, Eq (19) indicates how the time is computed. Constraint (20)
ensures compliance with the time window.

4.2. LSN- based discrete GWO (LNS-DGWO)

The GWO cannot be directly employed to deal with the discrete scheduling
problem, this study adopts the real number coding, use the OX crossover operation
based on a modified discrete search operator, and introduces LNS proposed by
David and Stefan[14], to enhance the searchability of the proposed algorithm.

(1) Population initialization. Each wolf as a scheme, taking 6 sites, 1
distribution center, and up to 3 vehicles as an example, the length of the individual
is (6+3-1), and the initial solution is generated by the PFIH strategy[15].
Let12378465 as an individual, 7 and 8 represent the center, i.e., the solution
includes 2 routes: 0-1-2-3-0,0-4-6-5-0.

(2) Discrete update. After the initial population was selected by the roulette
wheel, based on referring to the update method of Equation (22)[16] to realize the
leadership of the leading wolf to the candidate wolf, and adopted the OX crossover
operator is adopted, and the crossover probability is set to 1 to ensure that each
candidate wolf is updated.

=1/ h45) Wa=h/ (1) Wa=f/ (L) (21)
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F(X:(0),X,(1)), rand<w,
X(1+1)= F(Xk(t),Xﬂ(t)) W< rand<W,+ W, (22)
F(X:(0.X,(0)), W, + W,<rand

Where, f1, f> and fz are the corresponding fitness values (inverse of the target
value) of o, 3, and o, F represents the crossover operation, and Xk () represents the
discrete scheduling solution corresponding to the kth wolf.

(3) LNS algorithm. Wolves are selected as the first several individuals as
the population of LNS according to the fitness value after the above update. A
removal heuristic removes several sites on the individuals, and if only one path
exists for an individual, remove randomly, otherwise remove stations that are
closest to each other on different paths. The repair operator is used to fix the
destroyed solution by inserting the removed stations based on the principle of
maximum fitness, provided that the load, mileage, and time window constraints are
satisfied.

It is worth noting that the LNS-DGWO algorithm is solved in a discrete
space environment, and by setting the corresponding objective function and
constraints, it applies not only to path planning but also to solving other discrete
combinatorial optimization problems. For example, the interference resource
allocation problem of collaborative enemy-us identification system with secondary
radar mechanism proposed by Li Dongsheng[17] and the construction of sitter
scheduling problem considering part-time employment constructed by Wang
Xiuli[18] realize the reasonable allocation of resources.

4.3.1. Overview of the Instance

There are 2 dispatch centers (Each includes 3 dispatch vehicles, v=40km/h)
and 12 bicycle-sharing stations in the operation area. Table 2 presents the
parameters of dispatch centers(nodes 1 and 2) and bicycle-sharing sites (nodes 3-
14). Table 3 presents the other constraint parameters corresponding to the

dispatched vehicles:
Table 2.
Parameters of dispatch centers and bicycle-sharing sites

Node Xi Vi d; ﬁ tE; tL;
1 93 100 0 0 0 12
2 50 123 0 0 0 12
3 95 110 -15 3 0.2 0.5
4 90 86  -30 2 0.2 0.5
5 65 45 5 2 2.1 2.4
6 75 106 -10 2 0.6 0.9
7 125 117  -17 8 3.1 34
8 20 117 -10 8 1.7 2
9 30 149  -23 9 0.7 1



134

Lu Yujun, Luo Dongmei, Pan Wenwei

10 36 88 20 0 37 4
11 49 65 4 0 2.9 3.2
12 134 163 7 4 1.7 2
13 135 76  -15 5 1.9 2.2
14 104 64 15 3 0.9 1.2
Table 3.
Other constraint parameters
Parameters values Parameters values
Vehicle capacity Q 40 Maximum mileage L 200
Vehicle enablement C 100 The unit tlmeEvarlabIe cost 10
The time required to 0.005 Maximum penalty cost 50
transfer bicycle infout t ' MAX
a/p 0.35/0.65 Removed individuals 3
Population size 100 Number of generations 100

4.3.2. Scheduling optimization results

In this paper, for the constructed bicycle-sharing scheduling path optimizat
ion model belongs to the multi-distribution center problem, the stations were assig
ned to each center based on the distance nearest assignment method, and the mode
| was solved by MATLAB using the LNS-DGWO, the optimal scheduling path is
shown in Fig. 8, and the total cost is 226.53. Fig. 9 presents the efficiency of LNS-
DGWO, showing the distribution centers 1 and 2 converge in the 10th and 1st gen
eration, respectively, and more efficient than GA that converges in the 60th and 2n

d generation.
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5. Conclusions

This paper studies demand prediction and scheduling optimization of shared
bicycles and establish corresponding models and algorithms. Based on the
examples verification and algorithms comparison, the following can be observed:
(1) The generalized opposition-based learning strategy is introduced based on
random initialization, can expand the population diversity, and the global search
and local search ability of the GWO algorithm can be effectively balanced by
changing the control factor a; (2) The multi-strategy optimization GWO is applied
to determine the initial weights and thresholds of BP neural network, which
improves the prediction accuracy compared with BP, GWO-BP, and improved
GWO-BP model. (3) The model from both cost and customer satisfaction to make
it more realistic, for the model's discreteness, the crossover operator is used to
update the individuals, and the LNS strategy is added to improve the probability of
obtaining the global optimum, which is efficient than the GA[3]. As for future work,
it will be thoroughly considered the factors affecting the demand and the allocation
of multiple scheduling centers to build the corresponding models.
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