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AN EXPONENTIAL STABILITY TEST
FOR A MESSENGER RNA-MICRO RNA ODE MODEL

Mircea OLTEANU! and Radu STEFAN?

In this paper we obtain a numerically tractable test (sufficient condition)
for the exponential stability of the unique positive equilibrium point of an ODE
system. The result (Theorem 3.1) is based on Lyapunov theory and Linear Ma-
triz Inequalities techniques. The ODE model is related to the messengerRNA-
microRNA interaction.
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1. Introduction

Consider the following ODE matematical model

dm; z <

@ = bimdimi— | Dok | mit ) ke, i=1,N
= =1

dp; X =

= B G — | D KSma |+ Y (ki + e, j=1TM (1)
i=1 i=1

d;j —(0ij + iy + ig)eiy + kfmapg, i =1,N,j =1, M.

The notation is the usual one, as in the original papers [4] and [5]: m;
(i = 1,N) represent the concentrations of the messengerRNAs, i (J = 1, M)
are the concentrations of the microRNAs, while ¢;; stand for the concentrations
of the complexes. Let us remark that d;, J; and o;; are the elimination rates of the
messengerRNAs, microRNAs and complexes, respectively. The kinetic constants
associated with the mass action rates of the enzymatic reactions are k;;, kz; and
kij. Finally, b; and 3; stand for the transcription rates of the messengerRNAs and
microRNAs, respectively. We assume throughout the paper that all coeficients are
strictly positive.
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During the last years, such mathematical models received a lot of attention
in the literature (see [7], [4], [2], [9], [3]). The case with two messenger and two
micro RNA species appears to be relevant for many issues raised by the interaction
mechanisms. Therefore we decided to concentrate here exclusively on the situation
when M = N = 2. In this case (1) rewrites as a system with 8 equations

dm; _ _ .

dtl = by —dim; — (k1 + kihpe) mi + (kjjcin + kjpein) , i=1,2

dp; _ _ .

ditj = ﬁj - 5j,uj — (kz'{rjml + k‘;;??”@) W + ((klj + mj)clj + (/{72]- + sz)CQj) ] = 1, 2
de;; _ ..

d;] —(0ij + ki + Kij)ei; + kigmiuj, i, =1,2. (2)

Further, we will analyze the behavior of the above system (2) under the Quasi
Steady State Assumption (QSSA). To be more specific, this means that

+
ki

O'ij + :ICZ; + KLZ']'

dcij
dt

=0, or, equivalently, c;; = mifpj, 4,7 =1,2.

The QSSA is consistent with the experimental fact that complexes often reach the
steady-state (equilibrium) much faster than the RNA species (see [4], [5]). Under
this hypothesis, we get the following ODE model comprising four equations

% = by —dimy — (a11p1 + arzpz) My
% = by — damy — (a1 i1 + agapiz) Mo
% = [1— 011 — (an1mi + aarma) (3)
% = [9 — doug — (12mq + agams) 2
where
Qg = ——8 g (5)

oij + ki + R Y
Obviously, aj; < a;; < k;z‘;

Remark 1.1.

(1) The above system of differential equations is defined by a polynomial vector
field, hence the existence and uniqueness theorem applies to the Cauchy prob-
lem associated with (3). Moreover, the solutions are bounded (see [5]).

(2) By using a similar technique as in [6], it can be shown that the positive ortant
]Ri is a positively invariant set for the system.

We shall prove the existence of a unique equilibrium point in the positive
ortant of R* and then give conditions for the exponential stability of this equilibria.
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2. Equilibria

The equilibrium points are the solutions of the following system of equations:
b,
m; = - ’ 1= 17 27
d; + a;1p1 + aopio
Bj .
. = 5 - 1, 2 6
Hi 0j + ayma + agyme / (©)

The following existence and uniqueness result holds.

+

Theorem 2.1. For every positive set of parameters b;, B, d;, 5, 05, k‘lj,

k‘; and K;j,
i,j = 1,2, the system (6) has a unique solution (m3, m5, ui, us) with m; € (O, 32)
and pj € (0, ?j), i,7=1,2.
Proof. Consider the maps
gi(mi, pa, p2) = my(di +anpr + aigpz), i =1,2,
hj(ma,me, pj) = (5 + argma + agjma), j = 1,2,
Obviously, the equilibrium points of the system are the solutions of the following
system of equations
gi(mi, p1, p2) = by, i=1,2,

hj(mi,ma, p;) = Bj, j=1,2.

Let us first notice that for any 7,7 = 1,2

9g; Oh; 9g; Oh,;
J >0, —L >0, 9 S 0and 2 > 0.
a,u]' 8Mj 8ml

From system (6), at equilibrium, the uniqueness results from

8mi

Bm,- aﬂj
0
8,uj < 6mz

Then observe that g;(0, p1, o) = 0 and that gi(g—i, 1, p2) > by, hence for every pair

<0,i,j=12.

(11, p2) € RA there exist unique m§ = mj(u1, p2) > 0 and ms = mj(p1, p2) > 0
such that gi(mivula /’LQ) = bi7 1= 17 2.
Considering now the system h; (mJ(p1, p2), m5(p1, p2), i) = B4, 7 = 1,2, one gets

hl (mT(OalLQ)am;(Oa,uQ)aO) = 0
A1 B Iei
h 1 < ) 5 < s o > .
1 <m1(51 fi2) m2(51 fi2) 5 A1
Thus there exists a unique pj = pf(p2) such that hy (m7(uy, pa), ms(ui, p2), ui) =
B1. By a similar reasoning it follows that the last equation

ha (M3 (p1, p2), ma(pis p2), p2) = Ba

B
5

has also a unique solution pj € (0 , ) and the proof is completed. ]
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3. Exponential stability of the equilibrium point

The analysis of the stability properties of the origin will make use of the clas-
sical Lyapunov’s stability theorems. Introduce a quadratic form as a Lyapunov
function candidate, that is, V(z) = 27 Pz. We will derive an LMI (Linear Matrix
Inequality) sufficient condition in terms of P which ensures the exponential stability
of the equilibrium point. The solution is then obtained by using the cvx program-
ming environment developed by Boyd et. al [1] and running the SDPT3 semidefinite
programming package.

Translate first the system (3) to the origin. Define the deviations with respect to
the equilibrium point in Theorem 2.1 as x; := m; —m;, y; = j; — u;‘f, i,7=1,2and

let 27 .= [x1 2 Y1 y2]. Then write the equivalent translated system as
z2=Az+g(2), (7)
where _
—d1 ON —CLHTI’Li< —a12m§
A _ 0 —dg —(],211711< —a22m§
—ap] —aoap] =01 0 ’
—Quofy  —Q2fly 0 —02

di = di + a1 p] + azps,
0L =01+ allmT + Oélez,

and ¢ : R* = R* is defined by
gl(xlv 2, Y1, yQ) = - (a’llyl + a1292) X1,
93(x1,m2,y1,y2) = — (@121 + Q2172) Y1,

Proposition 3.1.

da = do + a1 1] + aga i,

d2 = d2 + a1am] + agams

92(‘7:173327:[/17 yQ) = - (alQ?Jl + a22?J2) €2,

g4(:c1,a:2,y1,y2) = - (Oé121‘1 + 0422$2) Y2.

For every r > 0, there exists v, > 0 such that

lg(I < e llzll; Wllz] <.

Proof. Let r > 0 and assume that ||z]| < r. Then

91(2) = (any1 + a12y2)2 z3 < (a1 + a12)2

r? a3,

One can also bound from above in the same manner g2(z), i = 2,4. Define

Y= \/max{(an + CL12)2, (ag1 + a22)27 (o1 + 021)2, (a12 + a22)2}

Then, we see that

(9)

4
lg)I* =D gi (=) <7 1211,
=1

hence [|g(2)I| < [l2l, V=] <7

Now we can state the main result of the section.
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Theorem 3.1. If there exist a positive definite matriz of appropriate dimensions
P > 0 and positive real numbers ¢ > 0, v > 0, all depending on A, such that

T 2
A P+PAP+CP—|—7[ i 0 10)

then the origin is an exponentially stable equilibrium point for the system (7).

Proof. Consider the quadratic Lyapunov function candidate V(z) = 27 Pz. Accord-
ing to a standard Lyapunov stability result (see Chapter 9 in [8]), the exponential
stability of the origin is guaranteed if the derivative of V' (z) along the trajectories
of the system verifies

0> —cV(z)>V(z) =21 (ATP+ PA)z + g% (2)Pz + 21 Pg(2),
or, equivalently,
2T (AP + PA+cP)z+ 2" Pg(2) + g (2)Pz < 0. (11)

Let z € R* and let 7 > 0 such that ||z|| < r; Proposition 3.1 applies and (8) holds.
It follows that whenever the inequality below

2T (ATP + PA+cP)z+ T Pg(2) + g7 (2) Pz + 222 — g7 (2)g9(2) <0 (12)
or, equivalently,

LT ()] AT + PA; cP+~2 f]} [gfz)} “0

is satisfied for a given P = PT > 0 and ¢ > 0, then the origin is exponentially stable.
Hence it is sufficient that the LMI (10) holds.
d

As it was already mentioned, the inequality (10) is an LMI in the unknown
P and parameters ¢ and 7, and can be solved by using existing semidefinite pro-
gramming software packages. If a solution exists, then automatically the equilibrium
point in Theorem 2.1 is an exponentially stable equilibrium for the system (3).

4. Numerical examples. Conclusions.

Consider the following parameters (coefficients): by = 4,be = 8,51 = 1.5, 53 =
1; di = 5,dy = 2.8,61 = 8,02 = 6.7; k] = 8.2,k = 0.5,k5; = 0.3, ks, = 4.8;
kl_l = 0.3, k1_2 = 0.1,]{72_1 = 2,]{72_2 = 1.2; K11 = O.8,I€12 = 1,/€21 = 1.3,/4522 = 0.5 and
011 = 1.5,0’12 == 3.8,0’21 == 7, 0929 — 10.
In this case the feasibility problem (10) has a positive definite solution (A denotes
here the spectrum):

3.8925 —0.1070 —-0.9507 —0.1833
—0.1070 1.2117  0.0251 —0.7505
P= —0.9507 0.0251  3.7720  0.0755 |’ Ap ={0.866,2.841,2.923,4.800} .

—0.1833 —0.7505 0.0755  2.5543
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Furthermore, the LMI is fulfilled since the spectrum of the left-hand side in (10) is
A = {—68.4193, —64.2490, —31.6846, —3.3227, —0.0544, —0.3398, —0.8601, —0.9551}.
As expected, A is stable with A4 = {—17.8122, —12.1811, —5.4813, —2.8975}.

We have also noticed that if the values of d; or d;, 4,7 = 1,2 are small
enough, the LMI (10) is not feasible anymore, but A remains stable. For in-
stance, by taking di = 2 we do not get a solution for P anymore, but Ay =
{—13.8627, —17.9746, —3.4381, —2.8929} still belongs to the left complex half-plane.
This only shows that this type of sufficient LMI conditions always contain a certain
degree of conservatism, implicitly present in the numerical procedure: if (10) is not
feasible, this does not imply that the matrix A or the origin are not (exponentially)
stable.

A sufficient condition for exponential stability of the single positive equilibrium
point of an ODE system modeling messengerRNA - microRNA interaction has been
derived. This condition can be verified numerically in a sound manner.
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