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ON SOME PROBLEMS IN THE SPACE C™]0,1]

M.T. GARAYEV?, H. GUEDIRI?> AND H. SADRAOUI®

We consider the so called « —Duhamel product, denoted ®, on the space
a

c(™[0,1] and prove that, with this product, this space has the structure of a unital
Banach algebra, and then show that its maximal ideal space consists of the
homomorphism ¢, defined by ¢,(f)= f(). Moreover, we consider the usual

convolution product * and study the =-generators of the Banach algebra
a a
(C(”)[O,l], *) Some other related questions are also discussed. Our results improve
a

the work of [2,3,4,5] where the case « =0 was considered.
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1. Introduction

Let C™[0,1] be the space of continuous functions with n derivatives and
the n™ derivative continuous. Set ||f||:supﬂf(x)|,x e[O,l]} for any continuous

function, and consider the norm
[£], =max{/f [, £..[f @[} for f eC™[0,1].

For « <[0,1] , we define the «— Duhamel product on c™[0,1] as follows:
(f ®g)(x) :(;j—xj f(x+a-tg)dt=[ f'(x+a-t)gt)dt+f(@)g(x). (1.1)
Moreover, define the following convolution product on C™[0,1] by:

Ko 1900 = (f x9)() = [ f (x+a-tg(t)dt. (1.2)

Observe that for « =0, we recover the classical convolution products ® and *
given respectively by
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(f ®9g)(x) =J'O f'(x-t)g(t)dt+ f(0)g(x) and (f *g)(x) =J'O f (x-t)g(t)dt.
Various algebras of functions with respect to the products * and ® have been
investigated in the literature; we refer to the papers [1,2,3,4,5,7] for more details
and related references. For instance, the space C™[0,1] endowed with the
convolution products * and ® yields two closely related algebras that have been
considered and well elaborated in [4]. In particular, its *-generators have been
characterized. Moreover, extended eigenvalues, extended eigenoperators and
spectral multiplicity of some concrete operators, such as the Volterra integration
operator, have been determined using the resulting tools. The point is that the
methods used there hinge heavily on the Banach algebras structures of these
algebras. Note that algebras of analytic functions on the unit disk have also been
analogously studied, and many similar interesting results have been established;
for more details, we refer to [2,3,4,7,6] and the references therein.

In [1], Ginsberg and Newman have shown that a necessary condition for
feC,, (here C, ={f C[0,1], f(0)=0}), to generate the radical algebra
(C,,*) isthat f does not vanish throughout any interval [0,1],4 >0; while it is
not yet known whether this condition is sufficient. Nevertheless, they proved that
the necessary condition f(0)=0 is also sufficient in the Banach algebra T of

functions f(x) = ¥ a,x*, with the norm | f|| = ¥ |a, | and multiplication *.
k=0 k=0

In this paper we prove that (C(”)[O,l], ®) is in fact a commutative Banach

algebra, and carry out an invertibility criterion with respect to this product, and
then describe its maximal ideal space. Besides, we characterize the *-generators

of the algebra C™[0,1] with respect to this convolution product. The above

techniques have certain interesting applications, namely that we are able to exploit
the underlying structure in order to establish an estimate for the solutions of some

integral equation of Volterra type in terms of the kernel function K e C[0,1].

2. A Banach algebra structure for C[0,1] and its maximal ideal
space

In this section we investigate the Banach algebra structure of the space
C™[0,1] with respect to the « -Duhamel product and describe its maximal ideal
space. We begin with the following lemma.
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Lemma 2.1 (C‘”)[O,l], ®) is a commutative Banach algebra with the unity f =1.

Proof. Only the norm product inequality needs to be shown. For, we have
(f®g)(x)= L f'(x+a-1)g(t)dt+ f (2)g'(x) + f'(a)9(x),
and by induction we get
(f®g) ()= j £ (x+a—-t)g(t)dt + Zk: ™ () g ™ (x).
An integration by parts leads to "
(F®QV ) =[ " (x+a-t)g't)dt+ 5 10(@)g" " (0+ g(e) {0 ().
So we obtain "~
(@9 0of< |t llat+ St flo ]+ lsl] 1]
and thus -
(oo

< (k+2)[f], ol
which yields

(to9)| <(+2)f],lgl,.
This completes the proof.

Now, we establish an invertibility criterion with respect to the Duhamel
product:
Lemma2.2 f eC™[0,1] is ® -invertible if and only if f(a) 0.
Proof. Indeed we have
(f (?g)(x) =L f'(x+a-t)g(t)dt+ f (a)g(x).

If g isthe inverse of f weget (f ®g)(«) = f(«@)g(a) =1, whence f(«)=0.
Conversely, if f(a)=0, set D, (g9)=f®g. We will prove that D, ; is an

invertible operator. To this aim, write f as f =F + f(a), where F=f-f(a).
So D,;=f(ax)l +D, .. Since f(a)=0, it suffices to show that D, is

quasinilpotent, i.e that o(D,.)={0}. For this, we will show that
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lim|D¥ - -0, In fact, in terms of the operator K, defined above, by

k—0

considering F(«)=0, we have

(D, r9)(x) :(;j—xj F(x+a—t)g(t)dt

~ ["F(cra—ng(dt =K, . g(x).
Thus we get
(K2og)x) =K, e (K, ~g)0)

= [ F(x+a-1)(K, -g)t)dt
:jXF'(xm—t)Ut F’(t+a—s)g(s)dsjdt.
Hence, we obtain
_ 2
K2 0)00 <[ o], &2
By induction we easily get
_ k
K000 FlLJal, 2
On the other hand, we have:
(K2 .0)'(X) =jXF”(x+a—t)U‘ F'(t+a—s)g(s)ds)dt
+F'(e) [ F'(x+a-s)g(s)ds.

Thus, we get

|<K§,F'g)'(x>|s||F||§||g||n((X‘2“> +x_aj

X—a+1)°
<[F[Elgl, =2

So, assume by induction that

! _ 1 k
K2 0 O <[P o),

By differentiation we get
(Ker9)(x) = f F(x+a-1)(K; - g)(t)dt+ F"(a)(K - 9)(x).
We deduce that
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K+ k+1 - kel k+1 1k+1
|(KE29) () [<[F; IIQIIn((X(kfl)). + & ka)J_" I+ 1ol %

Now, from the equality

(KZ:9)(x)= I F'(x+a-t)(K, 9)(t)dt+ F'(2)(K, £ 9)(X).
we infer that

(K2eg) (X)= f F '(x+a-1)(K, ¢9)(Odt+F'(a)(K, 9)(X) + F'(2)(K, £9)(X),

which leads to

(K2 e0) 0 I<[F[:]gl, ( 2“) +X“”%j

(X—a+2)°
<[F[lol,~——
By induction we thus obtain

(KX @) ) < [F | ol M, forall jef2...n}.

k!
It follows that
1+n)*
Ik e, <IFLal, S5
and thus
1/k 1+n
el <[Pl e 2.0

So K, . is quasinilpotent, which implies that D, , is invertible.

Theorem 2.3 (C(”’[O,l], ®) is a unital commutative Banach algebra with

maximal ideal space M ={g_} where ¢, : C[0,1] > C and ¢_(f) = f(a).
Proof. We set here by o(f) the spectrum of the element f in the Banach algebra
(C(“’[O,l], ®) with respect to the multiplication ®. It follows from Lemma 2.2

that o(f)={f(a)} and by Gelfand's theory we see that M ={@_}. Indeed, the

functions which vanish at the point « form a maximal ideal. Any other proper
ideal cannot have an element which does not vanish at «; hence there is only one

maximal ideal. Therefore the maximal ideal space M of (C(”)[O,l], ®) consists of
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one homomorphism, namely, evaluation at «, and the Gelfand transform is trivial.
This proves the theorem.

3. The *-generators of the radical algebra C™[0,1]

Recall that for a Banach algebra B the radical R of B is equal to the
intersection of the kernel of all (strictly) irreducible representations of B. If
% = {0}, then B is said to be semi-simple and if % =B, then B is called a radicial
algebra. Equivalently, B is a radicial Banach algebra, if for every element b < B
the associated multiplication operator M,, M,a : =ba (aeB), is quasinilpotent
on B (i.e., o(M,)={0}).

1/k

It is classical that lim fzk

k—0

=0 and so (C™[0,1],*) is a radical Banach

n

algebra with respect to the convolution * defined by means of Formula (1.2).

Here f« :=f+f*.xf isthe k" iterated convolution of the function f in
C™[0,1]. For any feC™[0,1], we have that (f=f)(a)=0. Also
frfnf=("f(x+a—t)] f(t+a—7)f(z)dz)|,_,=0. Thus, it is easy to see that

f:k(a)zo,kzl,z..., and therefore we see that a necessary condition for
fec™[0,1] to generate  (C™[0,1],%), (that is to vyield

Span|f, f=f, fxff,.]=C™[01]), is that f(a)=0. However, it is not yet

known whether this condition is sufficient, even for « =0, (see eg. Ginsberg and
Newman [1], as well as [2]). Note that for ¢ =0, (i.e. for the classical
convolution product =), this problem was first considered by Ginsberg and
Newman [ginsburg-newman] for the space C[0,1] of all continuous functions on

the segment [0,1]. They considered the subalgebra C,, defined by
C, ={f €C[0,1], f (0) =0}, and showed that a necessary condition for f €C, to
generate C, is that f does not vanish throughout any interval [0,4],4 >0.

However, it is proved there that this condition is not sufficient. Furthermore, they
proved that the necessary condition f(0)=0 is also sufficient in the Banach

algebra T of functions f(x):iakx", with the norm |f| = §|ak| and
k=0 k=0

multiplication = defined above.
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In the present section, we discuss the above stated question in the Banach
algebra (C™[0,1],*). Namely we prove the following theorem, which reduces

this question to the case of the subalgebra
C"[0,4]:=1{f eC™[0,1]: f(a)=0}

Theorem 3.1 Let feC™[0,1] be a function such that f(a)=0. Let
F(x)=['f(t)dt. Then f isa *-generator of the algebra (C(”’[O,l],j) if and only
if F is a ®-generator of the subalgebra (Cé”)[o,l],(zs)).
Proof. Indeed, since F(x) = f(t)dt, forall g eC™[0,1], we obtain

D, 9(X) =%j:F(x+a—t)g(t)dt=j: f(x+a-t)g(t)dt.

This means that D, . =K_ ;, where K is the convolution operator defined
above. Hence F®f = f *f Moreover, we have

(F®F)®f_D02:Ff_ aF(DaFf)_ aF(K f):K;ff

By induction we get K% , f = DX . f , for any k > 0. These equalities show that
Span[f, fef f *f*f,...J:Span[f,F@f,F®F®f,...J

®k
:Span[Da'f(F” j : k:0,1,2..}
=CI0${DM(Span[F(f?k : k=0,1,2...D}
=Clos{Dayf(Span[1,F,F®F,F§3,...D}.
Now, using the fact that

Span[l, F.F®F, Fga,..} =Span[iL e C]@Span[F, F®F, ng,...],
where @ stands for the direct sum of subspaces, we see that
Span[ f,f :2,..} = Clos{Dmf (Span[/ll,/l = C]@Span[F, F72D} (3.3)

Since f(a)=#0, by Lemma 2.2 the o — Duhamel operator D,  is invertible on

the space C™[0,1]. On the other hand, by considering that
C™[0,1] =Span[i1, 1 e C]®C™[0,1], (3.4)
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where C™[0,1] is the subspace defined above, the assertions of the theorem now
follow from the invertibility of the operator D, ; and the representations (3.3) and
(3.4). The proof is complete.

4. An estimate for the solutions of the Volterra integral equation

In this section we give an estimate for the solutions of the Volterra integral
equation

(R, £ )00 = [ K(x+a=1) f (t)dt = g (x), (4.5)
in terms of the kernel function K € C™[0,1]. It is classical that Equation (4.5) has
a solution in the space C™[0,1] for any given function g € C[0,1]. Let us set
G, = {u e C™[0,1]: uisasolution of equation (4.5)}.

It can be proved that o(R, () ={0} (i.e. R, is a quasinilpotent operator on
c™[1]). Let o,(%, ) denote the point spectrum of the operator %, (i.e., the
set of eigenvalues of R, ). Since R, is also compact, it is easy to see then that
o,(R, ) =¢. Thisimplies that g ¢ G, for any nonzero g e C™[0, 1.

Let G, ={UEGg ul, =1} be the unit sphere of the set G,. Here we are

interested in the following natural question:
Calculate the distance between g and G, denoted dist(g,G;)

Our assertion estimates dist(g,G;) in terms of the kernel function K.

Proposition 4.1 The following inequality holds

12|t

o n 1 . ?
inf {dist(g,G! ), g «C™[0,1]\{0}}> EH(_“L K(t)dtj

where the symbol —1® denotes the ® -inverse in the algebra (C“”[O,l],@)

n

Proof. We set F(x)=-1+[ K(t)dt. Then, the equation K=*u=g can be
rewritten as

ijx F (X+a—t)u(t)dt+u(x) = g(x),

dx J«
or in brief as F ®u = g —u. Then, by considering that F(a) =-1(#0), by Lemma
2.2, there exists a function f € C([0,1] such that f ® F =1, which implies that
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fOF®u=f®(g—u) thatis u=f ®(g—u). Hence by making use of Lemma
2.1, we obtain for any u e G;

1=|ul, =

fo(g-u)| <(n+2)f]Jo-ul,
which implies that
1

>——— Vv L
>z S

lg -

Since f =F =, we infer that

1 1 -1 X e N 1
"g—U"n ZmHFT%Z(n'FZ) (_1+Ia K(t)dt) n y VUEGg.
Hence
. T
dist(g, G2 )> (n+2)* (—1+ [ K(t)dtj ” (4.6)

Since g e C™[0,1]\{0} is an arbitrary function, Inequality (4.6) implies that

inf {dist(g, G2 ) g € C™[0,2\{0}{> (n +2)"* (_1+ I: K(t)dtJNB _

as desired.
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