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ON THE STRUCTURE OF ULTRA-GROUPS OVER A
FINITE GROUP

Gholamreza Moghaddasi1, Behnaz Tolue2, Parvaneh Zolfaghari3

In this paper, we introduce the new concept of an ultra-group

HM which depends on the group G and its subgroup H. An ultra-group is
defined by the use of the transversal in a group. Moreover, the elementary
properties of an ultra-group are investigated. Finally, after assembling gen-
eral properties of an ultra group, we try to classify all ultra-groups of the
subgroup over the group.
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1. Introduction

Algebraic structures appear in most branches of mathematics, such as
the abstract algebra, universal algebra, varieties and category theory. The
identification of algebraic structures is also useful in other fields of science.
For instance recognition of algebraic structures in quantum physical systems
has been an important tool for their understanding (see[4, 9]). Nowadays,
answering to the new questions needs some more new tools. One of the very
useful notions in mathematics as well as in computer science is the notion
of s-acts (see [3, 5] for more details). We establish a new structure, ultra-
group. The concept of an ultra-group is the base of a new branch of studies
in algebra and the future researches. In the present work we continue the
study of a variant of natural generalization of a notion of transversal in a
group to its subgroup (see [1, 7]). In the next section of this article we define
the notions which are useful through out this work such as a pair of subsets
which are transversal, left and right quotient sets, transversal of a partition and
complementary set . After these arrangements, we are ready to introduce an
ultra-group. In fact an ultra-group is an algebraic structure whose underlying
set is depend on a group and its subgroup. Moreover, an abelian ultra-group
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is equivalence to quasigroup and finite loop (see [8, 10]). Furthermore, we
present some general properties of an ultra-group. The subultra-group, normal
subultra-group, homomorphism between two ultra-groups and quotient ultra-
groups are concepts which are defined in this section. These concepts help us
to pose isomorphism theorems for ultra-groups. We observe that the ultra-
group isomorphism preserves the order of elements in the ultra-group, and
all the ultra-groups of conjugate subgroups of a group are isomorphic. This
result helps us to classify the ultra-groups over a group more quickly in the
third part. In addition we show that if HM is an ultra-group of H over the
group G, then for every subultra-group S of HM there exists a subgroup K
of group G such that H ⊆ K and K = HS. In other words, there is a one
to one correspondence between a chain of subultra-groups of an ultra-group
and a chain of subgroups of G. Finally, we generalize the Lagrange Theorem
for the ultra-groups. Throughout the paper, all the necessary definitions and
preliminary statements may be found in (see[6, 2]).

2. Preliminaries about ultra-groups

We always consider G as a finite group and e as its identity element.
Suppose M and H are two arbitrary subsets of G. Clearly, HM ̸= MH in
general. A pair of (A,B) of subsets of a group G is called transversal if the
equality ab = a′b′ implies a = a′ and b = b′, where a, a′ ∈ A, b, b′ ∈ B. This
definition can be generalized to subgroups. It is not hard to deduce that a pair
(H,M) of subgroups of G is transversal if and only if H ∩M = {e}. Moreover,
for a subgroup H and a subsetM of group G we conclude that the pair (H,M)
is a transversal if and only if M ∩ Hg contains at most one element, for all
g ∈ G. We denote the right and left quotient sets by H \ G = {Hx : x ∈
G} and G/H = {xH : x ∈ G} such that H \G as well as G/H are partitions
of G, where H is a subgroup of G.

Definition 2.1. A transversal of a partition is a set which contains exactly
one element from each part of the partition. If H ≤ G, then a transversal for
the partition H \G ( G/H) is called a right (left) transversal for H in G.

Let H be a subgroup of G and M a subset of G. If |M ∩ Hg| = 1 for
all g ∈ G, then G = HM . For proving this equality, it is enough to show
G ⊆ HM . Suppose g ∈ G, g ̸∈ H and g ̸∈M . If m ∈M ∩Hg, then g = h−1m
which implies g ∈ HM . For the group G which satisfies the above conditions,
we have MH ⊆ G = HM . Therefore, for every element mh ∈ MH there
exists h′ ∈ H and m′ ∈M such that mh = h′m′.

Definition 2.2. Let H be a subgroup of a multiplicative group G. A subset M
of G is called (right unitary) complementary set with respect to subgroup H, if
for any elements m ∈ M and h ∈ H there exist the unique elements h

′ ∈ H
and m

′ ∈ M such that mh = h
′
m

′
and e ∈ M . We denote h′ and m′ by mh

and mh, respectively.
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Similarly for any elements m1,m2 ∈ M there exist unique elements
[m1,m2] ∈ M and (m1,m2) ∈ H such that m1m2 = (m1,m2)[m1,m2]. For
every element a ∈ M , there exists a−1 belonging to G. As G = HM , there
is a(−1) ∈ H and a[−1] ∈ M such that a−1 = a(−1)a[−1]. Now we are ready to
define an ultra-group.

Definition 2.3. A (right) ultra-group HM is a complementary set of H over
group G with a binary operation α :H M ×H M →H M and unary operation
βh :H M →H M defined by α((m1,m2)) := [m1,m2] and βh(m) := mh for all
h ∈ H.

A (left) ultra-group MH is defined similarly via (left unitary) comple-
mentary set. From now on, unless specified otherwise, ultra-group means right
ultra group. An ultra-group M is called abelian, if for all elements a, b in M ,
[a, b] = [b, a]. A non-abelian group may have abelian ultra-groups. Obviously,
every group is an ultra-group but the converse does not hold. Although every
element in right ultra-groups do not have right inverse, but they have left in-
verse with respect to the first binary operation α. If H is a subgroup of the
finite group G and [G : H] = 2, then ultra-groupM with binary operation α is
a group. The first binary operation of an ultra-groupM has the right cancella-
tion. If [b, a] = [c, a] for a, b, c ∈M , then by the argument after Definition 2.2
we have (b, a)−1b = (c, a)−1c and by transversal property we conclude b = c.
We observe that we do not have left cancellation for right ultra-groups. Let

HM be an ultra-group of H over the group G and α, β its binary and unary op-
eration on it. For every element a ∈ HM one can define a map αa :M −→M
by αa(b) = α(b, a). By use of right cancellation property of the first binary
operation of an ultra-group we deduce that αa is a bijection. In the following
proposition we present some properties of operations of an ultra-group.

Proposition 2.1. Let M be a ultra-group of subgroup H over the group G.
Then we have the following properties:
(i) ahh

′
= (ah)h

′
,

(ii) [a, b]h = [a(
bh), bh],

(iii) [[a, b], c] = [a(b,c), [b, c]],
(iv) eh = e, ae = a,
(v) [e, a] = a = [a, e],

(vi) [a[−1], a] = e = [a(a
(−1)), a[−1]],

for a, b, c ∈M and h, h′ ∈ H.

Proof. (i) For any a ∈M and h, h′ ∈ H we have :

a(hh′) = a(hh′)ahh
′
and (ah)h′= (ah ah)h′ = (ah ahh′)(ah)h

′
.

By property transversal of complementary set ( Definition 2.2) and associativ-
ity of group G, we have ahh

′
= (ah)h

′
.

(ii) For any a, b ∈M and h ∈ H,
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(ab)h = a(bh)
((a, b)[a, b])h = a(bh bh)
(a, b)([a, b]h) = (a bh)bh

(a, b)([a,b]h[a, b]h) = (a(bh)a
bh)bh

((a, b)[a,b]h)[a, b]h = (a(bh)(a
bh, bh))[a

bh, bh].

By property transversal we deduce that [a, b]h = [a
bh, bh].

(iii) For any a, b, c ∈M ,

(ab)c = a(bc)(
(a, b)[a, b]

)
c= a

(
(b, c)[b, c]

)
(a, b)

(
[a, b]c

)
=

(
a(b, c)

)
[b, c]

(a, b)

(
([a, b], c)[[a, b], c]

)
=

(
a(b, c)a(b,c)

)
[b, c](

(a, b)([a, b], c)

)
[[a, b], c] = a(b, c)

(
a(b,c)[b, c]

)
= a(b, c)

(
a(b,c), [b, c]

)
[a(b,c), [b, c]].

Now the assertion is clear.
(iv), (v) For any a ∈M , h ∈ H and unitary element e ∈M we have :

he = eh = eheh, ea = ae = aeae and (e, a)[e, a] = (a, e)[a, e] = ea.

Hence we obtained the relations

eh = e, ae = a and [e, a] = [a, e] = a.

(vi) Since for each element a in M there exists a−1 ∈ G, therefore there exists
a(−1) ∈ H and a[−1] ∈M such that a−1 = a(−1)a[−1]. Thus we have :
e = a−1a= a(−1)a[−1]a = (a(−1)(a[−1], a))[a[−1], a], and

e= aa−1 = aa(−1)a[−1] = a(a(−1))aa
(−1)

a[−1] = (a(a(−1))(aa
(−1)

, a[−1]))[aa
(−1)

, a[−1]].
The assertion follows from uniquely represented e of G. �

Definition 2.4. Let M be ultra-group of H over G. A subset S ⊆ M which
contains e, is a subultra-group of H over G, if S is closed with respect to the
operations α and βh in the Definition 2.3.

Suppose A,B are two subsets of the ultra-group HM . We use the nota-
tion [A,B] for the set of all [a, b], where a ∈ A and b ∈ B. If B is a singleton
{b}, then we denote [A,B] by [A, b]. Moreover, if A is a subultra-group of
ultra-group HM and b ∈ HM , then the subset [A, b] is called a right coset of
A in HM .
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Lemma 2.1. Let S be a subultra-group of ultra-group HM of H over the group
G and a, b ∈ HM . Then the following conditions are equivalent.
(i) a ∈ [S, b],
(ii) [S, a] = [S, b],

(iii) [a(b
(−1)), b[−1]] ∈ S.

Proof. The assertion follows immediately from the Definition 2.4. �

By Lemma 2.1 [S, a] = [S, b] or [S, a] ∩ [S, b] = ∅, which implies

HM = ∪a∈HM [S, a] .

In the following we are going to present a one to one correspondence between
subultra-groups of a fixed group G and the certain subgroups of the group.

Lemma 2.2. Let S be a subultra-group of ultra-group HM of subgroup H over
the group G. Then HS is a subgroup of group G .

Proof. Let a, b ∈ HS. Then there exist hi ∈ H and si ∈ S for i = 1, 2 such

that a = h1s1 and b = h2s2. Therefore we have ab
−1 = h1s1s

(−1)
2 s

[−1]
2 h−1

2 ∈ HS.
Now, immediately from the Proposition 2.1 the result follows. �

Theorem 2.1. Let H be a subgroup of group G. Then for every subgroup K
of G which is contained in H, there exists a subultra-group S of HM such that
K = HS.

Proof. Let S be an ultra-group of subgroup H over the group K. Then the
transversal property of the pair (H,S) of group K implies that S∩Hg contains
at most one element, for all g ∈ K and K = HS. Therefore H \ (G −K) is
partition of G−K. Now by choosing arbitrary one element of every right coset
H \ (G−K) and add to subultra-group S, we have some ultra-groups HM of
subgroup H over group G such that S is subultra-group of HM . �

Let HM be an ultra-group of H over the group G, and Si for i =
1, 2, 3, ....., n be subultra-groups of the ultra-group HM such that Si ⊆ Si+1 for
i = 1, 2, 3, ..., n − 1. Then we have subgroups Ki = HSi for i = 1, 2, 3, ....., n
of group G such that Ki ⊆ Ki+1 for i = 1, 2, 3, ..., n− 1 .

Definition 2.5. Suppose Hi
Mi is an ultra-group of Hi over the group Gi, i =

1, 2, and φ is a homomorphism between two subgroups H1 and H2. A function
f :H1 M1 −→H2 M2 is an ultra-group homomorphism if for all m,m1,m2 ∈
H1M1 and h ∈ H1 hold:
(i) f([m1,m2]) = [f(m1), f(m2)],
(ii) (f(m))φ(h) = f(mh).

If f is a surjective and injective ultra-group homomorphism, then we call
it isomorphism and denote it by H1M1

∼= H2M2. In the sequel φ is a group
homomorphism between two subgroups of the group for which the ultra-groups
are defined.
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Proposition 2.2. Let f :H1 M1 →H2 M2 be a homomorphism between two
ultra-groups.
(i) All homomorphism between the two ultra-groups preserve the identity and
left inverse elements.
(ii) If S is a subultra-group of H1M1 and φ is surjective homomorphism, then
f(S) is a subultra-group of H2M2.
(iii) The inverse image of a subultra-group of H2M2 is a subultra-group of

H1M1.

Proof. (i) Let ei be the identity element of Hi
Mi, i = 1, 2. Applying f to the

equation [e1, e1] = e1 in H1M1 gives the following equation :

[f(e1), f(e1)] = f(e1) = [e2, f(e1)].

By right cancellation implies that f(e1) = e2. Now by Proposition 2.1 and
homomorphism definition we have [f(m[−1]), f(m)] = [(f(m))[−1], f(m)] for
any m ∈ H1M1,. Hence by right cancellation f(m[−1]) = (f(m))[−1].
(ii) Since e1 ∈ S we have e2 = f(e1) ∈ f(S). Suppose m1,m2 ∈ f(S). There
exist s1, s2 ∈ S such that f(si) = mi, i = 1, 2. Thus [m1,m2] = [f(s1), f(s2)] =
f([s1, s2]) ∈ f(S). Moreover, for every m ∈ f(S), there exists s ∈ S such that
f(s) = m. Therefore mφ(h) = (f(s))φ(h) = f(sh) ∈ f(S), where h ∈ H1. Hence
f(S) is closed with respect to the operations of H2M2.
(iii) Choose a subultra-group B of H2M2. By f(e1) = e2 ∈H2 M2, we get
f−1(e2) = e1 ∈ f−1(B). Pick any two elements of f−1(B), say b1 and b2. As B
is a subultra-group of H2M2, [b1, b2] ∈ f−1(B). Moreover, βφ(h)(f(b)) = f(bh)
which implies f−1(βφ(h)(f(b)) = bh, for b ∈ f−1(B). �

Definition 2.6. Let f :H1 M1 →H2 M2 be ultra-groups homomorphism. Then
Ker(f) is defined by {(m1,m2) ∈H1 M1 ×H1 M1 : f(m1) = f(m2)}. In other

words, if (m1,m2) ∈ Ker(f) then f(m1) = f(m2). Therefore f([m
(m2)(−1)

1 ,

m
[−1]
2 ]) = f(e) which means ([m

(m2)(−1)

1 ,m
[−1]
2 ], e) ∈ Ker(f). We can refer

Ker(f) as the inverse image of the identity element e under the homomorphism,
Ker(f) = {m ∈ H1M1 : f(m) = e}.

Lemma 2.3. Let f be a homomorphism between two ultra groups H1M1 and

H2M2 with kernel K where K = {m ∈ H1M1 : f(m) = e}. Then f(m1) =
f(m2) if and only if m1 = [k,m2] for some k ∈ K.

Proof. Suppose f(m1) = f(m2), so we have [(f(m1))
(f(m2))(−1)

, (f(m2))
[−1]] =

f([m
m

(−1)
2

1 ,m
[−1]
2 ]) = e. This means that [m

m
(−1)
2

1 ,m
[−1]
2 ] ∈ K, thus m1 = [k,m2]

for some k ∈ K. Conversely f(m1) = f([k,m2]) = [f(k), f(m2)] = f(m2). �

Congruence is a special type of equivalence relation which plays a vital
role in the study of quotient structures of different algebraic structures (see
[2]).
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Theorem 2.2. Suppose the same notations as in Definition 2.6. Then Ker(f)
is a congruence on H1M1 and it is a subultra-group of H1M1.

Proof. It is obvious that Ker(f) is an equivalence relation. If (m1 Ker(f) m2)
and (m3 Ker(f) m4), then f(m1) = f(m2) and f(m3) = f(m4). Therefore
f([m1,m3]) = [f(m1), f(m3)] = [f(m2), f(m4)] = f([m2,m4]). Furthermore,
f(m1) = f(m2) implies that f(m1)

φ(h) = f(m2)
φ(h). Hence f(mh

1) = f(mh
2)

and (βh(m1) Ker(f) βh(m2)). The rest is clear. �

Let f be a homomorphism between two ultra-groups H1M1 and H2M2.
Then f is injective if and only if Ker(f) = ∆

H1
M1

. Now, consider the second

definition for the kernel of a homomorphism, Ker(f) = {m ∈ H1M1 : f(m) =
e}. The ultra-group homomorphism f is injective if and only if Ker(f) =
{e1}. Clearly, if f is an isomorphism between two ultra-groups, then f−1 is an
isomorphism.

Definition 2.7. Let M be an ultra-group over the subgroup H1 of the group
G and θ be a congruence over M. The set M/θ = {[m]θ;m ∈ M} with the
operations αθ and βθh,
(i) αθ([m]θ, [m

′]θ) = [α(m,m′)]θ
(ii) βθh([m]θ) = [βh(m)]θ
is an ultra-group of H2 over the group G, where H1 ≤ H2 ≤ G. This ultra-
group is called a quotient ultra-group.

For the ultra-group H1M1 and congruence θ over it, π :H1 M1 −→H1 M1/θ
is the canonical (natural) homomorphism. The following theorem is powerful
in applications.

Theorem 2.3. (First isomorphism theorem for ultra-groups) Let f be a surjec-
tive ultra-group homomorphism between two ultra-groups H1M1 and H2M2 and
θ a congruence over H1M1 such that θ ⊆ Ker(f). If π :H1 M1 −→H1 M1/θ,
then there exists a homomorphism g satisfying gπ = f .

Proof. It is enough to define the map g :H1 M1/θ −→H2 M2 by g([m]θ) = f(m).
Since [m1]θ = [m2]θ ⇔ m1 θ m2, by the hypothesis θ ⊆ Ker(f) we have
f(m1) = f(m2) which implies g is well-defined. The map g preserves the first
operation αθ and the unary operation βθh . Thus we can conclude that g is an
ultra homomorphism. �

In the following it is established a connection between the congruence on
a ultra-group and a normal subultra-group.

Lemma 2.4. Let S be a subultra-group of HM . Then
(i) [ab

(−1)
, b[−1]] ∈ S if and only if there exists s ∈ S such that a = [s, b].

(ii) Let θ be a relation on HM defined by aθb if and only if there is s ∈ S such
that a = [s, b]. Then θ is an equivalence relation.
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Proof. (i) By Proposition 2.1 and right cancellation property we have

[ab
(−1)

, b[−1]] = s ⇐⇒ [[ab
(−1)

, b[−1]], b] = [s, b] ⇐⇒ [[ab
(−1)(b[−1],b), [b[−1], b]] = [s, b]

⇐⇒ a = [s, b],

where a, b ∈ HM and s ∈ S. The second part follows immediately. �

From now on we use the notation θ for the equivalence relation which is
satisfied in the second part of Lemma 2.4.

Definition 2.8. A subultra-group N of HM is called normal if [a, [N, b]] =
[N, [a, b]], for all a, b ∈ HM .

For instance if we denote the equivalence class of e with respect to the
equivalence relation of θ in the second part of Lemma 2.4 by [e]θ, then [e]θ = S
is a normal subultra-group of HM . If it is necessary, then we can switch S and
θ on some situations, in sequel.

Moreover, Ker(f) is a normal subultra-group of H1M1, where f : H1M1 →
H2M2 is an ultra-group homomorphism.

Lemma 2.5. Let N be a normal subultra-group of HM . Then we have the
following properties,
(i) [a,N ] = [N, a], for all a ∈H M .
(ii) [[N, a], [N, b]] = [N, [a, b]], for all a, b ∈H M .
(iii) If [N, b] = N , then b ∈ N .
(iv) [N,S] is a subultra-group of HM , where S is a subultra-group of HM .
Moreover, [N,S] is a normal subultra-group of HM if S is also normal subultra-
group of HM .

Proof. (i) It is enough to put e instead of b in the Definition 2.8.
(ii) By the fifth part of Proposition 2.1 and normality of subultra-group N
we deduce [[N, a], [N, b]] = [N, [a, [N, b]]] = [N, [N, [a, b]]] = [[N,N ], [a, b]] =
[N, [a, b]].
(iii) By hypothesis, there exists n′ ∈ N such that [n, b] = n′ for all n ∈ N .
Moreover, [(n[−1])(n,b), [n, b]] = [(n[−1])(n,b), n′] ∈ N . Therefore, by Proposition
2.1 [[n[−1], n], b] ∈ N . Hence the assertion follows.
(iv) The subset [N,S] is closed with respect to the first and second operations
of ultra-group HM by (ii) and the second part of Proposition 2.1, respectively.
By Definition 2.8 we have [a, [[N,S], b]] = [a, [N, [S, b]]] = [N, [a, [S, b]]] =
[N, [S, [a, b]]] = [[N,S], [a, b]]. �

Theorem 2.4. Let f :H1 M1 →H2 M2 be an ultra-group homomorphism. The
inverse image of a normal subultra-group B of H2M2 is a normal subultra-group
of H1M1.

Proof. By Proposition 2.2 we have f−1(B) is a subultra-group of H1M1. It
is sufficient to show that f−1(B) is normal. We have f([a, [f−1(B), b]]) =
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[f(a), [B, f(b)]] = [B, f([a, b])] = f([f−1(B), [a, b]]) by homomorphism prop-
erty, for every elements a, b ∈H1 M1. Thus ([a, [f−1(B), b]], [f−1(B), [a, b]]) ∈
Ker(f) = ∆

H1
M1

which implies f−1(B) is normal. �

Theorem 2.5. If S is a subultra-group of HM , then the equivalence relation
θ is a congruence if and only if S is a normal subultra-group HM .

Proof. Suppose θ is a congruence. By the argument after Definition 2.8,
S is a normal subultra-group. For the converse, let aθb and a′θb′, where
a, b, a′, b′ ∈ HM . Then by the second part of Lemma 2.5 [a, a′] = [[n, b], [n′, b]] =
[n′′, [b, b′]]. This means [a, a′]θ[b, b′], for n, n′, n′′ ∈ N . For the compatibility of
the second operation of the ultra-group, assume aθb. Thus ah = [n′, bh] and
the definition of θ implies ahθbh, for all h ∈ H. �
Theorem 2.6. Let γ be a congruence on HM and [e]γ = S. Then γ and θ are
equivalent.

Proof. By the congruence definition, Proposition 2.1 and right cancellation
property we conclude,

a γ b ⇐⇒ ab
(−1)

γ bb
(−1) ⇐⇒ [ab

(−1)
, b[−1]] γ [bb

(−1)
, b[−1]]

⇐⇒ [ab
(−1)

, b[−1]] γ e ⇐⇒ [ab
(−1)

, b[−1]] ∈ S
⇐⇒ a θ b.

�
Theorem 2.7. If γ is a congruence on the ultra-group HM and [e]γ = N , then

HM/θ ∼=H M/N .

Proof. The elements of HM/θ are the classes of [m]θ = {m1 ∈H M : m1θm} by
definition of θ we deduce that [m]θ = {[n,m] : n ∈ N} = [N,m] (see Lemma
2.4). We define ψ :H M/θ −→H M/N such that ψ([m]θ) = [N,m]. It is clear
that ψ is well defined. If [m1]θ, [m2]θ ∈H M/θ, then by the fact that N is a
normal subultra-group of HM and Proposition 2.1 we have ψ([[m1]θ, [m2]θ]) =
[N, [m1,m2]] = [N, [m1, [N,m2]]] = [[N,m1], [N,m2]] = [ψ([m1]θ), ψ([m2]θ)].
Therefore ψ is an ultra-group isomorphism. �

If γ, θ are congruences on HM and θ ⊆ γ, then clearly γ/θ = {(a/θ, b/θ) ∈
(HM/θ)2 : (a, b) ∈ γ} is a congruence on HM/θ.

Theorem 2.8. (Second isomorphism theorem of ultra-groups) If N ′, N are

normal subultra-groups of the ultra-group HM such that N ⊆ N ′, then
HM

N
N′
N

∼= HM
N ′ .

Proof. By the argument before the theorem N ′/N is a normal subultra-group
of HM/N . The map ψ :H M/N/N ′/N −→ M/N ′ is a homomorphism with
N ′/N ⊆ Ker(ψ) so the result follows by the first isomorphism theorem. �

The third isomorphism theorem [2, Theorem 2.6.18] which is valid for
any algebra can be translated for ultra-groups. Although, we can be translated
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prove the third isomorphism theorem for ultra-groups by the same method of
the proof of the first isomorphism theorem. We need Lemma 2.6 in order to
mimic the proof of Theorem 2.6.18 in [2].

Lemma 2.6. Let B be a subultra-group of HM and θ a congruence on HM .
Then
(i) B2 ∩ θ = (B ∩N)2,
(ii) Bθ = [N,B], where N is [e]θ.

Proof. (i) With some basic properties of the congruence in hand, we have :
B2 ∩ θ = {(b1, b2) : b1, b2 ∈ B and b1 θ b2} = {(b1, b2) : b1, b2 ∈ N} = B2 ∩N2.
(ii) By [2, Definition 2.6.16] we deduce Bθ = {a ∈H M : ∃ b ∈ B, a θ b} =
{a ∈ HM : ∃ b ∈ B, a = [n, b] for some n ∈ N} ⊆ [N,B]. The rest is clear. �

Theorem 2.9. (Third isomorphism theorem) If B is a subultra-group of HM

and N is a normal subultra-group of HM , then B
B∩N

∼= [N,B]
N

.

Proof. Since [e]θ = B ∩N the proof is straightforward. �

3. Classifying ultra-groups of a subgroup over a group

We specify classes of ultra-groups of a subgroup over a group up to ultra-
groups isomorphism. Let us start with the following definition.

Definition 3.1. Let a be an element of ultra-group HM . The smallest positive
integer n such that an := [[[a, a], a], · · · , a]︸ ︷︷ ︸

n times α operation of a

= e is called the order of a.

We denote it by o(a).

Theorem 3.1. If HM is an ultra-group over the group G, then the order of
an element a in the ultra-group HM is a divisor of the order of the element a
in the group G.

Proof. Suppose the order of the element a is k and m in the ultra-group HM
and the group G, respectively. Therefore am−k ∈ H. We show that k | m− k.
Suppose in the contrary way, there exist q and r such that am−k = akq+r and
0 < r < k. Therefore ar ∈ H, which contradicts the fact that o(a) is k in the
ultra-group HM . �

It is not hard to deduce that the ultra-group isomorphism preserves the
order of elements. Lagrange theorem is valid for ultra-groups, the proof is clear
by the argument after Lemma 2.1 so we omit it.

Theorem 3.2. If S is a subultra-group of HM , then |S| divides |HM |.

If a ∈ Hg, then for every h ∈ H there exists g′ ∈ G such that βh(a) ∈
Hg′. We deduce that if a, b ∈ Hg, then βh(a) and βh(b) belong to the same
coset, where H ≤ G.
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Let H be a subgroup of G and |G| = n, |H| = m. Then we can make
m

n
m
−1 ultra-groups of H over G such that each of them has n/m elements.

If H \ G = {H,Hg1, · · · , Hg n
m
−1}, then the ultra-groups HMi = {ai0 =

e, ai1, ai2, · · · , ai( n
m
−1)} can be defined, where aij ∈ Hgj, gj ∈ G, (0 ≤ j ≤

(n/m) − 1) and i = 1, 2, · · · ,m n
m
−1. We call HMk and HMs are equivalent if

they have analogues elements of equal order in HMi for i = k, s and all gj ∈ G.
We denote it by HMk ∼ HMs.

Theorem 3.3. IfM1 andM2 are ultra-groups of H over G such thatM1 ∼M2,
then M1 and M2 are isomorphic.

Proof. According to the argument before the theorem consider two equivalent
ultra-groups M1 = {a10, a11, a12, · · · , a1k} and M2 = {a20, a21, a22, · · · , a2k},
where k = n

m
− 1, a10 = a20 = e. We define the map f : M1 → M2 by

f(a1j) = a2j. As Hg1Hg2 = Hg1g2, the multiplication of two elements in
Hg1 and Hg2 belongs to Hg1g2. Therefore, by the fact that elements of ultra-
groups are chosen from distinct cosets and their intersection is the empty set,
we conclude that f is an ultra-group isomorphism. �

Theorem 3.4. Let H1, H2 be two subgroups of G such that H2 = Hg
1 . Then

ultra-group H1M
g
1 is an ultra-group of H2 over G.

Proof. We denote H1M1 by M1. Since G = gH1M1g
−1 = H2M

g
1 , we conclude

thatM g
1 is a complementary set of H2 on G. Now we prove that every element

of M g
1 is chosen uniquely from each coset of H2. Suppose contrary m2,m

′
2 ∈

H2a ∩M g
1 , where a ∈ G. There are m1,m

′
1 ∈ M1 and h1, h

′
1 ∈ H1 such that

mg
1 = hg1a and m′g

1 = h′g1 a. Hence m1,m
′
1 ∈ Hag which is a contradiction. �

Finally we present an interesting example of a group such that its ultra-
groups are classified up to ultra-groups isomorphism. Suppose Dn = ⟨a, b :
an = b2 = 1, ab = a−1⟩ is the dihedral group of order 2n. All subgroups
of Dn are of the type H1 = ⟨ad⟩ and H2 = ⟨ad, ad′b⟩, where d | n and
0 ≤ d′ ≤ d − 1. For the subgroup H1, the set H1 \ G can be partitioned
to two sets K1 = {H1a

i : 0 ≤ i ≤ d − 1} and K2 = {H1a
ib : 0 ≤ i ≤ d − 1}.

Every element of H1a
i is of order d and every element of H1a

ib is of order 2,
1 ≤ i ≤ d − 1. By the argument before the Theorem 3.3 we have (n/d)2d−1

ultra-groups of H1 over G. Fortunately all these ultra-groups are isomorphic
to {e, a, a2, · · · , ad−1, b, ab, · · · , ad−1b} in the similar way we mentioned in The-
orem 3.3. Furthermore, for H2 the set H2 \ G is {H2a

i : 0 ≤ i ≤ d − 1}. For
each H2a

i we have two possible for order of elements : order d′, where d′ | d
and order 2. Therefore, for choosing each element from the coset H2a

i we have
two cases. This means there are 2d−1 equivalence classes for ultra-groups. The
classifying of these subultra-groups is according to the conjugate subgroups of
Dn (see Theorem 3.4 for more details).
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