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INVESTIGATION OF CHAOTIC FORCED BENDING 
VIBRATIONS OF THE AUTOMOTIVE DRIVESHAFT  

Mihai BUGARU1, Andrei VASILE2 

To investigate the chaotic forced bending vibrations of the automotive 
driveshaft it is necessary first to adopt an appropriate dynamic model that describes 
such dynamic behavior. Such a dynamic model was already realized in previous 
works by the authors, and therefore based on the dynamic equations already 
obtained it was used a complex method developed by the authors based on two 
elements: chaos manifestation detection, and chaos manifestation confirmation. The 
chaotic manifestation detection consists in using the time-history graphs in a 
specific resonance region namely the principal parametric region. For the same 
region was applied the Maximum Lyapunov Exponents Method (MLEM) was 
coupled with the contraction criterion for the sum of Lyapunov exponents that 
certifies the chaos. In addition, was applied the Poincaré Map as a qualitative 
method to reconfirm chaos manifestation. Thus, a powerful analytical tool was 
created to investigate the chaotic forced bending vibrations for specific conditions 
in the principal parametric resonance’s area (PPRA).          

Keywords: chaotic forced bending vibrations, time-history graphs, Lyapunov 
exponents, Poincaré Map, principal parametric resonance’s area 

1. Introduction 

The paper represents a development of previous research carried out by the 
authors [1-3] concerning the dynamic behavior of automotive driveshafts. The 
automotive driveshafts are homokinetic transmission elements for cars from 
gearboxes or differential boxes to the wheels, being important elements of the 
automotive’s driveline. The authors have already shown that geometric and 
kinematic isometry of the automotive driveshafts have nonuniformities [1] and 
therefore, all the dynamic models must consider this aspect [2], [3]. The present 
paper considers the same dynamic model for the forced bending vibrations of the 
automotive driveshaft, as in [3], involving the following physical aspects:  

a. geometric and kinematic nonuniformities from the isometry property 
of the tulip, bowl, and midshaft as elements of the driveshaft;  

b. due to the rigidity imposed by technical demands the tulip and the 
bowl have rigid body deflections and rotations( φ φ ϕ ϕw / w , / , /1 3 1 3 1 3 -
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tulip/bowl deflections and rotations, as shown in figure 1, while the 
midshaft is considered as a continuum media namely as a simply 
supported Timoshenko beam with mass, springs, and dampers at both 
ends having continuous functions φ ϕw , ,2 2 2  respectively midshaft 
deflections and rotations;  

c. the excitations are induced by the impact road shocks transmitted 
through automotive wheels generated by road nonuniformities [4].  

 
Fig. 1. Schematic representation of the deflections/rotations of the driveshaft elements[3] 
 
Based on Hamilton’s principle, [3] it was derived the forced bending 

vibrations equations using the previous assumptions. Starting from this point the 
present paper’s analysis is devoted to detecting and certifying chaotic FBV 
(forced bending vibrations) for the automotive driveshaft elements in the PPRA 
(principle parametric resonance’s area). Mazzei and Scott analyze in [5] the 
nonlinear dynamic behavior of automotive driveshaft elements in the PPRA. The 
experimental confirmation that one of the most important resonance areas for the 
FBV of automotive driveshafts is the PPRA was done by Steinwede in [6].   

The detection of chaotic FBV in the PPRA will be performed using the 
general equations of FBV for a heavy-duty automotive driveshaft designed for an 
SUV (sports utility vehicle) having a permanent 4-WD (four-wheeler drive). This 
will imply the determination of the phase portraits for the tulip and the bowl in the 
PPRA. The certification of chaotic FBV manifestation in the PPRA implies the 
computation of Lyapunov exponents, namely the use of the Maximum Lyapunov 
Exponents Method (MLEM) for a modified system of equations for FBV of the 
automotive driveshaft elements (tulip and bowl) followed using the contraction 
criterion: the sum of all Lyapunov exponents is negative for tulip/bowl, as stated in 
[7].  As a supplementary confirmation of chaotic FBV manifestation for the 
tulip/bowl in the PPRA, it was computed Poincaré Maps for the tulip/bowl in the 
PPRA so that the pictures of  Poincaré Maps have the property of the system’s 
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auto-similarity, also mentioned in [7] as a qualitative method for chaos 
manifestation.  

2. The Equations of FBV for the tulip/bowl of the automotive 
driveshaft 

To calculate the equations of FBV for the tulip/bowl of the automotive 
driveshaft it is mandatory to reduce the mass inertial moments and the geometric 
inertial moments of the tulip/bowl to the cartesian system of reference (CSR) 
X Y Z2 2 2  of the midshaft as in [3].  All the inertial characteristics of the tulip and the 
bowl, respecting the schematic representation shown in Figure 1, are presented in 
Appendix A, as described in the paper [3]. The dynamic model of FBV for the 
tulip is presented in Appendix B, while the dynamic model of FBV for the bowl is 
presented in Appendix C, being adopted with those stated in the paper [3]. The 
equation of the FBV in normalized bending deflection for the tulip is[3](pp. 13, 14) 

2 3 51 1 1 1
1 1 1 1 1 1 1 2 1

2 1 2 1

1 2 1 22
1 2 1 2

•• •− −
+ + = − −

− −
ϕ ϕξΩ Ω Γ Γ
ϕ ϕ

C cos( ) C cos( )w w w w w ,
C cos( ) C cos( )

              (1) 

while the equation of the FBV in normalized bending deflection for the bowl is[3] 
(pp. 13, 14) 
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           (2) 

The constants Ci, Γ i and the natural frequencies for the tulip in bending 1Ω and 
for the bowl in bending 3Ω  are expressed in Appendix D as stated in the paper 
[3]. The terms that induce the forced excitations in the PPRA contain for the tulip  

1Ω , 12ϕcos( )  and for the bowl 3Ω , 32ϕcos( )and must satisfy the equations 
[8](pp. 199, 425) 

1 3
1 1 3 3

2 22 , 2 ,   
ϕ ϕη Ω η Ωd d

dt dt
                                   (3) 

where 1η is the tulip’s excitation frequency and 3η is the bowl’s excitation 
frequency. To use equations (1) and (2) it is mandatory to compute the tulip’s 
geometry characteristics 1 2,T TJ J , and the bowl’s geometry characteristics 1 2,B BJ J
based on their general geometry. This was done using the AUTOCAD software, 
and the results presented in Table 1 are like the data in [3](pp. 15,19). Also, Table 1  

Table 1 
Tulip’s/Bowl’s geometry characteristics and material properties &shock’s amplitude/time 

1 20.5( )+T TJ J  
[m4] 

1 20.5( )+B BJ J  
[m4] 

χ χnT nB/  
ρ  

[kg/m3] 
E/G 

[GPa] 
ξ  ∆s sF / t

[MN/ms] 
9.1531 × 10−7 10.560 × 10−7 0.25/0.10 7850 200/77.3 (16-318)10-4 0.5/1…10 
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illustrates the material properties of the tulip/bowl as well as the values of the 
shock’s amplitude and the shock’s duration. Comparing the data in Table 1 with 
those used by Steinwede in his experiments [6](p. 111)  it can be remarked the 
agreements. 

3. The Detection of Tulip’s/Bowl’s chaotic FBV in the PPRA 

For the tulip, based on the relations (D1)(see Appendix D), the PPRA is 
defined by a range around the value 1038.38 Hz, the natural bending frequency 
being 1 519 19=ν . Hz[3](pp. 19-20). Based on the relations (D2) (see Appendix D),  
for the bowl, the bowl’s PPRA is defined by a range around the value 6306.6 Hz, 
the natural bending frequency being 3 3153 3=ν . Hz[3](pp. 19-20). To determine the 
time phase portraits for the tulip and the bowl in FBV is mandatory to modify the 
equations (1) and (2), which become the systems 
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1

1 1
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1 1
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 Using the MATLAB software, it was computed the time phase portraits of 
the tulip’s FBV and the bowl’s FBV in the PPRA are presented in Figures 2-5. 
Analyzing the phase portraits of the tulip’s FBV ( see Fig. 2.b, Fig. 3.b) it can be 
concluded that a chaotic FBV for the tulip is manifested in the range 

0 0016 0 0216= −ξ . . of the damping ratio, while the increase with 0.02 of the 
damping ratio induces a decrease of the tulip’s bending deflection 1w more than ten 
times. Also, the same increase of the damping ratio induces a decrease of the 

tulip’s velocity bending deflection 1dw
dt

more than six times. Analyzing the time 
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history of the tulip’s phase portraits in the PPRA( see Fig. 2.a and 3.a) it is 
obvious the manifestations of beating effects specific to chaos.   

 
 

a.                                                                                b. 
Fig. 2. Time-history (phase portraits) of  the tulip’s FBV. 0 25 0 0016= =χ ξnT . , .  
 

  
a.                                                                                b. 

Fig. 3. Time-history (phase portraits) of  the tulip’s FBV. 0 25 0 0216= =χ ξnT . , .  
Analyzing the phase portraits of the bowl’s FBV ( see Fig. 4.b, Fig. 5.b) it 

can be concluded that a chaotic FBV for the bowl is manifested in the same range 
0 0016 0 0216= −ξ . . of the damping ratio, while the increase with 0.02 of the 

damping ratio induces a decrease of the bowl’s bending deflection 3w more than 
ten times. Also, the same increase of the damping ratio induces a decrease of the 

bowl’s velocity bending deflection 3dw
dt

more than six times. Analyzing the time 
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history of the bowl’s phase portraits in the PPRA ( see Fig. 4.a and 5.a) it is 
obvious the manifestations of beating effects specific to chaos. 

  
a.                                                                                b. 

Fig. 4. Time-history (phase portraits) of  the bowl’s FBV. 0 10 0 0016= =χ ξnB . , .  

  
a.                                                                                b. 

Fig. 5. Time-history (phase portraits) of  the bowl’s FBV. 0 10 0 0216= =χ ξnB . , .  
If we compare the results illustrated in Figs. 2 and 3 for the tulip’s FBV 

with those illustrated in Figures 4 and 5 for the bowl’s FBV it can be remarked an 
accentuation of the beating effects for the bowl for the damping ratio around the 
value 0.0016 (see Fig. 2.b and Fig, 4.b)  and a similar manifestation of time-
history for the tulip’s FBV and the bowl’s FBV for the damping ratio around the 
value 0.0216 (see Fig. 3.a and Fig.5.a). 

4. The Confirmation of the chaotic FBV for the tulip/bowl in PPRA 

The Lyapunov exponents computed based on the system (4), that describes 
the tulip’s FBV in the tulip’s PPRA ( the excitation frequency of the tulip is in the 
range around 1038.38 Hz[3]) are given by the equations [7](p. 306-307) 
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where the superscript p indicates the perturbed solution on an interval break  
(Ti, Ti+1), Tf  is the final time of integration and N is the number of intervals 
contained in the time range (0, Tf). The Lyapunov exponents computed based on 
the system (5), that describes the bowl’s FBV in the bowl’s PPRA ( the excitation 
frequency of the bowl is in the range around 6306.6 Hz[3]) are given by the 
similar equations, with the same signification of the superscripts previously 
described,  
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(7) 

To certify the chaos is necessary to apply two criteria respectively the Maximum 
Lyapunov Exponents Method (MLEM) coupled with the contraction criterion of 
the sum of all Lyapunov exponents that imposes the next mathematical 
proposition to be true [7](pp. 306-307), [9] 

{ } { }
3

1
1 2 3 0 0 0 1 2 3∃ ⊂ 〉 ∃ ≈ 〈 ⊂∑ij ij iji , , ,max( L ) , L , L ,j , , .                      (8) 

Figures 6 and 7 are illustrated the Lyapunov exponents for two values of the 
damping ratio 0.0016 and 0.011 in the tulip’s PPRA, with excitation frequency in 
the vicinity of 1038.38 Hz. As can be remarked from Figures 6 and 7 the 
proposition (8) is true only for the damping ratio in the range of 0.0016-0.011. 
Analyzing Figure 6 it can be concluded that chaos manifestation is confirmed in 
the excitation frequency range (950-1150) Hz for the damping ratio of 0.0016, 
while in Figure 7 the chaos manifestation is confirmed in the excitation frequency 
range (1100-1150) Hz for the damping ratio of 0.011 even if from chaos detection 
(see Fig. 3) it indicates the maximum value of damping ratio 0.0216.  Figures 8 
and 9 are illustrated the Lyapunov exponents for two values of the damping ratio 
0.0016 and 0.0125 in the bowl’s PPRA, with excitation frequency in the vicinity 
of 6306.6 Hz. 
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 .  

  
Fig. 6. Tulip’s Lyapunov exponents of FBV in the PPRA(1038.38Hz), 1 519 19=ν . Hz, 31.6 10−= ⋅ξ  
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Fig. 7. Tulip’s Lyapunov exponents of FBV in the PPRA(1038.38Hz), 1 519 19=ν . Hz, 311 10−= ⋅ξ  

  
  

  
Fig. 8. Bowl’s Lyapunov exponents of FBV in the PPRA(6306.6Hz), 3 3153 3=ν . Hz, 31.6 10−= ⋅ξ  
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Fig. 9. Bowl’s Lyapunov exponents of FBV in the PPRA(6306.6Hz), 3 3153 3=ν . Hz, 312.5 10−= ⋅ξ  

As can be remarked from Figs. 8 and 9 the proposition (8) is true only for the 
damping ratio in the range of 0.0016-0.0125. Analyzing Fig. 8 it can be concluded 
that chaos manifestation is confirmed in the excitation frequency range (6200-
6400) Hz for the damping ratio of 0.0016, while in Fig. 9 the chaos manifestation 
is confirmed in the excitation frequency ranges (6300-6365) Hz and (6368-6400) 
Hz for the damping ratio of 0.0125 even if from chaos detection (see Fig. 5) it 
indicates the maximum value of damping ratio 0.0216. Accordingly, to the latest 
developments in the theory of chaos if two Lyapunov exponents are positive and 
all the Lyapunov exponents respect the proposition (8) the dynamic system is 
consider to be a hyperchaotic system [10]. Analyzing Figures 6-9 it can be 
concluded that the automotive driveshaft is a hyperchaotic system for a damping 
ratio in the range of 0.0016-0.011 and excitation frequency in the range (1100-
1150)Hz for the tulip in FBV, while for the bowl in FBV the hyperchaos 
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manifestation is valid for a damping ratio in the range of 0.0016-0.0125 and 
excitation frequency in the ranges (6300-6365) Hz and (6368-6400)Hz. To 
reconfirm the chaotic manifestation of tulip’s FBV and bowl’s FBV in the PPRA 
it was computed, using in MATLAB software based on systems (4) and (5), the 
Poincaré Maps (PM) that represents the intersection of  the orbits in the phase 
portraits with an orthogonal surface at equal periods (N number of points), using 
the mathematical procedure presented in [7] (p. 194).  If the tulip’s FBV or the 
bowl’s FBV are periodic or quasi-periodic the PM represent saddle points or 
saddle separatrices pictures.   For an excitation frequency range in the vicinity of 
1038.38 Hz  and for a damping ratio 31.6 10−= ⋅ξ  Fig. 10 illustrates the  Poincaré 
Map for the tulip’s FBV in the PPRA using N =100,000 orthogonal surface 
sections to the orbits for the phase portraits  ( )1 1w ,dw / dt .  

 

 
 

 

Fig. 10. Poincaré Map for the tulip’s FBV in the PPRA(1038.38Hz), N=100,000 31.6 10−= ⋅ξ  

 As can be remarked from Figure 10 the picture has the properties of 
strange attractors respectively auto-similarity and a diffuse structure of points 
having a different density of pixels per image’s unit area.   

For an excitation frequency range in the vicinity of 6306.6 Hz  and for a 
damping ratio 31.6 10−= ⋅ξ  Fig. 11 illustrates the  Poincaré Map for the bowl’s 
FBV in the PPRA using N =100,000 orthogonal surface sections to the orbits for 
the phase portraits  ( )3 3w ,dw / dt .   
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Fig. 11. Poincaré Map for the bowl’s FBV in the PPRA(6306.6Hz), N=100,000 31.6 10−= ⋅ξ  
As can be remarked from Fig. 11 the picture has the properties of strange 

attractors respectively auto-similarity and a diffuse structure of points having a 
different density of pixels per image’s unit area.  The reconfirmation of chaotic 
manifestation of the tulip’s and bowl’s FBV through Poincaré Maps respectively 
the strange attractors. Such dynamic behavior is considered by Steinwede [6](pp. 
88-94) to be the cause of the internal pitting of the bells of the tulip and the bowl 
as well as the micro-cracks on the tripod axes. Also, Steinwede assimilated the 
mechanism of the chaotic FBV and chaotic forced torsional vibration of the 
automotive driveshafts with a similar mechanism for the nonlinear dynamic 
behavior of the geared systems transmissions, mechanisms already investigated by 
the first author of the present paper in [11].  As can be remarked the increase of 
the damping ratio has a benefic effect avoiding the chaotic behavior of FBV for 
the automotive driveshafts but it induces thermal stress.    

5. Conclusions 

The novelty of this paper is that investigated the chaotic FBV of the 
automotive driveshafts using a new method with two steps: detection of possible 
chaotic manifestation using phase portraits time-history and quantitative and 
qualitative confirmation of the deterministic chaos (strange attractors) for FBV 
using a modified MLEM coupled with Poincaré Maps. The results obtained 
confirmed theoretically for the first time the manifestation of FBV’s hyperchaos 
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in the principal parametric resonance area for the tulip and the bowl agreeing with 
the Steinwede’s experimental research [6](pp. 86-94) for the pitting manifestation, 
as well as the data referring to mass moment of inertia[6](p. 111) and the chaotic 
dynamic behavior of homokinetic transmission similar with the chaotic dynamic 
behavior of the geared transmission [6](p. 117), chaotic mechanism already 
studied by the first author in [11]. Finally, the paper highlighted the mechanism of 
hyperchaotic nonlinear dynamic behavior for the homokinetic transmission[10].  
This new method may be used as a powerful tool by the designers of automotive 
driveshafts as well as the designers of the FBV’s dynamic absorbers for the 
automotive driveshafts.     
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Appendix A. The Inertial characteristics of  the tulip/bowl 
driveshaft[3]   

“The geometric inertial moments
2 2Y T Z TJ ,J  and the mass inertial moments

2 2Y T Z TI ,I  of the tulip reduced to the midshaft axes Y ,Z2 2  are 
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where 1 2T TJ ,J  are the principal geometric moments of inertia for the tulip’s bell, 

2 2 2 2Y TB Y TA Z TB Z TAJ ,J ,J ,J  are the geometric moments of inertia for the tulip’s 

elements reduced to the axes 2 2Y ,Z , ρ  is the mass density of the automotive 
driveshaft elements, CTd  is the distance between the center mass of the tulip and 

the tripod’s center mass, TS  is the surface of the cross-section for the tulip’s bell, 

χnT  is the nonuniformity of the geometric moments of inertia for the tulip, TBL is 

the length of the tulip’s bell, TAL is the length of the tulip ax, and TAd is the 

diameter of the tulip ax. The geometric inertial moments
2 2Y B Z BJ ,J  and the mass 

inertial moments
2 2Y B Z BI ,I  of the bowl reduced to the midshaft axes Y ,Z2 2  are 
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2
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d d L dJ L . L ,  A8)                         

with the same signification as previously but for the bowl.”[3]. 
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Appendix B. The Dynamic model for tulip-tripod joint[3] 

The dynamic model for the FBV of the tulip, tulip-tripod joint and 
midshaft of the automotive driveshaft is illustrated in Figure B as presented in 
paper[3]. 

 
Fig. B. Dynamic model of FBV for: tulip, tulip-tripod joint, and midshaft[3]. 

“The tulip has a stiffness 1k , and damping 1c , for the bending vibration rigid 

movement of the tulip regarding the axis 2Z  and a stiffness 1tk , as well as 

damping 1tc , for the angular bending vibration rigid movement of the tulip 
regarding the axis 2Y , given by the following relations: 

2 2 11 12
11 12 1 1 13 3

11 12

3 3
= = = =

+
ξZ TA Z TB

T
TA TB

EJ EJ k kk ,k ,k ,c k m ,
L L k k

                           (B1) 

 
2 2 11 12

12 2

11 12

1 1 1 1= = = =
+

ξY TA Y TB t t
t t t t t Y T

TA TB t t

GJ GJ k k
k ,k ,k ,c k I ,

L L k k
                           (B2) 

where E is Young’s modulus, G is the shearing modulus,  Tm  is the tulip’s 
mass,”[3] and ξ  is the damping ratio of the tulip’s material (the same as bowl’s 
material), that is steel (ξ =0.0016-0.0318) [7]. “The uniform midshaft (see Figures 
B, C) in continuous FBV movement is assimilated with a uniform Timoshenko 
beam simply supported at both ends by elastic supports (the tulip–tripod and inner 
race–bowl joints are elastic supports for the midshaft), having at 0x =  a tripod 
fixed on the midshaft through splines and elastically linked in the tulip–tripod 
joint with the tulip and on the left-hand side at = Msx L  an inner race (see Figure C) 
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fixed on the midshaft through splines and elastically linked in the bowl–inner race 
joint with the bowl, with the inertial characteristics given by the relations below: 

( ) ( ) ( ) ( )
2 21 2 2 1 2 20 5 1 2 0 5 1 2= + + = + −      χ ϕ χ ϕY Tr Tr Tr nTr Z Tr Tr Tr nTrJ . J J cos ,J . J J cos ,                    (B3) 

( ) ( ) ( ) ( )
2 21 2 2 1 2 20 5 1 2 0 5 1 2= + + = + −      χ ϕ χ ϕY Ir Ir Ir nIr Z Ir Ir Ir nIrJ . J J cos ,J . J J cos ,                    (B4) 

where 1 2Tr TrJ ,J  are the principal geometric moments of inertia for the tripod, 

1 2Ir IrJ ,J  are the principal geometric moments of inertia for the inner race, χnTr  

and χnIr  are the geometric nonuniformities of the tripod and inner race, and 

2 2 2 2Y Tr Z Tr Y Ir Z IrJ ,J ,J ,J  are the geometric moments of inertia of the tripod and inner 

race concerning the axes 2 2Y ,Z .”[3] 

Appendix C. The Dynamic model for bowl-inner race joint[3] 

 
Fig. C. Dynamic model of FBV for: bowl, bowl-inner race joint, and midshaft[3]. 

“The bowl has a stiffness 2k , and damping 2c , for the bending vibration 

rigid movement of the bowl regarding the axis 2Z  and a stiffness 2tk , as well as 
damping 2tc , for the angular bending vibration rigid movement of the bowl 
regarding the axis 2Y , given by the following relations: 
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where Bm is the bowl’s mass. The wheel induces excitations as a moderate 
impulsive shock force Fs acting in the 2Z  direction, and the excitation load can be 
expressed as 

1 2
31 − = + 

q q t
S SF F q t e ,                                                        (C3) 

where SF is the amplitude of the shock on the bowl’s longitudinal axis 3X

transmitted from the wheel axis and 1 3=iq ,i , ,  are experimental constants, 
depending on the type of shock applied at the wheel by the road excitation [4]. All 
the computations were performed considering that the tulip was a cantilever beam 
fixed in the gearbox with simple elastic supports in the tulip–tripod joint. The 
bowl was a cantilever beam fixed in the steering wheel by simple elastic supports 
in the bowl–inner race joint. As mentioned in the literature [4], the shock 
excitation loads produce huge automotive stress solicitations in the car suspension 
system and the rim–tire system. These two systems can absorb 90% of the shock 
energy. Therefore, only 10% of the shock acts on the automotive driveshaft 
elements as a variation of the quantity of movement during a very short time, 
estimated at 0.001 s.”[3] 
 

Appendix D. Natural frequencies of the tulip/bowl and coefficients in 
the FBV’s equations [3] 
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In the relations (D3) M is the suspended car mass distributed to one wheel, A is 
the cross-section area of the midshaft, ∆ st is the duration of the shock (impact) 
induced to the wheel. The relation (D1) expressed the tulip’s natural frequency for 
FBV while the relation (D2) expressed the bowl’s natural frequency for FBV. 
 


