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A PROCEDURE TO OBTAIN THE PROBABILISTIC
KITAGAWA-TAKAHASHI DIAGRAM

José A.F.0. CORREIA?, Abilio M.P. De JESUS?, Alfonso Fernandez-
CANTELI®, Roberto BRIGHENTI*, Pedro M.G.P. MOREIRA?®, Rui A.B.
CALCADA®

An alternative way of interpreting the Kitagawa-Takahashi diagram for
structural components is proposed. With this aim, the equivalent initial flaw size
(EIFS) model, as a way of defining the initial defects of the structural components is
used in conjunction with the probabilistic S-N model proposed by Castillo and
Canteli, thus allowing the probabilistic distribution of the EIFS to be generated and,
consequently, a probabilistic definition of the KT diagram (P-KT) to be achieved.
The proposed approach is applied to a notched plate made of P355NLI steel, the
results of predictions are analyzed and the deviations discussed.

Keywords: Kitagawa-Takahashi Diagram; Fatigue; Probabilistic model; Fracture
Mechanics.

1. Introduction

The Kitagawa-Takahashi (KT) diagram [1] represents a boundary in terms
of crack size and stress range for which infinite fatigue lifetime of structural and
mechanical components can be safely ensured due to non-propagating micro- and
macrocracks [2]. Generally, only a deterministic conception of the K-T diagram is
considered in the practice despite the obvious necessity of incorporating its
probabilistic dimension in a more reliable structural integrity design. Some
exceptions are found in the literature. As the preliminary attempt, Fernandez-
Canteli et al. [3] incorporates the probabilistic information of the experimental S-
N field, as provided by the P-S-N model proposed by Castillo and Fernandez-
Canteli [4], which relates crack size and lifetime, into the K-T diagram. On its
turn, the probabilistic model of Pessard et al. [5] is based on the consideration of
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Weibull distributions for the two damage mechanisms: initiation (safe-life
concept) and propagation (damage tolerance concept).

In this paper, an alternative way of promoting a probabilistic concept of
the K-T diagram is intended using the equivalent initial flaw size (EIFS) concept
based on fracture mechanics, particularly on the elastoplastic cyclic J-integral, in
which the initial defects of the structural components are taken into account [6,7].
The inverse analysis proposed by Alves et al. [8] is applied to estimate the EIFS
parameter and after considering the probabilistic P-S-N model developed by
Castillo and Canteli [4], the probabilistic Kitagawa-Takahashi diagram (P-KT) is
obtained for structural components. The proposed approach is applied to lifetime
prediction of a notched plate made of P355NL1 steel, and the results analyzed and
discussed.

2. Probabilistic S-N model by Castillo and Canteli

Castillo and Fernandez-Canteli [4] derived a Weibull regression model for
constant stress range and given stress level (e.g. stress ratio, mean stress). This
model, being formulated in the stress space, is recommended for medium to high,
or even very high cycle fatigue life prediction. The derivation of the model is
based on the fulfilment of physical conditions (identification of the involved
variables and dimensional analysis) and statistical requirements (weakest link
principle, stability, limited range, limit behaviour). In addition, the fulfilment of
the necessary compatibility condition between lifetime distribution, for given
stress range, and the stress range distribution, for given lifetime, leads to a
functional equation, the solution of which provides the following Weibull
distribution, defining the probabilistic S-N field [4]:

- —o)-118
F(logN;loghc) =p=1—exp {— [aogN B)(lggm 2 /1] }; (logN — B)(logha —C) =1 (1)

where: N is the lifetime; Ao is the stress range; F() is the Weibull cumulative
distribution function (CDF) of N for given Aa; B=log(Ny), Ny being a threshold
value of lifetime; C=log(Aoy), Aoy being the endurance fatigue limit; and 4, # and
o0 are, respectively, the shape, scale and location Weibull model parameters, the
latter defining the position of the zero-percentile curve. The model, as presented
in Figure 1a) and defined by Equation (1), has been studied and successfully
applied to different lifetime assessments [4,9,10] and extended to the case of
variable stress level [11].

The normalized variable V=(logN-B)(log4o-C) by simultaneous melting of
the stress/strain ranges or amplitudes and the number of cycles allows the S-N
field to be reduced to a simple Weibull CDF, see Figure 2, which can be
occasionally relaxed to a Gumbel distribution. For a fixed stress range, the
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probability of failure increases monotonically with the number of cycles; in the
same way, the probability of failure goes up by increasing stress ranges for a fixed
number of cycles. By considering the normalized variable 7, equivalent loading
conditions are established, as those leading to the same probability of failure thus
allowing a damage cumulative conversion to be formulated. Considering the S-N
field of Figure 1b), the loading condition (4a4, N,) is equivalent to (4o, N3p) since
they exhibit the same probability of failure as a result of showing the same
normalizing variable, V,=Vj:

V, = Vg = (logN, — B)(logAa, — C) = (logNg — B)(logAag — C) 2
_ (logN 4—B)(logAcs—C) _ Va
AUB = €Xp [ (logNg-B) + C] = €Xp [(logNB—B) + C] (3)
_ (logN 4—B)(logAa4—C) _ Va
NB = €Xp (logAog—C) + B] = €Xp [(logAaB—C) + B] (4)
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Fig. 1. Probabilistic S-N field: a) S-NV model proposed by Castillo and Fernandez-Canteli [4]; b)
Representation of two equivalent loading conditions (same probability of failure and damage).
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Fig. 2. Cumulative distribution function of the Weibull normalized variable V.
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3. Equivalent Initial Flaw Size (EIFS) concept based on Fracture
Mechanics and Cyclic J-Integral

The fatigue life evaluation based on the fracture mechanics approach for
notched details is supported by material crack propagation laws [12]. The cyclic
J-integral can be used to take into account the elastic—plastic deformations in the
crack-tip area by means of the expression:

== ) )

where da/dN is the fatigue crack growth rate, AJ is the range of the cyclic J-
integral and f{) is a function of the J-integral.

The number of cycles to failure may be computed by integrating the crack
propagation law between the initial crack size, a; and the final crack size, a;:

_ (4 da
N= faz f@n ©)

The material is assumed to exhibit surface defects acting as initial cracks.
In order to allow the computation of the global fatigue life of the component to be
performed, the initial crack size a;, is supposed to be a material characteristic
representing the E/F'S of the material.

To consider the crack propagation regime I, an extension of the Paris-type
crack growth law [12] is proposed by Alves et al. [8]:

= (A — M) A = A (7)

A numerical integration of the propagation law based on cyclic J-integral is
adopted by the following approximation:
_ v _da
N'= 2 7an ®)
where the equivalent initial flaw size (EIFS) is estimated by means of the inverse
(back-extrapolation) analysis proposed by Alves et al. [8], the procedure of which
is schematically depicted in Figure 3.

4. Probabilistic procedure applied to the Kitagawa-Takahashi
diagram

The process proposed to obtain a probabilistic Kitagawa-Takahashi
Diagram (P-KT) for notched structural details can be summarized as follows:

i) A probabilistic S-N field must be derived for the material or
mechanical/structural component under consideration from stress-based fatigue
data, using the probabilistic model by Castillo and Canteli [4].

ii) The equivalent initial flaw size (EIFS) is obtained for any probability of
failure, using the fatigue crack propagation data and the S-N field represented by
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the percentile curves previously established in step i). The cyclic J-Integral is
thereby adopted.

iii) Next, the relation between the variable V=[log(N)-B][log(Ac)-C] Vs.
probability p is deduced, then the relation between EIFS vs. the normalized
variable V' is established from which, finally, the relation between EIFS vs. p
can be found.

iv) As a last step, the probabilistic Kitagawa-Takahashi Diagram is
derived. This procedure allows us to obtain an equivalent initial flaw size
distribution (EIFS-CDF).
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EIFS = EIFS + a;
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Fig. 3. Procedure proposed by Alves et al. [8] to estimate the EZFS using inverse analysis.
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The schematic procedure for the derivation of the probabilistic Kitagawa-
Takahashi diagram, as proposed in this paper, is represented in Figure 4.

The consideration of the normalized variable, V7, allows the equivalence
between two loading states to be established based on percentile (iso-probability)
curves - these being interpreted as iso-initial flaw size (iso-EIFS) curves - and the
probability of failure, p. In this way, the normalizing variable, 7, may be
understood as a possible alternative to EIFS measurements [9]. The consideration
of the probability of failure associated to the equivalent initial flaw size (EIFS)
parameter could be used advantageously for design purposes, namely to establish
safety margins. In this sense, the percentile curves can be interpreted as
representing different initial flaw sizes.

Experimental Tests Estimative of the Equivalent Initial
Ao, vs. N, Flaw Size (EIFS) using an Inverse
(back-extrapolation) analysis
proposed by Alves et al [8]

P-S-N
Probabilistic Model proposed by
Castillo and Fernandez-Canteli EISF=a,,
Ao, Ni.
A, (N, p,=0.5
Ag,, (N1), p,=0
Aoy (N, py~1
Ay, P1 =0.5
a, PZZO
ay, ps~1 Integration of the
i Crack Growth Rate
Vvs.p
V — Normalized Variable Vvs. EIFS
p — Probability of Failure EIFSvs. p
P-KT

Probabilistic Kitagawa-Takahashi

Fig. 4. Procedure adopted to compute the probabilistic Kitagawa-Takahashi diagram (P-KT).
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The S-N curves are generally related to a unique probability of failure,
p=0.5 or p=0.05, though the scatter of experimental data requires the definition of
the whole S-N field as percentile curves based on statistical principles.

The percentile curves can be assumed to be associated with the probability
of existence of a crack being less than a certain initial crack size, a;, initially
unknown (see Fig. 5).

The fatigue failure is governed by the maximum crack size, present in the
specimen being tested, so that percentile curves with increasing probabilities of
failure are related to diminishing crack sizes: the percentile curve p=0,
corresponding to the greatest, or worst, among the maximum crack sizes of the
population, i.e., a;,=maX(aq), which is denoted max-max crack size [3].

Similarly, the upper percentile curve, p=1, corresponds to the minimum,
or best, of the maximum crack sizes of the population, i.e., a;,=min(a,..), which
is denoted min-max crack size [3].

For practical purposes, the definition of the latter can be relaxed
identifying a;,, as an initial crack size related to a high probability of failure, for
instance, p,=0.90 or 0.95. The two curves associated with «;,, and a;, represent
the two limiting sizes of the initial maximum defect corresponding to the
particular surface finishing of the material tested [3].

For a given number of cycles to failure N, two different stress ranges 4o,
and Ao, (4o,>40,), are identified with the best and worst surface defects
respectively [5].

For finite reference lifetime N, an engineering threshold value 4J, .,c can
be found, particularly for the defect sizes a;,, and a; 5, but also for a generic crack
Size Aim (ai,w > ai,m> ai,b) [3]

For Ny—o, the 4Jy,..g becomes the true threshold value 4.J, of the crack
growth rate curve.

Ao

p=0.5
Aoy, p~1
Ao,
Aoy,
. I_ ........................
N, N

Fig. 5. Statistical principles applied to the reference lifetime, using the probabilistic S-N model
proposed by Castillo and Fernandez-Canteli [4].
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5. Application to a notched plate made of P355NL1 steel

The proposed probabilistic procedure was applied to the experimental data
derived from 5 mm thick plates made of P355NL1 steel [13,14]. Table 1
summarizes the mechanical properties of this steel. Figure 6 presents the crack
propagation data for the P355NL1 steel according to the recommendations of the
ASTM E647 standard. Experimental tension fatigue tests were carried out on
notched plates, as those depicted in Figure 7, for a stress ratio R=0, the results of
which are shown in Figure 8. The fatigue propagation law for stress R=0, used in
this investigation, is presented in Figure 9 [8].

L0E-2
Table 1
. . AMBO2(R=0.0] & MBO4(R=0.0)
Mechanical properties of the P355NL1
Stee| 10E3)  OMBO3(R=05) O MBOSR=D5) e
‘(f‘l
Ultimate tensile strength, oyurs [MPa] 568 T * MBOG(R=0.7) ?{‘
@ ; e*.
n . -
Monotonic yield strength, o, [MPa] 418 \;‘ 10E-4l gl

Young’s modulus, E [GPa] 205.2 E

=

Poisson’s ratio, v 0.275 2

. - - = 10651
Cyclic hardening coefficient, K' [MPa] 77
Cyclic hardening exponent, n' 0.1068
Fatigue strength coefficient, o't [MPa] 840.5 L0E-6. 1 1 }
. 250 500 1000 1500
Fatigue strength exponent, b -0.0808 AK )
. mm
Fatigue ductility coefficient, €' 0.3034 H H
o Y o Fig. 6. Crack propagation data for the P355NL1 steel.
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Fig. 7. Notched rectangular plate used in the
tests (dimensions in mm).

R,=0.0
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1.0e3 1.0E4 1.0E5 1.0E6 1.0E7

Cycles, N

Fig. 8. S-N fatigue data from notched plates.

In order to apply the procedure proposed by Alves et al. [8] an
elastoplastic stress analysis was performed for computation of the cyclic J-integral
range at the notched structural detail using a finite element model. Figure 10
represents the results of the cyclic J-Integral as a function of the nominal stress
range for a crack length, a=0.625mm, obtained for the notched plate [8]. The
proposed procedure requires the probabilistic S-N field for the structural detail
allowing to obtain V" vs. p and in turn V vs. EIFS. Finally, the results of the
proposed procedure are presented in Figure 11 allowing an equivalent initial flaw
size distribution (EIFS-CDF) to be estimated.
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Fig. 10. Value of the cyclic J-Integral as a
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function of nominal stress range for the
Fig. 9. Crack growth law adopted in this study. notched plate (a=0.625mm).
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Fig. 11. Application and results of the proposed probabilistic procedure.
6. Conclusions

The main conclusions derived from this study are the following:

- A procedure is proposed to obtain a probabilistic Kitagawa-Takahashi
diagram (P-KT) providing higher reliability in practical design cases.

- The approach allows us to establish a connection between the
probabilistic S-N field proposed by Castillo and Canteli [4], and the
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equivalent initial flaw size (EIFS) concept based on fracture mechanics
and cyclic J-integral. The approach can be applied indistinctly for both
finite and infinite limit number of cycles.

- Further study is needed to allow an extension of the proposed approach
to define the K7 diagram for small cracks. i.e., in the low-cyclic
fatigue (LCF) region, as well as the consideration of stochastic cracks
growth rate curves, particularly in the threshold regime.
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