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INVESTIGATION OF CHAOTIC FORCED BENDING
VIBRATIONS OF THE AUTOMOTIVE DRIVESHAFT

Mihai BUGARU', Andrei VASILE?

To investigate the chaotic forced bending vibrations of the automotive
driveshaft it is necessary first to adopt an appropriate dynamic model that describes
such dynamic behavior. Such a dynamic model was already realized in previous
works by the authors, and therefore based on the dynamic equations already
obtained it was used a complex method developed by the authors based on two
elements: chaos manifestation detection, and chaos manifestation confirmation. The
chaotic manifestation detection consists in using the time-history graphs in a
specific resonance region namely the principal parametric region. For the same
region was applied the Maximum Lyapunov Exponents Method (MLEM) was
coupled with the contraction criterion for the sum of Lyapunov exponents that
certifies the chaos. In addition, was applied the Poincaré Map as a qualitative
method to reconfirm chaos manifestation. Thus, a powerful analytical tool was
created to investigate the chaotic forced bending vibrations for specific conditions
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in the principal parametric resonance’s area (PPRA).
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1. Introduction

The paper represents a development of previous research carried out by the
authors [1-3] concerning the dynamic behavior of automotive driveshafts. The
automotive driveshafts are homokinetic transmission elements for cars from
gearboxes or differential boxes to the wheels, being important elements of the
automotive’s driveline. The authors have already shown that geometric and
kinematic isometry of the automotive driveshafts have nonuniformities [1] and
therefore, all the dynamic models must consider this aspect [2], [3]. The present
paper considers the same dynamic model for the forced bending vibrations of the
automotive driveshaft, as in [3], involving the following physical aspects:

a.

b.

geometric and kinematic nonuniformities from the isometry property
of the tulip, bowl, and midshaft as elements of the driveshatft;
due to the rigidity imposed by technical demands the tulip and the

bowl have rigid body deflections and rotations(w, / w,,@, / ¢,,¢, / ¢, -
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tulip/bowl deflections and rotations, as shown in figure 1, while the
midshaft is considered as a continuum media namely as a simply
supported Timoshenko beam with mass, springs, and dampers at both
ends having continuous functions Ww,,d,,@, respectively midshaft

deflections and rotations;
c. the excitations are induced by the impact road shocks transmitted
through automotive wheels generated by road nonuniformities [4].

=
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Fig. 1. Schematic representation of the deflections/rotations of the driveshaft elements[3]

Based on Hamilton’s principle, [3] it was derived the forced bending
vibrations equations using the previous assumptions. Starting from this point the
present paper’s analysis is devoted to detecting and certifying chaotic FBV
(forced bending vibrations) for the automotive driveshaft elements in the PPRA
(principle parametric resonance’s area). Mazzei and Scott analyze in [5] the
nonlinear dynamic behavior of automotive driveshaft elements in the PPRA. The
experimental confirmation that one of the most important resonance areas for the
FBYV of automotive driveshafts is the PPRA was done by Steinwede in [6].

The detection of chaotic FBV in the PPRA will be performed using the
general equations of FBV for a heavy-duty automotive driveshaft designed for an
SUV (sports utility vehicle) having a permanent 4-WD (four-wheeler drive). This
will imply the determination of the phase portraits for the tulip and the bowl in the
PPRA. The certification of chaotic FBV manifestation in the PPRA implies the
computation of Lyapunov exponents, namely the use of the Maximum Lyapunov
Exponents Method (MLEM) for a modified system of equations for FBV of the
automotive driveshaft elements (tulip and bowl) followed using the contraction
criterion: the sum of all Lyapunov exponents is negative for tulip/bowl, as stated in
[7]. As a supplementary confirmation of chaotic FBV manifestation for the
tulip/bowl in the PPRA, it was computed Poincaré Maps for the tulip/bowl in the
PPRA so that the pictures of Poincaré Maps have the property of the system’s
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auto-similarity, also mentioned in [7] as a qualitative method for chaos
manifestation.

2. The Equations of FBV for the tulip/bowl of the automotive
driveshaft

To calculate the equations of FBV for the tulip/bowl of the automotive
driveshaft it is mandatory to reduce the mass inertial moments and the geometric
inertial moments of the tulip/bowl to the cartesian system of reference (CSR)
X,Y,Z, of the midshaft as in [3]. All the inertial characteristics of the tulip and the
bowl, respecting the schematic representation shown in Figure 1, are presented in
Appendix A, as described in the paper [3]. The dynamic model of FBV for the
tulip is presented in Appendix B, while the dynamic model of FBV for the bowl is
presented in Appendix C, being adopted with those stated in the paper [3]. The
equation of the FBV in normalized bending deflection for the tulip is®®!(pp. 13, 14)
1-C, cos(2¢,) V;’DL @ 1-C, cos(2¢,)
1-C,cos(2¢,) 1-C,cos(2¢,)
while the equation of the FBV in normalized bending deflection for the bowl is*!
(pp- 13, 14)

v.v.+2§!2 —I_CSCOS(Z%)v;+[22—1_c3cos(2(p3)w =T w; —I,w,. (2)
} N1-C,cos(2p,) ° T 1-C,cos(29,) ° . o

The constants C;, /7, and the natural frequencies for the tulip in bending (2 and

W+ 2EQ, w ==\ =W, (1)

for the bowl in bending (2, are expressed in Appendix D as stated in the paper
[3]. The terms that induce the forced excitations in the PPRA contain for the tulip
0, cos(2¢,) and for the bowl €2,, cos(2¢,)and must satisfy the equations

[8](pp. 199, 425)

2d g,

7, 0200 2dp,
t

7,020 1 3)

where 77,is the tulip’s excitation frequency and 7,is the bowl’s excitation

frequency. To use equations (1) and (2) it is mandatory to compute the tulip’s
geometry characteristics J;,J,,, and the bowl’s geometry characteristics J,;,J,,

based on their general geometry. This was done using the AUTOCAD software,
and the results presented in Table 1 are like the data in BI®P- 1519 Also, Table 1

Table 1
Tulip’s/Bowl’s geometry characteristics and material properties &shock’s amplitude/time
0.5(J;p +Jy) | 0.5(J,5 +J,5) P E/G ¢ F /A,
4 4 Xar ! Xous 3 [GPa] ] i
[m*] [m*] [kg/m’] [MN/ms]

9.1531 x 1077 | 10.560 x 1077 | 0.25/0.10 7850 200/77.3 | (16-318)10* | 0.5/1...10
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illustrates the material properties of the tulip/bowl as well as the values of the
shock’s amplitude and the shock’s duration. Comparing the data in Table 1 with
those used by Steinwede in his experiments [6](p. 111) it can be remarked the
agreements.

3. The Detection of Tulip’s/Bowl’s chaotic FBV in the PPRA

For the tulip, based on the relations (D1)(see Appendix D), the PPRA is
defined by a range around the value 1038.38 Hz, the natural bending frequency
being v, =519.19Hz[3](pp. 19-20). Based on the relations (D2) (see Appendix D),

for the bowl, the bowl’s PPRA is defined by a range around the value 6306.6 Hz,
the natural bending frequency being v, =3153.3Hz[3](pp. 19-20). To determine the

time phase portraits for the tulip and the bowl in FBV is mandatory to modify the
equations (1) and (2), which become the systems

aw _
"
de, db
7;:7;:771101:91’ 4)
dv.
W e 1- Ccos(@) Vo Ccos(@) W -,
dt 1-C,cos(6,) " 1- Ccos(@)
aw, _
da "
dae; d6?
=10, =6, 5
dt dt =1, (5)
av.,,
_ 20, Ccos(@) Vo—o ,1- CCOS(@3) R )
dr 1-C,cos(0,) 1-C, cos(@)

Using the MATLAB software, it was computed the time phase portraits of
the tulip’s FBV and the bowl’s FBV in the PPRA are presented in Figures 2-5.
Analyzing the phase portraits of the tulip’s FBV ( see Fig. 2.b, Fig. 3.b) it can be
concluded that a chaotic FBV for the tulip is manifested in the range
£=0.0016—-0.0216 of the damping ratio, while the increase with 0.02 of the

damping ratio induces a decrease of the tulip’s bending deflection w, more than ten
times. Also, the same increase of the damping ratio induces a decrease of the

tulip’s velocity bending deflection %more than six times. Analyzing the time
t
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history of the tulip’s phase portraits in the PPRA( see Fig. 2.a and 3.a) it is
obvious the manifestations of beating effects specific to chaos.

. 107
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Fig. 2. Time-history (phase portraits) of the tulip’s FBV. y,. =0.25,£ =0.0016
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Fig. 3. Time-history (phase portraits) of the tulip’s FBV. y, . =0.25,£=0.0216
Analyzing the phase portraits of the bowl’s FBV ( see Fig. 4.b, Fig. 5.b) it

can be concluded that a chaotic FBV for the bowl is manifested in the same range
£=0.0016-0.0216 of the damping ratio, while the increase with 0.02 of the

damping ratio induces a decrease of the bowl’s bending deflection w, more than
ten times. Also, the same increase of the damping ratio induces a decrease of the

bowl’s velocity bending deflection %more than six times. Analyzing the time
t
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history of the bowl’s phase portraits in the PPRA ( see Fig. 4.a and 5.a) it is
obvious the manifestations of beating effects specific to chaos.

dwa/dl[mls]

0.02

2 0 time[s]

a. b.
Fig. 4. Time-history (phase portraits) of the bowl’s FBV. y,, =0.10,£ =0.0016

5 =108

dwaldt[m/s]
dwe,feltmis]
o

0.02 &
3 4 g time[s] -

a. b.

Fig. 5. Time-history (phase portraits) of the bowl’s FBV. y,, =0.10,&£ =0.0216

If we compare the results illustrated in Figs. 2 and 3 for the tulip’s FBV
with those illustrated in Figures 4 and 5 for the bowl’s FBV it can be remarked an
accentuation of the beating effects for the bowl for the damping ratio around the
value 0.0016 (see Fig. 2.b and Fig, 4.b) and a similar manifestation of time-
history for the tulip’s FBV and the bowl’s FBV for the damping ratio around the
value 0.0216 (see Fig. 3.a and Fig.5.a).

4. The Confirmation of the chaotic FBV for the tulip/bowl in PPRA

The Lyapunov exponents computed based on the system (4), that describes
the tulip’s FBV in the tulip’s PPRA ( the excitation frequency of the tulip is in the
range around 1038.38 Hz[3]) are given by the equations [7](p. 306-307)
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55 (o) B cici
L =—Y1 — L, =—>»1 - ,
1 T4 081 (WI,VWI,@I)T/ —(WIP,VHT,QIP)Tf 21 T, 5 0819 (WI,VWI,@I)U —(W{),wa,@]p)rfu (6)

(91 oy )Ti

1 &
L, :leoglo

' v N adi
s (WI’I/wl"@l) _(WI V0, )

where the superscript p indicates the perturbed solution on an interval break

(T3, Tiv1), Ty 1is the final time of integration and N is the number of intervals
contained in the time range (0, 7y). The Lyapunov exponents computed based on
the system (5), that describes the bowl’s FBV in the bowl’s PPRA ( the excitation
frequency of the bowl is in the range around 6306.6 Hz[3]) are given by the
similar equations, with the same signification of the superscripts previously
described,

1 W — Ti ‘ le _Vw{j Ti‘

L13 :Tizwllogm ( T3/ 3) 7 ’L23 :LZN:IOgW ( %f ) LAl
= (WWV»@’@3)‘ —(wf,l{vf,@f)' = (WyVW},@)‘ _(nyprﬂ@;)‘ H (7)
& (@-er)

33 T_Zlogm 1r |
[ (W3,Vw3,@3) _(Wf’Vwi’@;)

To certify the chaos is necessary to apply two criteria respectively the Maximum
Lyapunov Exponents Method (MLEM) coupled with the contraction criterion of
the sum of all Lyapunov exponents that imposes the next mathematical
proposition to be true [7](pp. 306-307), [9]

3
3i = {1,2,3},max(L, )0,3L, ~0,> L. (0,j = {1,2,3}. )
1

Figures 6 and 7 are illustrated the Lyapunov exponents for two values of the
damping ratio 0.0016 and 0.011 in the tulip’s PPRA, with excitation frequency in
the vicinity of 1038.38 Hz. As can be remarked from Figures 6 and 7 the
proposition (8) is true only for the damping ratio in the range of 0.0016-0.011.
Analyzing Figure 6 it can be concluded that chaos manifestation is confirmed in
the excitation frequency range (950-1150) Hz for the damping ratio of 0.0016,
while in Figure 7 the chaos manifestation is confirmed in the excitation frequency
range (1100-1150) Hz for the damping ratio of 0.011 even if from chaos detection
(see Fig. 3) it indicates the maximum value of damping ratio 0.0216. Figures 8
and 9 are illustrated the Lyapunov exponents for two values of the damping ratio
0.0016 and 0.0125 in the bowl’s PPRA, with excitation frequency in the vicinity
of 6306.6 Hz.
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Fig. 6. Tulip’s Lyapunov exponents of FBV in the PPRA(1038.38Hz), v, =519.19Hz, £=1.6-107
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Fig. 9. Bowl’s Lyapunov exponents of FBV in the PPRA(6306.6Hz), v, =3153.3Hz, £=12.5-107

As can be remarked from Figs. 8 and 9 the proposition (8) is true only for the
damping ratio in the range of 0.0016-0.0125. Analyzing Fig. 8 it can be concluded
that chaos manifestation is confirmed in the excitation frequency range (6200-
6400) Hz for the damping ratio of 0.0016, while in Fig. 9 the chaos manifestation
is confirmed in the excitation frequency ranges (6300-6365) Hz and (6368-6400)
Hz for the damping ratio of 0.0125 even if from chaos detection (see Fig. 5) it
indicates the maximum value of damping ratio 0.0216. Accordingly, to the latest
developments in the theory of chaos if two Lyapunov exponents are positive and
all the Lyapunov exponents respect the proposition (8) the dynamic system is
consider to be a hyperchaotic system [10]. Analyzing Figures 6-9 it can be
concluded that the automotive driveshaft is a hyperchaotic system for a damping
ratio in the range of 0.0016-0.011 and excitation frequency in the range (1100-
1150)Hz for the tulip in FBV, while for the bowl in FBV the hyperchaos
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manifestation is valid for a damping ratio in the range of 0.0016-0.0125 and
excitation frequency in the ranges (6300-6365) Hz and (6368-6400)Hz. To
reconfirm the chaotic manifestation of tulip’s FBV and bowl’s FBV in the PPRA
it was computed, using in MATLAB software based on systems (4) and (5), the
Poincaré¢ Maps (PM) that represents the intersection of the orbits in the phase
portraits with an orthogonal surface at equal periods (N number of points), using
the mathematical procedure presented in [7] (p. 194). If the tulip’s FBV or the
bowl’s FBV are periodic or quasi-periodic the PM represent saddle points or
saddle separatrices pictures. For an excitation frequency range in the vicinity of
1038.38 Hz and for a damping ratio £=1.6-10" Fig. 10 illustrates the Poincaré

Map for the tulip’s FBV in the PPRA using N =100,000 orthogonal surface
sections to the orbits for the phase portraits (w,,dw, / dt).

051

dw1 fdi[m/s]
(=]

057

5 0 5
w, [m] %1074

Fig. 10. Poincaré Map for the tulip’s FBV in the PPRA(1038.38Hz), N=100,000 £=1.6-10"

As can be remarked from Figure 10 the picture has the properties of
strange attractors respectively auto-similarity and a diffuse structure of points
having a different density of pixels per image’s unit area.

For an excitation frequency range in the vicinity of 6306.6 Hz and for a
damping ratio £=1.6-10" Fig. 11 illustrates the Poincaré Map for the bowl’s
FBV in the PPRA using N =100,000 orthogonal surface sections to the orbits for
the phase portraits (w,,dw, / dt).
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Fig. 11. Poincaré Map for the bowl’s FBV in the PPRA(6306.6Hz), N=100,000 £=1.6-10"

As can be remarked from Fig. 11 the picture has the properties of strange
attractors respectively auto-similarity and a diffuse structure of points having a
different density of pixels per image’s unit area. The reconfirmation of chaotic
manifestation of the tulip’s and bowl’s FBV through Poincaré Maps respectively
the strange attractors. Such dynamic behavior is considered by Steinwede [6](pp.
88-94) to be the cause of the internal pitting of the bells of the tulip and the bowl
as well as the micro-cracks on the tripod axes. Also, Steinwede assimilated the
mechanism of the chaotic FBV and chaotic forced torsional vibration of the
automotive driveshafts with a similar mechanism for the nonlinear dynamic
behavior of the geared systems transmissions, mechanisms already investigated by
the first author of the present paper in [11]. As can be remarked the increase of
the damping ratio has a benefic effect avoiding the chaotic behavior of FBV for
the automotive driveshafts but it induces thermal stress.

5. Conclusions

The novelty of this paper is that investigated the chaotic FBV of the
automotive driveshafts using a new method with two steps: detection of possible
chaotic manifestation using phase portraits time-history and quantitative and
qualitative confirmation of the deterministic chaos (strange attractors) for FBV
using a modified MLEM coupled with Poincaré Maps. The results obtained
confirmed theoretically for the first time the manifestation of FBV’s hyperchaos
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in the principal parametric resonance area for the tulip and the bowl agreeing with
the Steinwede’s experimental research [6](pp. 86-94) for the pitting manifestation,
as well as the data referring to mass moment of inertia[6](p. 111) and the chaotic
dynamic behavior of homokinetic transmission similar with the chaotic dynamic
behavior of the geared transmission [6](p. 117), chaotic mechanism already
studied by the first author in [11]. Finally, the paper highlighted the mechanism of
hyperchaotic nonlinear dynamic behavior for the homokinetic transmission[10].
This new method may be used as a powerful tool by the designers of automotive
driveshafts as well as the designers of the FBV’s dynamic absorbers for the
automotive driveshafts.
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Appendix A. The Inertial characteristics of the tulip/bowl
driveshaft|3]

“The geometric inertial moments J YZT,J zr and the mass inertial moments

Iy .1, ; of the tulip reduced to the midshaft axes Y,,Z, are

JYZT = ‘]YZTB +JYZTAJ Jzzr = Jzer +JZZTA' IYZT = ‘]YZTBpLTB + JYZTApLTA’ [zzr = leTBpLTB + JZZTApLTA’ (Al)
2
Jys =0. S(J +J, )[1+sin2 B+ X cos(anl)cosZ ﬂl}+%cos2 B+, (dCT)2 , (A2)
4 2 g2 2 i
Iy = %(1 +sin® ﬂl)*’ﬂhcosz B+ s (Lps +0.5Ly, )2 Kt = ——=, (A3)
: 64 4 12 ‘]lT JZT

S LTB P ﬂd;: ﬂdﬁA LTA ﬂdTA
S, (d J, . ==L L, +05L,) (A4
12+(") =y T 1" 4( * )( )

Ty =0.5(J + 1oy )[1= 1, o5 (20,) ]+
where J,;,J,; are the principal geometric moments of inertia for the tulip’s bell,
J Y2TB’J YzTA"] ZZTB,J 7,14 are the geometric moments of inertia for the tulip’s

elements reduced to the axes Y,,Z,, p is the mass density of the automotive
driveshaft elements, d., is the distance between the center mass of the tulip and
the tripod’s center mass, S, is the surface of the cross-section for the tulip’s bell,
X1 1s the nonuniformity of the geometric moments of inertia for the tulip, L is
the length of the tulip’s bell, Ly, is the length of the tulip ax, and d,,is the
diameter of the tulip ax. The geometric inertial moments J YZB,J 2.5 and the mass

inertial moments / YZBJ 2,5 0f the bowl reduced to the midshaft axes Y,,Z, are

']Ylb’ = ‘]YEBB +J}g&4’ ‘]ZZB = ‘]ZZBB +JZZBA’ IYZB = JYZBBpLBB +‘]YZBApLB.4’ [ZZB = JZZBBIDLBB +JZZBA/DLBA' ( AS)
2
Jyss =0.5(J, +J23)[1 +sin’ By + 1,p cos(2(03)cos2 ,b’z:| + SBéBB cos’ B, + 8, (dy )2 , (A6)
_”d;A 2 ”dziA ZA _Juz_JzB
JY:BA _W(H_Sm ﬂz) 4 12 ﬂz (LBB +0. SLBA) Ay —m: (A7)
S,L, rd,, rd;, LBA rd;,

J, 0 =05(J,+J,, )| 1- 2
7,88 ( Tha h3)|: ;(”BCOS( (03)}4' 64 4 12

with the same signification as previously but for the bowl.”[3].

32 +Sg(dcg)2,JZZBA= ; 4(L,, +05L,,)", A8)
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Appendix B. The Dynamic model for tulip-tripod joint[3]

The dynamic model for the FBV of the tulip, tulip-tripod joint and
midshaft of the automotive driveshaft is illustrated in Figure B as presented in
paper|[3].

z|z, z,

]vz'rljzzr’ [wl NG (O’t)] 1 1

A YT, 2 1 Z,T,
\
\

Fig. B. Dynamic model of FBV for: tulip, tulip-tripod joint, and midshaft[3].

“The tulip has a stiffness X, and damping c,, for the bending vibration rigid
movement of the tulip regarding the axis Z, and a stiffnessk,,, as well as
damping ¢, for the angular bending vibration rigid movement of the tulip

regarding the axis Y, , given by the following relations:

3EJ 3EJ k k

ko= ZZTA,k _ ZZTB,k LT S P B1

11 Lgm 12 L3TB 1 ko + ko 1 f\/ My ( )
GJ Y,T4 GJ %,TB kzl,kz,z

k, = - szlz = Ky = X k 6 =6 ktlIYZT’ (Bz)
LTA LTB LT + ¥

where E is Young’s modulus, G is the shearing modulus, m, is the tulip’s
mass,”’[3] and & is the damping ratio of the tulip’s material (the same as bowl’s
material), that is steel (£=0.0016-0.0318) [7]. “The uniform midshaft (see Figures
B, C) in continuous FBV movement is assimilated with a uniform Timoshenko
beam simply supported at both ends by elastic supports (the tulip—tripod and inner
race-bowl joints are elastic supports for the midshaft), having at x =0 a tripod

fixed on the midshaft through splines and elastically linked in the tulip—tripod
joint with the tulip and on the left-hand side at x = L,,, an inner race (see Figure C)
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fixed on the midshaft through splines and elastically linked in the bowl—inner race

joint with the bowl, with the inertial characteristics given by the relations below:
T =0.5(Jg + Ty )1+ 1,1, €08 (20,) |71 = 0.5(J g, + g, )[1= 2, c08 (20, ], (B3)
Jop =0.5(J,, + 5, )[1+ 1, c05(20,) |0, = 0.5(J,,, + Jy, )[1- 2, cos(20,) ],

where J,,,,J,, are the principal geometric moments of inertia for the tripod,

(B4)

J,»J5, are the principal geometric moments of inertia for the inner race, X7,
and X, are the geometric nonuniformities of the tripod and inner race, and

J YT J 2,7 J Y J z,i» are the geometric moments of inertia of the tripod and inner

race concerning the axes Y,,Z, .”[3]

Appendix C. The Dynamic model for bowl-inner race joint[3]

H Zz Z3 " 22
L. L, . ]3'23/]416/
(AR [wz (LMdt) — W, ms'lyzsflzzs

w

IYzM“ [ Z,Ms
CDZ(LMs't :!"
t qE
N A
=y ’ B k |I| 2
o-o3”
Y3

Fig. C. Dynamic model of FBV for: bowl, bowl-inner race joint, and midshaft[3].
“The bowl has a stiffness &, , and damping ¢,, for the bending vibration

rigid movement of the bowl regarding the axis Z, and a stiffness £,,, as well as
damping c¢,,, for the angular bending vibration rigid movement of the bowl

regarding the axis v,, given by the following relations:

3EJ 3EJ k, k
by ==y = 2k, =22 o = & Jkymy, ¢l
o1 LZA 2 LZB 2 k21+k22 2 ég 2B ( )
GJ GJ k., k
k _ Y,BA ,ktzz — LYzBB k, = k by Tty Jct2 = 5 ktZI B’ (C2)

1
Ly, BB b 1y
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where m, is the bowl’s mass. The wheel induces excitations as a moderate

impulsive shock force F acting in the Z, direction, and the excitation load can be

expressed as
F :FS[l+q3t‘“e’qzt] (C3)

where F’Sis the amplitude of the shock on the bowl’s longitudinal axis X,

transmitted from the wheel axis and ¢;,i =13, are experimental constants,

depending on the type of shock applied at the wheel by the road excitation [4]. All
the computations were performed considering that the tulip was a cantilever beam
fixed in the gearbox with simple elastic supports in the tulip—tripod joint. The
bowl was a cantilever beam fixed in the steering wheel by simple elastic supports
in the bowl-inner race joint. As mentioned in the literature [4], the shock
excitation loads produce huge automotive stress solicitations in the car suspension
system and the rim—tire system. These two systems can absorb 90% of the shock
energy. Therefore, only 10% of the shock acts on the automotive driveshaft
elements as a variation of the quantity of movement during a very short time,
estimated at 0.001 s.”[3]

Appendix D. Natural frequencies of the tulip/bowl and coefficients in
the FBV’s equations [3]

0.5(J,, +J. 2
Q- Im3»f3 blb(l+a1) o, = (Lzlr ZT),b1=ST|:%+déT}, (D1)
\/ i+ ——(1+q,) S{172A+dér}
Z,T4
_ I 38 b(lva) 0.5(Jy5 +J55) b=s, @erég , (D2)
m L b2 L2 P 12
TV A LR
Z,B4
r- 0.2pA4 FoAt, or, - 0.2p4 FoAt, or,- 0.2pA4 FAt, or,- 0.2pA FyAt, o, (D3)
73! Mm, 75! Mm, 73! Mmy 75! Mmy
a ab, a a,b
C — 1 ,C — -1 ,C — 2 ,C — 272 , D4
1 [+a Xur&a T b (l+al)Z"T 3 I+a, Xop>Ca Jom +b, (l_l_az)ZnB (D4)
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In the relations (D3) M is the suspended car mass distributed to one wheel, 4 is
the cross-section area of the midshaft, 4 is the duration of the shock (impact)

induced to the wheel. The relation (D1) expressed the tulip’s natural frequency for
FBV while the relation (D2) expressed the bowl’s natural frequency for FBV.



