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MORE RESULTS ON VAGUE GRAPHS

R. A. Borzooei1 , Hossein Rashmanlou2

The main purpose of this paper is to show the rationality of some
operations, defined or to be defined, on vague graphs. Three kinds of new
product operations (called direct product, lexicographic product, and strong
product) of vague graphs are defined, and rationality of these notions and
some defined important notions on vague graphs, such as vague graph, vague
complete graph, cartesian product of vague graphs and union of vague graphs
are demonstrated by characterizing these notions by their level counterparts
graphs.
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1. Introduction

The major role of graph theory in computer applications is the
development of graph algorithms. A number of algorithms are used to solve
problems that are modeled in the form of graphs. These algorithms are used
to solve the corresponding computer science application problems. In 1965,
Zadeh [26] first proposed the theory of fuzzy sets. The most important feature
of a fuzzy set is that a fuzzy set A is a class of objects that satisfy a certain
(or several) property. Gau and Buehrer [9] proposed the concept of vague
set in 1993, by replacing the value of an element in a set with a subinterval
of [0, 1]. Namely, a true-membership function tv(x) and a false-membership
function fv(x) are used to describe the boundaries of the membership degree.
These two boundaries form a subinterval [tv(x), 1− fv(x)] of [0, 1]. The vague
set theory improves the description of the objective real world becoming a
promising tool to deal with inexact, uncertain or vague knowledge.

The initial definition given by Kaufmann [12] of a fuzzy graph was based
on the fuzzy relation proposed by Zadeh [26]. Later Rosenfeld [15] introduced
the fuzzy analogue of several basic graph-theoretic concepts. Mordeson and
Nair [13] defined the concept of complement of fuzzy graph and studied some
operations on fuzzy graphs. Akram et al. [1, 2, 3, 4, 5, 6] introduced bipo-
lar fuzzy graphs, interval-valued fuzzy line graphs, strong intuitionistic fuzzy
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graphs, certain types of vague graphs, regularity in vague intersection graphs
and vague line graphs, and vague hypergraphs. Talebi and Rashmanlou in-
vestigated isomorphism on vague graphs [22]. Ramakrishna [19] introduced
the concept of vague graphs and studied some of their properties. Pal and
Rashmanlou [14] studied irregular interval-valued fuzzy graphs. Likewise, they
defined antipodal interval valued fuzzy graphs [16], balanced interval-valued
fuzzy graphs [17]. Rashmanlou and Jun [18] introduced complete interval-
valued fuzzy graphs. In this paper, we defined three kinds of new product
operations (called direct product, lexicographic product and strong product)
of vague graphs and the rationality of these notions and some defined impor-
tant notions on vague graphs are demonstrated.

2. Preliminaries
In this section, we define three kinds of new product operations (called

direct product, lexicographic product, and strong product) of vague graphs
and show that direct product, lexicographic product and strong product of
two vague graphs is a vague graph also.

Definition 2.1. [26, 27] A fuzzy subset µ on a set X is a map µ : X → [0, 1].
A fuzzy binary relation on X is a fuzzy subset µ on X ×X.

Definition 2.2. [9] A vague set on an ordinary finite non-empty set X is
a pair (tA, fA), where tA : X → [0, 1], fA : X → [0, 1] are true and false
membership functions, respectively such that 0 ≤ tA(x) + fA(x) ≤ 1, for all
x ∈ X.

In the above definition, tA(x) is considered as the lower bound for degree
of membership of x in A (based on evidence), and fA(x) is the lower bound
for negation of membership of x in A (based on evidence against). So, the
degree of membership of x in the vague set A is characterized by the interval
[tA(x), 1−fA(x)]. Therefore, a vague set is a special case of interval valued sets
studied by many mathematicians and applied in many branches of mathematics
(see for example [21, 23]). The interval [tA(x), 1 − fA(x)] is called the vague
value of x in A, and is denoted by VA(x). We denote zero vague and unit vague
value by 0 = [0, 0] and 1 = [1, 1], respectively.

Definition 2.3. Let X and Y be ordinary finite non-empty sets. We call a
vague relation to be a vague subset of X × Y , that is, an expression R defined
by:

R = {⟨(x, y), tR(x, y), fR(x, y)⟩ | x ∈ X, y ∈ Y }
where tR : X × Y → [0, 1], fR : X × Y → [0, 1], which satisfies the condition
0 ≤ tR(x, y) + fR(x, y) ≤ 1, for all (x, y) ∈ X × Y . A vague relation R on
X is called reflexive if tR(x, x) = 1 and fR(x, x) = 0, for all x ∈ X. A vague
relation R is symmetric if tR(x, y) = tR(y, x) and fR(x, y) = fR(y, x), for all
x, y ∈ X.

A vague set, as well as an intuitionistic fuzzy set [5], is a further general-
ization of a fuzzy set. In the literature, the notions of intuitionistic fuzzy sets
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and vague sets are regarded as equivalent, in the sense that an intuitionistic
fuzzy set is isomorphic to a vague set [6].
Throughout this paper, G∗ will be a crisp graph (V,E), and G a vague graph
(A,B). Since an edge xy ∈ E is identified with an ordered pair (x, y) ∈ V ×V ,
a vague relation on E can be identified with a vague set on E. This gives a
possibility to define a vague graph as a pair of vague sets.

Definition 2.4. [19] Let G∗ = (V,E) be a crisp graph. A pair G = (A,B) is
called a vague graph on a crisp graph G∗ = (V,E), where A = (tA, fA) is a
vague set on V and B = (tB, fB) is a vague set on E ⊆ V × V such that

tB(xy) ≤ min(tA(x), tA(y)) and fB(xy) ≥ max(fA(x), fA(y))

for each edge xy ∈ E.

Definition 2.5. [19] A vague graph G is called complete if

tB(xy) = min(tA(x), tA(y)) and fB(xy) = max(fA(x), fA(y))

for each edge xy ∈ E.

Example 2.1. Consider a vague graph G such that V = {x, y, z}, E =
{xy, yz, xz}.
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Figure 1: Vague graph G

By routine computations, it is easy to show that G is a vague graph.

Definition 2.6. A homomorphism h : G1 → G2 is a mapping h : V1 → V2

which satisfies the following conditions:
(a) tA1(x1) ≤ tA2(h(x1)), fA1(x1) ≥ fA2(h(x1)),
(b) tB1(x1y1) ≤ tB2(h(x1)h(y1)), fB1(x1y1) ≥ fB2(h(x1)h(y1)),
for all x1 ∈ V1, x1y1 ∈ E1.

Definition 2.7. Let G1 and G2 be vague graphs. An isomorphism h : G1 → G2

is a bijective mapping h : V1 → V2 which satisfies the following conditions:
(c) tA1(x1) = tA2(h(x1)), fA1(x1) = fA2(h(x1)),
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(d) tB1(x1y1) = tB2(h(x1)h(y1)), fB1(x1y1) = fB2(h(x1)h(y1)),
for all x1 ∈ V1, x1y1 ∈ E1.

Definition 2.8. Let G1 and G2 be vague graphs. A weak isomorphism h :
G1 → G2 is a bijective mapping h : V1 → V2 which satisfies the following
conditions:
(e) h is homomorphism,
(f) tA1(x1) = tA2(h(x1)), fA1(x1) = fA2(h(x1)),
for all x1 ∈ V1. Thus, a weak isomorphism preserves the weights of the nodes
but not necessarily the weights of the arcs.

Definition 2.9. Let G1 and G2 be vague graphs. A co weak isomorphism
h : G1 → G2 is a bijective mapping h : V1 → V2 which satisfies:
(g) h is homomorphism,
(h) tB1(x1y1) = tB2(h(x1)h(y1)), fB1(x1y1) = fB2(h(x1)h(y1)),
for all x1y1 ∈ E1. Thus a co-weak isomorphism preserves the weights of the
arcs but not necessarily the weights of the nodes.

Definition 2.10. A vague graph G is called strong if

tB(xy) = min(tA(x), tA(y)) and fB(xy) = max(fA(x), fA(y))

, for all xy ∈ V.

Definition 2.11. Let A : X → Π be a vague set on X where Π = {[b, c] | 0 ≤
b ≤ c ≤ 1} (i.e., the set of all closed intervals in [0, 1]), then A[b,c] = {x ∈ X |
tA(x) ≥ b, fA(x) ≥ c} is called a [b, c]−level set of A, for all [b, c] ∈ Π.

Definition 2.12. Let G∗
1 = (V1, E1) and G∗

2 = (V2, E2) be two graphs.
(1) ([20, 21]) The graph G∗

1×G∗
2 = (V,E) is called the cartesian product of G∗

1

and G∗
2 where V = V1 × V2 and

E = {(x, x2)(x, y2) | x ∈ V1, x2y2 ∈ E2} ∪ {(x1, z)(y1, z) | z ∈ V2, x1y1 ∈ E1}.
(2) ([24]) The graph G∗

1 ∗ G∗
2 = (V,E) is called the direct product of G∗

1 and
G∗

2, where V = V1 × V2 and

E = {(x1, x2)(y1, y2) | x1y1 ∈ E1, x2y2 ∈ E2}.
(3) ([11]) The graph G∗

1 •G∗
2 = (V,E) is called the lexicographic product of G∗

1

and G∗
2 where V = V1 × V2 and

E = {(x, x2)(x, y2) | x ∈ V1, x2y2 ∈ E2}∪{(x1, x2)(y1, y2) | x1y1 ∈ E1, x2y2 ∈ E2}.
(4) ([21]) The graph G∗

1 ⊠ G∗
2 = (V,E) is called the strong product of G∗

1 and
G∗

2, where V = V1 × V2 and

E = {(x, x2)(x, y2) | x ∈ V1, x2y2 ∈ E2} ∪ {(x1, z)(y1, z) | z ∈ V2, x1y1 ∈ E1}

∪{(x1, x2)(y1, y2) | x1y1 ∈ E1, x2y2 ∈ E2}.
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(5) ([10]) The graph G∗
1 ∪G∗

2 = (V,E) is called the union of G∗
1 and G∗

2, where
V = V1 ∪ V2 and E = E1 ∪ E2.

Definition 2.13. Let G1 = (A1, B1) (resp., G2 = (A2, B2)) be a vague graph
of G∗

1 = (V1, E1) (resp., G
∗
2 = (V2, E2)).

(1) The cartesian product G1 × G2 of G1 and G2 is defined as a pair (A,B),
where A = (tA, fA) and B = (tB, fB) are vague sets on V = V1 × V2 and

E = {(x, x2)(x, y2) | x ∈ V1, x2y2 ∈ E2} ∪ {(x1, z)(y1, z) | z ∈ V2, x1y2 ∈ E1}
respectively which satisfies the following:

(i)

{
tA(x1, x2) = min(tA1(x1), tA2(x2))
fA(x1, x2) = max(fA1(x1), fA2(x2))

((x1, x2) ∈ V1 × V2),

(ii)

{
tB((x, x2)(x, y2)) = min(tA1(x), tB2(x2y2))
fB((x, x2)(x, y2)) = max(fA1(x), fB2(x2y2))

(x ∈ V1, x2y2 ∈ E2),

(iii)

{
tB((x1, z)(y1, z)) = min(tB1(x1y1), tA2(z))
fB((x1, z)(y1, z)) = max(fB1(x1y1), fA2(z))

(z ∈ V2, x1y1 ∈ E1).

(2) The union G1 ∪ G2 of G1 and G2 is defined as a pair (A,B), where
A = (tA, fA) and B = (tB, fB) are vague sets on V = V1∪V2 and E = E1∪E2

respectively which satisfies the following:

(i)

 tA(x) = tA1(x) if x ∈ V1 and x ̸∈ V2,
tA(x) = tA2(x) if x ∈ V2 and x ̸∈ V1,
tA(x) = max(tA1(x), tA2(x)) if x ∈ V1 ∩ V2.

(ii)

 fA(x) = fA1(x) if x ∈ V1 and x ̸∈ V2,
fA(x) = fA2(x) if x ∈ V2 and x ̸∈ V1,
fA(x) = min(fA1(x), fA2(x)) if x ∈ V1 ∩ V2.

(iii)

 tB(xy) = tB1(xy) if xy ∈ E1 and xy ̸∈ E2,
tB(xy) = tB2(xy) if xy ∈ E2 and xy ̸∈ E1,
tB(xy) = max(tB1(xy), tB2(xy)) if xy ∈ E1 ∩ E2.

(iv)

 fB(xy) = fB1(xy) if xy ∈ E1 and xy ̸∈ E2,
fB(xy) = fB2(xy) if xy ∈ E2 and xy ̸∈ E1,
fB(xy) = min(fB1(xy), fB2(xy)) if xy ∈ E1 ∩ E2.

Finally, we define three kinds of new operations (called direct product, lexi-
cographic product, and strong product) on vague graphs, which can be looked
as a generalization of their counterparts in Definition 2.12.

Definition 2.14. The direct product G1∗G2 of two vague graphs G1 = (A1, B1)
and G2 = (A2, B2) of G∗

1 = (V1, E1) and G∗
2 = (V2, E2) respectively is defined

as a pair (A,B), where A = (tA, fA) and B = (tB, fB) are vague sets on
V = V1 × V2 and E = {(x1, x2)(y1, y2) | x1y1 ∈ E1, x2y2 ∈ E2} respectively
which satisfies the following:

(i)

{
tA(x1, x2) = min(tA1(x1), tA2(x2))
fA(x1, x2) = max(fA1(x1), fA2(x2))

((x1, x2) ∈ V1 × V2)
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(ii)

{
tB((x1, x2)(y1, y2)) = min(tB1(x1y1), tB2(x2y2))
fB((x1, x2)(y1, y2)) = max(fB1(x1y1), fB2(x2y2))

(x1y1 ∈ E1, x2y2 ∈ E2).

Theorem 2.1. The direct product G1 ∗G2 of two vague graphs G1 = (A1, B1)
and G2 = (A2, B2) is a vague graph also.

Proof. Let x1y1 ∈ E1 and x2y2 ∈ E2, then we have

(tB1 ∗ tB2) ((x1, x2)(y1, y2)) = min (tB1(x1y1), tB2(x2y2))

≤ min (min (tA1(x1), tA1(y1)) ,min (tA2(x2), tA2(y2)))

= min (min (tA1(x1), tA2(x2)) ,min (tA1(y1), tA2(y2)))

= min ((tA1 ∗ tA2)(x1, x2), (tA1 ∗ tA2)(y1, y2))

(fB1 ∗ fB2) ((x1, x2)(y1, y2)) = max (fB1(x1y1), fB2(x2y2))

≥ max (max (fA1(x1), fA1(y1)) ,max (fA2(x2), fA2(y2)))

= max(max(fA1(x1), fA2(x2)),max(fA1(y1), fA2(y2)))

= max((fA1 ∗ fA2)(x1, x2), (fA1 ∗ fA2)(y1, y2)).

□

Definition 2.15. The lexicographic product G1 •G2 of two vague graphs G1 =
(A1, B1) and G2 = (A2, B2) of G

∗
1 = (V1, E1) and G∗

2 = (V2, E2) respectively is
defined as a pair (A,B), where A = (tA, fA) and B = (tB, fB) are vague sets
on V = V1×V2 and E = {(x, x2)(x, y2) | x ∈ V1, x2y2 ∈ E2}∪{(x1, x2)(y1, y2) |
x1y1 ∈ E1, x2y2 ∈ E2} respectively which satisfies the following:

(i)

{
tA(x1, x2) = min(tA1(x1), tA2(x2))
fA(x1, x2) = max(fA1(x1), fA2(x2))

((x1, x2) ∈ V1 × V2),

(ii)

{
tB((x, x2)(x, y2)) = min(tA1(x), tB2(x2y2))
fB((x, x2)(x, y2)) = max(fA1(x), fB2(x2y2))

(x ∈ V1, x2y2 ∈ E2),

(iii)

{
tB((x1, x2)(y1, y2)) = min(tB1(x1y1), tB2(x2y2))
fB((x1, x2)(y1, y2)) = max(fB1(x1y1), fB2(x2y2))

(x1y1 ∈ E1, x2y2 ∈

E2).

Theorem 2.2. The lexicographic product G1 • G2 of two vague graphs G1 =
(A1, B1) and G2 = (A2, B2) is a vague graph also.

Proof. If x ∈ V1 and x2y2 ∈ E2, we have

(tB1 • tB2) ((x, x2)(x, y2)) = min (tA1(x), tB2(x2y2))

≤ min ((tA1(x),min(tA2(x2), tA2(y2)))

= min (min (tA1(x), tA2(x2)) ,min (tA1(x), tA2(y2)))

= min ((tA1 • tA2)(x, x2), (tA1 • tA2)(x, y2)) ,
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(fB1 • fB2) ((x, x2)(x, y2)) = max (fA1(x), fB2(x2y2))

≥ max (fA1(x),max(fA2(x2), fA2(y2)))

= max (max (fA1(x), fA2(x2)) ,max (fA1(x), fA2(y2)))

= max ((fA1 • fA2)(x, x2), (fA1 • fA2)(x, y2)) .

If x1y1 ∈ E and x2y2 ∈ E2, then

(tB1 • tB2) ((x1, x2)(y1, y2)) = min (tB1(x1y1), tB2(x2y2))

≤ min (min(tA1(x1), tA1(y1)),min(tA2(x2), tA2(y2)))

= min (min (tA1(x1), tA2(x2)) ,min (tA1(y1), tA2(y2)))

= min ((tA1 • tA2)(x1, x2), (tA1 • tA2)(y1, y2)) ,

(fB1 • fB2) ((x1, x2)(y1, y2)) = max (fB1(x1y1), fB2(x2y2))

≥ max (max(fA1(x1), fA1(y1)),max(fA2(x2), fA2(y2)))

= max (max (fA1(x1), fA2(x2)) ,max (fA1(y1), fA2(y2)))

max ((fA1 • fA2)(x1, x2), (fA1 • fA2)(y1, y2)) .

□

Definition 2.16. The strong product G1 ⊠ G2 of two vague graphs G1 =
(A1, B1) and G2 = (A2, B2) of G

∗
1 = (V1, E1) and G∗

2 = (V2, E2) respectively is
defined as a pair (A,B), where A = (tA, fA) and B = (tB, fB) are vague sets
on V = V1 × V2 and
E = {(x, x2)(x, y2) | x ∈ V1, x2y2 ∈ E2} ∪ {(x1, z)(y1, z) | z ∈ V2, x1y1 ∈
E1} ∪ {(x1, x2)(y1, y2) | x1y1 ∈ E1, x2y2 ∈ E2} respectively which satisfies the
following:

(i)

{
tA(x1, x2) = min(tA1(x1), tA2(x2))
fA(x1, x2) = max(fA1(x1), fA2(x2))

((x1, x2) ∈ V1 × V2),

(ii)

{
tB((x, x2)(x, y2)) = min(tA1(x), tB2(x2y2))
fB((x, x2)(x, y2)) = max(fA1(x), fB2(x2y2))

(x ∈ V1, x2y2 ∈ E2),

(iii)

{
tB((x1, z)(y1, z)) = min(tB1(x1y1), tA2(z))
fB((x1, z)(y1, z)) = max(fB1(x1y1), fA2(z))

(z ∈ V2, x1y1 ∈ E1),

(iv)

{
tB((x1, x2)(y1, y2)) = min(tB1(x1y1), tB2(x2y2))
fB((x1, x2)(y1, y2)) = max(fB1(x1y1), fB2(x2y2))

(x1y1 ∈ E1, x2y2 ∈

E2).

Theorem 2.3. The strong product G1⊠G2 of two vague graphs G1 = (A1, B1)
and G2 = (A2, B2) is a vague graph also.

Proof. It is similar to Theorem (2.1) and Theorem (2.2). □
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3. Rationality of some defined notions on vague graphs

In this section, we demonstrate the rationality of some notions (i.e.
vague complete graph, cartesian product of vague graphs, direct product of
vague graphs, lexicographic product of vague graphs, strong product of vague
graphs and union of vague graphs) on vague graphs by characterizing them by
their level counterpart graphs. As a result, we obtain a kind of representation
of vague graphs (respectively, vague complete graphs). We firstly show the
rationality of vague graphs and vague complete graphs.

Theorem 3.1. Let V be a set, and A = (tA, fA) and B = (tB, fB) be vague
sets on V and E ⊆ V ×V respectively. Then G = (A,B) is a vague graph (re-
spectively, vague complete graph) if and only if (A[a,b], B[a,b]) (called [a, b]−level
graph of G = (A,B)) is a graph (respectively, a complete graph) for each
[a, b] ∈ Π.

Proof. We only show the case of vague graph.
Necessity. Suppose that G = (A,B) is a vague graph. For each [a, b] ∈ Π and
each xy ∈ B[a,b], we have tB(xy) ≥ a , fB(xy) ≥ b, tB(xy) ≤ min(tA(x), tA(y))
, and fB(xy) ≥ max(fA(x), fA(y)) since G = (A,B) is a vague graph. It follows
that tA(x) ≥ a, fA(x) ≥ b, tA(y) ≥ a and fA(y) ≥ b which means x, y ∈ A[a,b].
Therefore, (A[a,b], B[a,b]) is a graph (∀ [a, b] ∈ Π).

Sufficiency. Assume that (A[a,b], B[a,b]) is a graph (∀ [a, b] ∈ Π). For
each xy ∈ E, Let tB(xy) = a and fB(xy) = b, then xy ∈ B[a,b]. Since
(A[a,b], B[a,b]) is a graph for each [a, b] ∈ Π, we have x, y ∈ A[a,b], which means
tA(x) ≥ a and fA(x) ≥ b, tA(y) ≥ a and fA(y) ≥ b. Therefore, tB(xy) = a ≤
min(tA(x), tA(y)), fB(xy) = b ≥ max(fA(x), fA(y)), i.e., G = (A,B) is a vague
graph.

Next we show the rationality of the defined four kinds of product opera-
tions on vague graphs. □

Theorem 3.2. Let G1 = (A1, B1) (respectively, G2 = (A2, B2)) be a vague
graph of G∗

1 = (V1, E1) (respectively, G
∗
2 = (V2, E2)). Then G1 × G2 = (A,B)

is the cartesian product of G1 and G2 if and only if (A[a,b], B[a,b]) is the cartesian
product of ((A1)[a,b], (B1)[a,b]) and ((A2)[a,b], (B2)[a,b]) for each [a, b] ∈ Π.

Proof. Necessity. Suppose that G1 × G2 = (A,B) is the cartesian product of
G1 and G2. Firstly, we show A[a,b] = (A1)[a,b] × (A2)[a,b] for each [a, b] ∈ Π.
Actually, for every x, y ∈ A[a,b], we have min(tA1(x), tA2(y)) = tA(x, y) ≥ a
and max(fA1(x), fA2(y)) = fA(x, y) ≥ b since (A,B) is the cartesian product
of G1 and G2. It follows that x ∈ (A1)[a,b] and y ∈ (A2)[a,b] (i.e., (x, y) ∈
(A1)[a,b] × (A2)[a,b]).
Therefore, A[a,b] ⊆ (A1)[a,b] × (A2)[a,b]. Conversely, for every (x, y) ∈ (A1)[a,b] ×
(A2)[a,b], we have x ∈ (A1)[a,b] and y ∈ (A2)[a,b] which implies min(tA1(x), tA2(y))
≥ a and max(fA1(x), fA2(y)) ≥ b. Thus we have tA(x, y) ≥ a and fA(x, y) ≥ b
since (A,B) is the cartesian product of G1 and G2. Therefore, (A1)[a,b] ×
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(A2)[a,b] ⊆ A[a,b]. Secondly, we prove B[a,b] = E(a, b) for each [a, b] ∈ Π, where
E(a, b) = {(x, x2)(x, y2) | x ∈ (A1)[a,b], x2y2 ∈ (B2)[a,b]} ∪ {(x1, z)(y1, z) | z ∈
(A2)[a,b], x1y1 ∈ (B1)[a,b]}. For every (x1, x2)(y1, y2) ∈ B[a,b] (which means
tB((x1, x2)(y1, y2)) ≥ a and fB((x1, x2)(y1, y2)) ≥ b), either x1 = y1 and
x2y2 ∈ E2 hold or x2 = y2 and x1y1 ∈ E1 hold since (A,B) is the cartesian
product of G1 and G2. For the first case, we have

tB((x1, x2)(y1, y2)) = min(tA1(x1), tB2(x2y2)) ≥ a

and

fB((x1, x2)(y1, y2)) = max(fA1(x1), fB2(x2y2)) ≥ b,

which implies tA1(x1) = a, fA1(x1) ≥ b, tB2(x2y2) ≥ a and fB2(x2y2) ≥ b.
Therefore, x1 = y1 ∈ (A1)[a,b], x2y2 ∈ (B2)[a,b], i.e., (x1, x2)(y1, y2) ∈ E(a, b).
Analogously, for the second case, we have (x1, x2)(y1, y2) ∈ E(a, b). Conversely,
for every (x, x2)(x, y2) ∈ E(a, b) (i.e., tA1(x) ≥ a, fA1(x) ≥ b, tB2(x2y2) ≥ a
and fB2(x2y2) ≥ b), as (A,B) is the cartesian product of G1 and G2, we have

tB((x, x2)(x, y2)) = min(tA1(x), tB2(x2y2)) ≥ a

and

fB((x, x2)(x, y2)) = max(fA1(x), fB2(x2y2)) ≥ b,

which implies (x, x2)(x, y2) ∈ B[a,b]. Analogously, for every (x1, z)(y1, z) ∈
E(a, b), we have (x1, z)(y1, z) ∈ B[a,b]. Sufficiency. Suppose that (A[a,b], B[a,b])
is the cartesian product of ((A1)[a,b], (B1)[a,b]) and ((A2)[a,b], (B2)[a,b]) (∀ [a, b] ∈
Π). For each (x1, x2) ∈ V1×V2, let min(tA1(x1), tA2(x2)) = a and max(fA1(x1),
fA2(x2)) = b (which implies x1 ∈ (A1)[a,b] and x2 ∈ (A2)[a,b]), then (x1, x2) ∈
A[a,b] since (A[a,b], B[a,b]) is the cartesian product of ((A1)[a,b], (B1)[a,b]) and
((A2)[a,b], (B2)[a,b]) thus tA(x1, x2) ≥ a = min(tA1(x1), tA2(x2)) and fA(x1, x2) ≥
b = max(fA1(x1), fA2(x2)). Again, let tA(x1, x2) = c and fA(x1, x2) = d (which
implies (x1, x2) ∈ A[c,d]), then x1 ∈ (A1)[c,d] and x2 ∈ (A2)[c,d] since (A[c,d], B[c,d])
is the cartesian product of ((A1)[c,d], (B1)[c,d]) and ((A2)[c,d], (B2)[c,d]), thus

tA1(x1) ≥ c = tA(x1, x2), fA1(x1) ≥ d = fA(x1, x2),

tA2(x2) ≥ c = tA(x1, x2), fA2(x2) ≥ d = fA(x1, x2),

which implies min(tA1(x1), tA2(x2)) ≥ tA(x1, x2) and max(fA1(x1), fA2(x2)) ≥
fA(x1, x2). It follows that

(i)

{
tA(x1, x2) = min(tA1(x1), tA2(x2))
fA(x1, x2) = max(fA1(x1), fA2(x2))

((x1, x2) ∈ V1 × V2).

Analogously, for each x ∈ V1 and each x2y2 ∈ E2, let min(tA1(x), tB2(x2y2)) =
a, max(fA1(x), fB2(x2y2)) = b, tB((x, x2)(x, y2)) = c and fB((x, x2)(x, y2)) = d,
then

(ii)

{
tB((x, x2)(x, y2)) = min(tA1(x), tB2(x2y2))
fB((x, x2)(x, y2)) = max(fA1(x), fB2(x2y2))

((x ∈ V1, x2y2 ∈ E2).

For each z ∈ V2 and each x1y1 ∈ E1, let min(tA2(z), tB1(x1y1)) = a, max(fA2(z),
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fB1(x1y1)) = b, tB((x1, z)(y1, z)) = c and fB((x1, z)(y1, z)) = d, then

(iii)

{
tB((x1, z)(y1, z)) = min(tB1(x1y1), tA2(z))
fB((x1, z)(y1, z)) = max(fB1(x1y1), fA2(z))

(z ∈ V2, x1y1 ∈ E1). □

Theorem 3.3. Let G1 = (A1, B1) (respectively, G2 = (A2, B2)) be a vague
graph of G∗

1 = (V1, E1) (respectively, G
∗
2 = (V2, E2)). Then G1 ∗G2 = (A,B) is

the direct product of G1 and G2 if and only if (A[a,b], B[a,b]) is the direct product
of ((A1)[a,b], (B1)[a,b]) and ((A2)[a,b], (B2)[a,b]) for each [a, b] ∈ Π.

Proof. Necessity. Suppose that G1 × G2 = (A,B) is the direct product of
G1 and G2. Firstly, we show A[a,b] = (A1)[a,b] × (A2)[a,b] for each [a, b] ∈ Π.
Actually, for every (x, y) ∈ A[a,b], we have min(tA1(x), tA2(y)) = tA(x, y) ≥ a
and max(fA1(x), fA2(y)) = fA(x, y) ≥ b since (A,B) is the direct product
of G1 and G2. It follows that x ∈ (A1)[a,b] and y ∈ (A2)[a,b] (i.e., (x, y) ∈
(A1)[a,b] × (A2)[a,b]).
Therefore, A[a,b] ⊆ (A1)[a,b] × (A2)[a,b]. Conversely, for every (x, y) ∈ (A1)[a,b] ×
(A2)[a,b], we have x ∈ (A1)[a,b] and y ∈ (A2)[a,b] which implies min(tA1(x), tA2(y))
≥ a and max(fA1(x), fA2(y)) ≥ b. Thus we have tA(x, y) ≥ a and fA(x, y) ≥ b
since (A,B) is the direct product of G1 and G2. Therefore, (A1)[a,b]×(A2)[a,b] ⊆
A[a,b]. Secondly, we prove B[a,b] = E(a, b) for each [a, b] ∈ Π, where

E(a, b) = {(x1, x2)(y1, y2) | x1y1 ∈ (B1)[a,b], x2y2 ∈ (B2)[a,b]}.

For every (x1, x2)(y1, y1) ∈ B[a,b] (which means tB((x1, x2)(y1, y2)) ≥ a and
fB((x1, x2)(y1, y2)) ≥ b) then x1y1 ∈ (B1)[a,b] and x2y2 ∈ (B2)[a,b] hold since
(A,B) is the direct product of G1 and G2. This implies (x1, x2)(y1, y2) ∈
E(a, b).
Conversely, for every (x1, x2)(y1, y2) ∈ E(a, b) (i.e., tB1(x1y1) ≥ a, fB1(x1y1) ≥
b, tB2(x2y2) ≥ a and fB2(x2y2) ≥ b) as (A,B) is the direct product of G1 and
G2, we have

tB((x1, x2)(y1, y2)) = min(tB1(x1y1), tB2(x2y2)) ≥ a

and

fB((x1, x2)(y1, y2)) = max(fB1(x1y1), fB2(x2y2)) ≥ b,

which implies (x1, x2)(y1, y2) ∈ B[a,b].
Sufficiency. Suppose that (A[a,b], B[a,b]) is the direct product of ((A1)[a,b], (B1)[a,b])
and ((A2)[a,b], (B2)[a,b]) (∀ [a, b] ∈ Π). For each (x1, x2) ∈ V1×V2, let min(tA1(x1),
tA2(x2)) = a and max(fA1(x1), fA2(x2)) = b (which implies x1 ∈ (A1)[a,b]
and x2 ∈ (A2)[a,b]), then (x1, x2) ∈ A[a,b] since (A[a,b], B[a,b]) is the direct
product of ((A1)[a,b], (B1)[a,b]) and ((A2)[a,b], (B2)[a,b]), thus tA(x1, x2) ≥ a =
min(tA1(x1), tA2(x2)) and fA(x1, x2) ≥ b = max(fA1(x1), fA2(x2)). Again,
let tA(x1, x2) = c and fA(x1, x2) = d (which implies (x1, x2) ∈ A[c,d]), then
x1 ∈ (A1)[c,d] and x2 ∈ (A2)[c,d] since (A[c,d], B[c,d]) is the direct product of
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((A1)[c,d], (B1)[c,d]) and ((A2)[c,d], (B2)[c,d]), thus

tA1(x1) ≥ c = tA(x1, x2), fA1(x1) ≥ d = fA(x1, x2),

tA2(x2) ≥ c = tA(x1, x2), fA2(x2) ≥ d = fA(x1, x2),

which implies min(tA1(x1), tA2(x2)) ≥ tA(x1, x2) and max(fA1(x1), fA2(x2))
≥ fA(x1, x2). It follows that

(i)

{
tA(x1, x2) = min(tA1(x1), tA2(x2))
fA(x1, x2) = max(fA1(x1), fA2(x2))

((x1, x2) ∈ V1 × V2).

Analogously, for each x1y1 ∈ E1 and each x2y2 ∈ E2, let min(tB1(x1y1),
tB2(x2y2)) = a, max(fB1(x1y1), fB2(x2y2)) = b, tB((x1, x2)(y1, y2)) = c and
fB((x1, x2)(y1, y2))
= d, then

(ii)

{
tB((x1, x2)(y1, y2)) = min(tB1(x1y1), tB2(x2y2))
fB((x1, x2)(y1, y2)) = max(fB1(x1y1), fB2(x2y2))

(x1y1 ∈ E1, x2y2 ∈ E2).

□
Theorem 3.4. Let G1 = (A1, B1) (respectively, G2 = (A2, B2)) be a vague
graph of G∗

1 = (V1, E1) (respectively, G
∗
2 = (V2, E2)). Then, G1•G2 = (A,B) is

the lexicographic product of G1 and G2 if and only if (A[a,b], B[a,b]) is the lexico-
graphic product of ((A1)[a,b], (B1)[a,b]) and ((A2)[a,b], (B2)[a,b]) for each [a, b] ∈ Π.

Proof. Necessity. Suppose that G1 •G2 = (A,B) is the lexicographic product
of G1 and G2. Firstly, we show A[a,b] = (A1)[a,b] × (A2)[a,b] for each [a, b] ∈ Π
by definition of lexicographic product and the proof of Theorem 3.3. Secondly,
we proof B[a,b] = E(a, b) ∪ F (a, b) for each [a, b] ∈ Π, where E(a, b) is as that
defined in Theorem 3.3 and F (a, b) = {(x, x2)(x, y2) | x ∈ (A1)[a,b], x2y2 ∈
(B2)[a,b]}. By the proof of Theorem 3.3, we have E(a, b) ⊆ B[a,b]. For ev-
ery (x, x2)(x, y2) ∈ F (a, b) (i.e., tA1(x) ≥ a, fA1(x) ≥ b, tB2(x2y2) ≥ a,
fB2(x2y2) ≥ b), as G1 • G2 = (A,B) is the lexicographic product of G1 and
G2, we have tB((x, x2)(x, y2)) ≥ a and fB((x, x2)(x, y2)) ≥ b, which implies
(x, x2)(x, y2) ∈ B[a,b]. Therefore, E(a, b)∪F (a, b) ⊆ B[a,b]. Conversely, for every
(x1, x2)(y1, y2) ∈ B[a,b] (i.e., tB((x1, x2)(y1, y2)) ≥ a and fB((x1, x2)(y1, y2)) ≥
b) as G1 • G2 = (A,B) is the lexicographic product of G1 and G2, we have
(x1x2)(y1, y2) ∈ E ∪ F , where E = {(x1, x2)(y1, y2) | x1y1 ∈ E1, x2y2 ∈ E2},
F = {(x, x2)(x, y2) | x ∈ V1, x2y2 ∈ E2}. If (x1, x2)(y1, y2) ∈ E, then
(x1, x2)(y1, y2) ∈ E(a, b) by the proof of Theorem 3.3. If (x1, x2)(y1, y2) ∈ F ,
i.e., x1 = y1, x2y2 ∈ E2, then

min(tA1(x1), tB2(x2y2)) = tB((x1, x2)(y1, y2)) ≥ a

and

max(fA1(x1), fB2(x2y2)) = fB((x1, x2)(y1, y2)) ≥ b,

which implies x1, y1 ∈ (A1)[a,b], and x2, y2 ∈ (B2)[a,b]. Therefore, (x1, x2)(y1, y2)
∈ F (a, b). It follows that B[a,b] ⊆ E(a, b) ∪ F (a, b).
Sufficiency. Assume that (A[a,b], B[a,b]) is the lexicographic product of ((A1)[a,b],
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(B1)[a,b]) and ((A2)[a,b], (B2)[a,b]) (∀ [a, b] ∈ Π). By the proof of Theorem 3.3,
we know

(i)

{
tA(x1, x2) = min(tA1(x1), tA2(x2))
fA(x1, x2) = max(fA1(x1), fA2(x2))

((x1, x2) ∈ V1 × V2),

(ii)

{
tB((x1, x2)(y1, y2)) = min(tB1(x1y1), tB2(x2y2))
fB((x1, x2)(y1, y2)) = max(fB1(x1y1), fB2(x2y2))

(x1y1 ∈ E1, x2y2 ∈ E2).

For each x ∈ V1 and each x2y2 ∈ E2, let min(tA1(x), tB2(x2y2)) = a, max(fA1(x),
fB2(x2y2)) = b, tB((x, x2)(x, y2)) = c and fB((x, x2)(x, y2)) = d, then

(iii)

{
tB((x, x2)(x, y2)) = min(tA1(x), tB2(x2y2))
fB((x, x2)(x, y2)) = max(fA1(x), fB2(x2y2))

(x ∈ V1, x2y2 ∈ E2). □

Remark 3.1. Let G1 = (A1, B1) (respectively, G2 = (A2, B2)) be a vague
graph of G∗

1 = (V1, E1) (respectively, G
∗
2 = (V2, E2)). Then, G1 ⊠G2 = (A,B)

is the strong product of G1 and G2 if and only if (A[a,b], B[a,b]) is the strong
product of ((A1)[a,b], (B1)[a,b]) and ((A2)[a,b], (B2)[a,b]) for each [a, b] ∈ Π.

Remark 3.2. Let G1 = (A1, B1) (respectively, G2 = (A2, B2)) be a vague
graph of G∗

1 = (V1, E1) (respectively, G∗
2 = (V2, E2)) and V1 ∩ V2 = ∅. Then

G1 ∪G2 = (A,B) is the union of G1 and G2 if and only if (A[a,b], B[a,b]) is the
union of ((A1)[a,b], (B1)[a,b]) and ((A2)[a,b], (B2)[a,b]) for each [a, b] ∈ Π.

4. Conclusion

It is well known that graphs are among the most ubiquitous models of
both natural and human-made structure. They can be used to model many
types of relations and process dynamics in computer science, physical, biologi-
cal and social systems. Many problems of practical interest can be represented
by graphs. In general graphs theory has a wide range of applications in diverse
fields. In this paper, we defined three kinds of new product operations (call
directed product, lexicographic product and strong product) of vague graphs
and rationality of these notions and some defined important notions on vague
graphs, such as vague graph, vague complete graph, cartesian product of vague
graphs and union of vague graphs are demonstrated by characterizing theses
notions by their level counterparts graphs.
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