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DECISION OF AGGREGATE QUOTIENT OPTIMIZATION 

BASED ON RESPONSE RANDOMNESS AND CORRELATION 

Shixiang LU1, Xiaofeng FENG2, Guoyin LIN3 

The demand response has certain uncertainty. In order to truly reflect the 

response of each uncertain user, this paper considers the correlation between 

spatial and temporal responsiveness of uncertain user resources represented by air 

conditioning. Firstly, the improved Latin hypercube sampling method is used to 

scale and correlate the responsivity, and the samples reflecting the response 

correlation are obtained. Secondly, the deterministic resources (DRs) are 

introduced to establish the optimal decision model of the load aggregator, and 

through random simulation and intelligence. The algorithm solves the decision-

making scheme when the profit is the highest. Finally, an example is given to 

analyze the influence of the distribution parameters of DRs, correlation and 

responsiveness on decision-making schemes and profits. Verification of ordering 

DRs, signing negative related uncertain users, increasing the average of 

responsiveness, reducing the variance of responsiveness has a significant increase 

in profit. 

Keywords: demand response; correlation; uncertainty; Latin hypercube sampling; 

load aggregator 

1. Introduction 

In recent years, in order to fully utilize the resources of the user side, the 

demand response has been well developed. However, the demand response has 

certain uncertainty [1-4]. Due to uncertainties such as communication delay, 

component failure, weather conditions of next day, and unexpected events, the 

actual response of the controllable users is random [5-6]. It is pointed out in 

literature [7] that for a given price and incentive, the response of adjustable load is 

an interval rather than a fixed value. However, these documents do not take into 

account the temporal and spatial correlation between the responsiveness of 

different users. Taking the user-side air conditioning load with good demand 

response characteristics as an example [9], the air conditioning load is generally 

low in the high temperature period in summer, and the air conditioning in the 

same area will also face the same weather and emergencies. 
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The literature [9] uses Monte Carlo method to randomly sample and 

simulate the response, with the user responsiveness with uncertainty taken as the 

random variable. However, considering the correlation between multiple 

variables, the Monte Carlo method is no longer applicable. The Latin hypercube 

sampling method can control the correlation of samples while sampling and 

obtain a sample matrix reflecting the true correlation [8, 10-12]. The literature [13-

14] point out that compared with the Monte Carlo method, the Latin hypercube 

sampling method has high sampling efficiency, wide sample coverage and good 

robustness. 

As a major transaction subject in the demand response, the load aggregator 

can integrate the scattered resources on the user side [15-16]. For example, air-

conditioning aggregators can integrate scattered air-conditioning resources, sign 

load reduction contracts with air-conditioning users and provide corresponding 

economic compensation [17]. However, due to the uncertainty of user response, the 

load aggregator will face the risk of default compensation while signing a contract 

with the system operator. Literature [18-19] propose that the introduction of 

energy storage devices by load aggregators can reduce the risk of default. 

However, after considering the response correlation, it remains studying about 

how to determine the order quantity of deterministic user resources represented by 

energy storage. 

To this end, this paper uses air conditioning as the uncertainty resource on 

the user side. Firstly, this paper analyzes the correlation of responsiveness in 

space and time, using Latin hypercube sampling method to obtain samples 

reflecting the correlation of response. Then, the deterministic resources (DRs) are 

introduced, and the optimal decision model of the load aggregator is established. 

The decision plan of the maximum profit is calculated by stochastic simulation 

and intelligent algorithm. Finally, an example is given to analyze the impact of 

DRs, correlation and responsiveness distribution parameters on decision-making 

schemes and profits, which proves that adding DRs can increase the profit of the 

load aggregator, improve the fluctuation of the overall response level, and reduce 

the decision risk of the load aggregator. 

2. Configurable capacity of cluster air conditioners 

A. Air conditioning load modeling 

Given proper simplification, the thermodynamic model of air conditioning 

can be expressed as [20-21] 
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where +1
 in
tT ,  in

tT are the room temperature at time t+1 and t, respectively. +1
 out
tT  is the 

outdoor temperature at time t+1. ε is the heat dissipation coefficient, and 

exp( / )h RC = − . Δh is the time interval. C, R are the equivalent heat capacity and 

thermal resistance, respectively. η, P are the Energy efficiency ratio and rated 

power of air conditioner, respectively. The product of η and P represents the rated 

cooling capacity of the air conditioner. s is the switch state, while s=1 means the 

switch is off, and s=0 means the switch is on. 

B. Configurable capacity of cluster air conditioner 

Time

Temperature

Tset

Tmax

Tmin

hon hoff
 

Fig. 1. Simulation model of air conditioning load 
 

The air conditioner is the cyclic working load. When the air conditioner 

temperature reaches the upper limit Tmax, the air conditioner is turned on. When 

the lower limit Tmin is reached, the air conditioner is turned off. The working 

process is shown in Fig. 1. 
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where hoff and hon are the closing and opening time in one control period h. noff and 

non are the proportion of closing time and opening time in the control period, 

respectively. Tout is the outdoor temperature. 

The load aggregator performs direct load control on the air conditioner. 

When the power grid is at a peak, the air conditioner is regulated according to the 

signed contract to achieve the purpose of peak clipping. Assuming a total number 

of n air conditioners, the total schedulable capacity Call is 

off ,
all

1

n
i

i
ii

h
C P

h
=

=                                                  (3) 

where hoff,i, hi are the off time and control period of the i-th air conditioner. Pi is 

the rated power of the i-th air conditioner. 
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3. Uncertainty analysis of demand response considering correlation 

A. Demand response uncertainty and correlation analysis 

Due to uncertainties such as communication delay, component failure, 

weather conditions of the next day, and unexpected events, users have certain 

uncertainties in specific response while considering the actual response benefits 

and reputation [6]. It is defined that the responsiveness reflects the actual response 

of the user, and the responsiveness represents the ratio of the actual response of 

the user to the agreed response. Assuming that the user's responsiveness obeys the 

standard normal distribution, the uncertainty of the responsiveness is simulated by 

a large number of samples by Monte Carlo simulation. However, in the 

scheduling, the response of multiple users is a random variable with certain 

correlation. The correlation of responses can be analyzed from two perspectives, 

time and space. 

(1) Correlation in time. There are generally multiple types of controllable 

loads managed by load aggregators. For example, air conditioners and water 

heaters are commonly used controllable loads. The peak usage periods of air 

conditioners and water heaters are different. In terms of time, the responsivity of 

the two is irrelevant or even negatively correlated, but the response of similar 

controlled loads in time is generally positive related. Taking air conditioning as an 

example, the temperature is high at noon and afternoon in summer, and users are 

reluctant to turn off the air conditioner. Correspondingly, the responsiveness of air 

conditioners is generally low. 

(2) Correlation in space. The same geographical area generally has the 

same geographical environment, and even faces the same emergencies. For 

example, in the face of the same extreme hot weather, the responsiveness of air-

conditioning users will be reduced, while the other side will have higher 

responsiveness if faced with cool rain. When a region is facing a communication 

failure at the same time, all air conditioning responses in that area will also be 

affected. The commonly used Monte Carlo method cannot reflect the correlation 

between the responsiveness of each variable. In order to reflect the correlation 

between responsiveness, this paper uses the Latin hypercube sampling method to 

perform random simulation. 

B. Correlation analysis based on latin hypercube sampling method 

The responsiveness of the air-conditioned user follows the standard 

normal distribution and the corresponding cumulative distribution function can be 

obtained. The principle of the Latin hypercube sampling method is to evenly 

divide the ordinate [0, 1] of the cumulative distribution function into L intervals, 

and sequentially extract a value from the inverse function transformation to obtain 

the sampled values of the corresponding interval, as shown in formula (4)[14] 
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where rk,l is the sampled value of the lth interval of the kth variable. Zk is the 

distribution function of the kth variable. 1

kZF −  is the inverse function of the 

cumulative distribution function. a is a random number on [0, 1]. 

The Spearman rank correlation coefficient is used to reflect the correlation, 

and the method is applicable to any distributed random variable. Suppose there 

are K variables, and each variable extracts N values. The correlation coefficient 

matrix between variables is Preal, and the specific steps of correlation control are 

detailed as follows. 

(1) The sample is extracted according to equation (4) to obtain a K-row N-

column sample matrix R0, and a random order matrix O of the same size is 

generated. Find the correlation coefficient matrix of O, and use Cholesky 

decomposition to find the lower triangular matrix L0. 

(2) According to the transformation equation 
1

1 0
−

O = L O , each row of 

samples in R0 is sorted according to the size of each corresponding row element in 

O1 to obtain R1. The correlation of R1 is greatly reduced, and there is no 

correlation between samples. 

(3) In order to achieve the actual correlation coefficient matrix Preal 

between variables, the Cholesky decomposition is used for Preal, and the lower 

triangular matrix Lreal is obtained. Calculate 
1

real real 1
−

O = L O . 

(4) Sort each row of O according to Oreal to get Ofinal, and then sort R0 by 

Ofinal to get Rfinal. Rfinal is the sample matrix whose correlation coefficient moment 

is Preal. 

4. Decision model analysis of load aggregators 

A. Demand response resource type analysis 

In the electricity market environment, the load aggregator will sign the 

reduced capacity and time with the user and provide corresponding economic 

compensation. Load aggregators face high risks if they rely solely on resources 

such as air conditioners with large response randomness. Therefore, DRs are 

introduced, and demand response resources are divided into two types: uncertain 

resources and DRs [18]. The uncertainty resources such as air conditioners are large 

in quantity, large in potential, and low in control costs, but relatively scattered and 

random. The DRs such as the energy storage device has high responsivity and 

strong anti-interference, but the capacity is small, and the regulation cost is high. 

The two resources can complement each other very well. 

(1) User-regulated costs which represent uncertain resources. These 

regulation cost is the compensation cost, assuming that the load aggregator 
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contracts with K users, and Funsure,i represents the cost of compensation for the i-th 

user. 
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where γi is the actual responsiveness of user i. Punsure,i is the unit price of 

compensation provided by the load aggregator when signing with user i. Cunsure,i is 

the regulatable capacity provided when the user i is contracted by uncertainty. 

Funsure is the total regulatory cost of a deterministic user. The load aggregator only 

compensates for the portion of the response. 

(2) User regulation costs that represent DRs. The DRs purchased generally 

have a small capacity, so the default is set as 1 user. The corresponding regulation 

cost Fsure is composed of the order costFsure,1 and the compensation cost Fsure,2. 

The regulation of DRs is costly, so it is necessary to purchase the right to use in 

advance before responding. Even if the DRs are not regulated in the end, the 

subscription cost Fsure,1 is required. The definition of Fsure,2 is the same as the 

uncertainty resource, which compensates for the actual response. 
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where Psure,1 is the order price. Psure,2 is the compensation unit price. Csure is the 

capacity of the DRs ordered in total. Csure,2 is the capacity actually regulated. DRs 

default to a full response to the maximum. 

(3) Other cost. Other cost Fc mainly includes loss cost Fc,1 and 

compensation cost Fc,2. Fc,1 indicates that when the actual user response is greater 

than the capacity signed by the load aggregator to the system operator, this part of 

the capacity is lost because there is no contracted revenue. Fc,2 means that when 

the actual user total response is less than the capacity signed by the aggregator to 

the system operator, it is necessary to bear the compensation caused by the breach 

of contract. 

c c,1 set real set set real

c c,2 c,2 set real set real

( ),  
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                         (7) 

where Pset is the settlement unit price provided when the system operator signs the 

contract with the load aggregator. Creal is the actual capacity provided by the final 

load aggregator. Cset is the capacity agreed upon when the system operator signs 

the contract with the load aggregator. Pc,2 is the unit price of compensation when 
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the demand is not met. 

The revenue of the load aggregator comes from the system operator and 

the load aggregator who sign before the response: providing the corresponding 

capacity reduction at the specified time and providing economic compensation at 

a certain settlement price. 

set set setF P C=                                                (8) 

where Fset is the revenue of the load aggregator. 

B. Decision-making optimization analysis of load aggregator 

The optimal decision of the load aggregator is to determine the values of 

the capacity Cset and Csure through the optimization algorithm, so that the load 

aggregator has the largest profit. The profit function is represented by f. 
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where unsureC  is the total uncertainty users’ response. 

In order to further introduce responsiveness, the profit function is 

described in detail in sections. 
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(3) when set unsure, sure
1
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i i
i
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 + , the actual profit is: 
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Due to the uncertainty of the responsiveness, the average value of the 

profit obtained by the stochastic simulation is used as the optimization target, and 

the profit is the optimization target. Therefore 

set sure
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where Ef is the maximum value of the profit average. E[] is the average 

function. Cunsure,max, Csure,max are the maximum capacity that can be adjusted by the 

uncertainty resource and the maximum capacity that the DRs can order. 

In this paper, the Latin hypercube sampling method is used to perform 

random simulation to obtain responsive samples. Since the load aggregator's 

optimization decision model needs to calculate the optimal value from the 

selectable declared capacity and the order quantity to get the maximum profit of 

the aggregator. Therefore, it is necessary to optimize the search by genetic 

algorithm to get the optimal decision-making scheme and the highest profit. The 

stochastic simulation is combined with the genetic algorithm, and the specific 

steps are detailed below. 

(1) Considering the correlation between the K variable responses, the final 

sample matrix Rfinal is generated using the Latin hypercube sampling method, 

which represents the sampled values of the N responsiveness of the K uncertain 

users. The N samples of each variable follows a normal distribution. 

(2) Use genetic algorithm to generate a population, and the population is a 

group represented by multiple groups (Cset, Csure). Each group of chromosomes is 

substituted into the profit function. Respectively calculating the profit value under 

N responsivity samples, and the average value is the average profit for the group 

(Cset, Csure). 

(3) Calculate the profit averages of multiple groups (Cset, Csure) in the 

population separately, and replace the low profit average of the original 

population with the high profit average through multiple cross-variation. Finally, 

the maximum profit and the corresponding (Cset, Csure) are selected from the 

improved population. (Cset, Csure) can be set as the final decision-making solution 

for the load aggregator. 
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5. Case analysis 

A. Simulation parameters 

Assume that there are 5 uncertain users, each of which is composed of 

multiple air conditioners. See Table 1 for the parameters of each user. The 

schedulable capacity of the five users can be calculated according to equation (3) 

as 12.6, 8.1, 4.8, 12.6, 12.6 MW, and Csure,max is 6 MW. The relevant data about 

the load aggregator is shown in Table 2. 
Table 1 

The influence of different correlations on decision making and profit 

User Pi/kW 
Number 

of AC  
η
 

Distribution of R Distribution of C Distribution of γi
  

1 2.5 7000 2.8 N(0.18, 0.22) N(5.56, 1.02) N(0.7, 0.062) 

2 2.0 6000 3.0 N(0.17, 0.22) N(5.60, 1.02) N(0.7, 0.062) 

3 2.0 3500 2.9 N(0.17, 0.22) N(5.90, 1.02) N(0.8, 0.082) 

4 2.5 6500 3.2 N(0.14, 0.22) N(5.60, 1.02) N(0.7, 0.082) 

5 2.8 6000 2.9 N(0.16, 0.22) N(5.40, 1.02) N(0.8, 0.062) 

Table 2 

Price data and capacity data involved in the decision-making process 

Pset/ 

($·MW-1) 

Punsure/ 

($·MW-1) 

Psure,1/ 

($·MW-1) 

Psure,2/ 

($·MW-1) 

Pc,2/ 

($·MW-1) 

56 5 10 67 100 

As shown in Table 1, the responsiveness γi of the five uncertain air 

conditioner users follows a normal distribution. The correlation between the 

responsiveness of the five users is 

real

1.0 0.4 0.3 0.5 0.8

0.4 1.0 0.5 0.3 0.6

0.3 0.5 1.0 0.4 0.4

0.5 0.3 0.4 1.0 0.6

0.8 0.6 0.4 0.6 1.0

 
 
 
 =
 
 
  

P                                    (14) 

B. The impact of DRs on decision outcomes and profits 

In order to analyze the impact of DRs on the decision and profit of the 

load aggregator, the corresponding Cset, Csure and profit averages are obtained 

using the settings in Section 4.1, as shown in Table 3.  
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Table 3 

The comparative analysis of adding and not adding DRs 

Adding DRs Cset/MW Csure/MW Ef/$
 

Yes 39.57 3.80 1 798.60 

No 38.68 0.00 1 767.40 

As can be seen from Table 3, after adding certain resources, the profit 

average is increased. 

In order to analyze the impact of DRs on stability, the profit deviations of 

the two in the actual response process are simulated. Substituting the 

corresponding Cset and Csure, the responsiveness of the five air-conditioner users 

randomly selects the samples satisfying the probability distribution. In order to 

reflect the response more comprehensively, the average value of the 1,000 profit 

is taken as the profit value of the actual response process, and the repetition is 

100. Thus 100 actual profit values are got. The actual profit deviation is calculated 

with ( ) / 100%f f fE E E−  , where fE  is the actual profit value obtained by 

simulating the actual response. The comparison of the profit deviation of adding 

and not adding DRs is shown in Fig. 2. The actual profit deviation obtained by 

adding the DRs simulation is less than the non-addition of DRs, and it is 

maintained at 1%, and the error is small. In general, the addition of DRs can 

increase the profit while reducing the fluctuation of profits in the actual response 

process. 

 
Fig. 2. The comparative analysis of adding and not adding the profit deviation of DRs 

 

C. The impact of relevance on decision outcomes and profits 

The correlation between different uncertain users is different. In order to 

study the impact of relevance on decision results and profit, it is assumed that the 

correlation coefficients between the 5 users are the same, and the correlation 

coefficient is set to -0.5~0.9. Correlation between users has experienced a 

negative correlation to an irrelevant to positive correlation to a strong positive 

correlation. Fig. 3 shows the impact of different correlations on decision making 

and profit after adding DRs. It can be found from Fig. 3 that the profit at the time 
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of negative correlation is greater than the profit at the time of positive correlation, 

and as the positive correlation increases, the profit continues to decrease. The DRs 

purchased at the same time have the opposite trend, from negative correlation to 

positive correlation, and the capacity of DRs continues to rise. The reason is that 

when there is a positive correlation between uncertain users, especially strong 

positive correlation, it is easy to generate a large compensation cost with low 

user's responsiveness. If the user's responsiveness is high, it will be generally 

high, and it is easy to generate a large loss of cost. 

 
Fig. 3. The influence of different correlations on decision making and profit after adding DRs 

 

 
Fig. 4. The influence of different correlations on decision making and profit after not adding DRs 

 

Fig. 4 shows the impact of correlation on decision making and profitability 

without adding DRs. As can be seen from Fig. 4, different correlations have the 

same impact on the decision-making scheme that does not include DRs and profit. 

In the same situation, the average profit of adding certain resources is always 

greater than the non-addition of DRs. And while the correlation changing from 

negative correlation to positive correlation, the profit without adding certain 

resources will drop more. This is also consistent with the conclusions in Section 

4.2. 
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D. Impact of responsiveness distribution parameters on decision results and 

profits 

Each responsiveness distribution follows a normal distribution, but 

changes in the mean and standard deviation of the distribution also affect the 

outcome and profit of the decision. Table 4 shows the average values of the 

responsiveness distribution for all users set by Section 4.1, in units of 0.05, from 

reducing 0.10 to increasing 0.15, respectively. As can be seen from Table 4, as the 

mean increases, the average profit increases significantly, with a 42% increase. As 

the mean value of the responsiveness distribution increases, the response level 

increases and the order quantity of DRs also decreases.  
Table 4 

The influence of the mean response distribution on decision making and profit 

Parameter 

increment 

with DRs without DRs 

Csure/M

W 
Cset/MW Ef/$

 
Cset/MW Ef/$

 

-0.10 4.170 34.50 1540.3 33.56 1509.8 

-0.05 4.040 37.14 1669.0 36.11 1638.5 

+0 3.798 39.57 1798.6 38.68 1767.4 

+0.05 4.070 42.23 1927.9 41.18 1897.4 

+0.10 3.800 44.64 2057.5 43.68 2026.8 

+0.15 3.980 47.20 2186.3 46.23 2156.1 

Table 5 

The influence of standard deviation of responsiveness distribution on decision making and 

profit 

Parameter 

increment 
with DRs without DRs 

 
Csure/

MW 

Cset/M

W 
Ef/$

 
Cset/MW Ef/$

 

-0.03 38.49 2.140 1843.9 37.98 1827.1 

-0.02 38.72 2.650 1829.1 38.19 1807.5 

-0.01 39.18 3.360 1814.0 38.41 1787.8 

+0 39.57 3.798 1798.6 38.68 1767.4 

+0.01 40.07 4.680 1784.1 38.85 1749.6 

+0.02 40.21 4.900 1768.6 39.04 1728.1 

+0.03 40.50 5.720 1753.9 39.28 1708.3 

Table 5 shows the variance of the variability distribution for all users set 

by Section 4.1, in units of 0.01, from reducing 0.03 to increasing 0.03. It can be 



Decision of aggregate quotient optimization based on response randomness and correlation   115 

seen from Table 5 that as the variance becomes larger, the volatility of the 

response increases, and the profit also decreases. To compensate for the volatility 

of the response, the DRs for ordering are also increasing. 

6. Conclusion 

(1) Adding DRs can increase the profit of the load aggregator, improve the 

fluctuation of the overall response level, and reduce the decision risk of the load 

aggregator. 

(2) The correlation between uncertain users has a great influence on the 

decision and profit of the load aggregator. As the correlation changes from 

negatively correlated to uncorrelated to strong positive correlation, the DRs of the 

order are increasing and the profits are declining. Therefore, in order to improve 

profits, the load aggregator should sign different types of controllable users in 

different regions to achieve complementary responsiveness. 

(3) As the average value of the responsiveness distribution increases, the 

profit increases substantially, and the order quantity of DRs also decreases. At the 

same time, as the standard deviation increases, the volatility of the response 

increases, and the profit continues to decline. 
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