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CONSEQUENCES OF APPLYING KLEIN-GORDON
EQUATION ON AN ASSOCIATED WAVE-TRAIN

Ezzat BAKHOUM!, Alexandru TOMA?

By applying Klein-Gordon equation upon a wave-function described by a
product of an envelope function R and a phase factor (a complex number)
corresponding to an alternating function with almost constant frequency and
wavelength and using formula connecting energy, linear momentum p and rest mass
from special relativity, it results for the envelope function the three dimensional wave
equation for a wave with light speed c. This aspect is similar to the result obtained
using the Hamiltonian formalism for electron speed. For didactical purposes, this
implies the necessity of adding an internal dynamics to the particle/wave-function..
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1. Introduction

The Klein—Gordon equation is second-order differential equation in space-
time. It is a differential equation version of the relativistic energy—momentum
relation, obtained through substitution of energy and momentum with
corresponding energy and momentum operators within relativistic formula
connecting rest mass connecting rest mass my, energy E and linear momentum p.

However, certain problems regarding its interpretation have been
encountered very soon. Using the Hamiltonian formalism

ihS” = A (1)
and the Ehrenfest theorem

da) _irg 2

o =34l @

for the expectation {A) value of an operator A not depending explicitly of time, for

the case when 4 is substituted with £ (the position operator) and H with

H = cY¥a;p, + fmyc? 3)
(the relativistic Hamiltonian written in the cuadridimensional form, p, being the
momentum operator c light speed, m,, - rest mass and

a; = ] B = [ ] o; the Pauli matrixes, I the 2x2unit matrix), it results
O 0; 0 -

that
x = %[x, H] = ca, 4)

! Prof., Dept.of Electrical Engineering, University of West Florida, USA,, e-mail:ebakhoum@uwf.edu
2 Alexandru Toma, Honeywell Inc, e-mail: vimarelectro@yahoo.com



184 Ezzat Bakhoum, Alexandru Toma

This could suggest that the speed of an electron along Ox axis equals the speed of
light c. Similar results can be obtained for y,Z. There are numerous and recent
attempts in trying to improve the understanding of Klein-Gordon equation, see [1].
Internal dynamics (Zitterbewegung) and time derivatives of a matrixes were also
taking into consideration, being briefly exposed in [2]. The model of an electron as
a massless charge spinning at light speed has been recently proposed (see [3]). An
oscillatory velocity has been also suggested. Its maximum value could be equal to
the speed of light, yet it does not contribute to the electronic momentum (see [4].

This study will show that a similar result can be obtained by applying Klein-
Gordon equation to an associated wave supposed to have (in a limit case) constant
frequency and wavelength, implying the necessity of an inner dynamics as
alternating coordinate-momentum representation (see [5]).

2. Klein-Gordon equation and the associated wave function for a free-
moving particle

According to special relativity theory, the formula connecting energy E,
linear momentum p and rest mass my is

E? = p%c? + (myc?)? (3)
Substituting energy and momentum with quantum mechanics operators
E=ins, p=—iV (6)
and using V2= A, which means
~D D ~D ~D .2N\2 02 02 92
p* = Px + by + bz = (—ih) (ﬁ-l_a_yz-l_ﬁ) (7
and
02 _ ih 26_2 8
it results
_p2 9 g2 2(ﬁ+"’_2+6_2)+ 2 .4 9
atz € \oxz Toyz T 5z2) T M€ ©)

(the last term corresponding to a multiplication of a certain wave function W written
to the right). By dividing all terms to A%¢? and by moving all terms Right-Hand-
Side it results the Klein-Gordon equation (with partial derivatives)

2 2 2 2 2.2
1 0°¥ (6‘{’ 6‘P+(z_‘;’) mgc W (10)

- | — v

T c2 9t dx2 6_3/2

For a free-moving particle it is admitted that the associated wave ¥ should

be described by an amplitude factor R(x, y, z, t) multiplying a phase factor (written

as a complex number) /", The function S = S(x,y, z,t) is considered as action

within Feynman theory upon path integral. Yet without taking into account

Feynman interpretation, for a free-moving particle along Ox axis with almost
constant energy and linear momentum it is accepted that

S=px—Et (11)
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implying the eigenvalues p,, for p and E for E (the measured values) if function R
is set to a constant quantity (usually determined using the normalization condition).

However, if R is set to a constant value and p, and E are also considered as
constant quantities, ¥ would simply correspond to an infinitely extended (in space
and time) propagating wave with constant frequency and wavelength. Yet this
aspect is in disagreement with the interpretation of particles as wave-packets,
according to wave-particle dualism. For this reason the amplitude of these
oscillations should be significant only on limited space-time intervals. A possible
solution consists in considering ¥ as a sum of oscillations centered around k, (wave
vector projection along propagating direction Ox) and w, with unity amplitude and
with the same differences Ak and Aw when passing from central
frequency/wavelength to higher frequencies/lower wavelengths. In this case
function R is represented by R = sin(Y)/Y, where Y = (Ak,)x — (Aw)t (a direct
wave-packet moving with group velocity v, = Aw/Ak). A major advantage
consists in the fact that R varies from unity to zero when Y varies from 0 to +m.
However, when |Y| exceeds m, function R will increase again (in disagreement with
standard model of a decreasing amplitude when we "move far" from the center of
the wave-train).

3. Applying Klein-Gordon equation upon a wave-train with almost
constant frequency/wavelength

Let us consider the function ¥ as

¥ = R(x,y,zt)eSxyzat/h (12)
It results

¥ _ (9R is/n 10S Lis/n

0x _(6xe )+(Rh6xe ) (13)

ox? 0x? %2 ° h dx 0x

2 2
) LP: d0°R is/h 4 laRaSeiS/h
d0x?
. 2 .
(ia_Ra_S iS/h +L<§> Re lS/fL_I_ia_zs‘Rels/h)

h 0x 0x h\ox h 0x?
9°R is/n _ R piS/h 2 OROS ,is/h 4 R a%s piS/h
o {axz € } hoxox® t oz } (14)

and (in a 51m11ar manner)

0% _ [0%R is/h _ 5(55) piS/h l{za_RﬁeiS/h 4 RO%S elS/h}

dy? 6y h2 \9y hoydy h oy?

52y 0°R iS/h R (a ) lS/fL {2 dR 0S iS/h R 0%S iS/fL}

222 _{622 n2 \oz +1 haz02° ta2® (15)
1 62‘{-’ 02R iS/h _ ( )2 iS/h . {2 OR 0S iS/h R 028 lS/fL}
29tz {atz € n2 \at Tz o ac® t o’ (16)

Substltutlng in Klein-Gordon equation
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1 9%y R SRR O R méc?
T ez otz (6x2 + dy? + 622) + h2 ¥ (17)
and grouping terms situated in the same position in the above brackets, it results
0=(TA+TB+TC+TD)+TE (18)
where
2 , 2 iS 2 iS 2 iS
c? ot2 dx2 dy? dx2
R (8s\?> 5 R as\? 5 R fas\? B R as\? B
— = n 4 —— n 4 — = n 4 == o=
c2h2 (6t) er + 5 (ax) er + 5 (ay) er + iz (az) € Ty
. i ; is ; is ; is
2LOROS isyn 210808 B 210R0s B ziomes B
hc? Ot ot h 9x dx h 0y dy h 0z 0z
i 9%s iS/h i 9%s iS/h i 9%s is i 9%s is
—_ —_——— —_——_-— A — —— h =
hc? atzRe hasze hayzRe hazzRe Tp (19)
and
2.2 2.2 iS
mgc __mgc =
Y Y= Y Rer =Tg (20)
In a more compact manner, it can be written
192R 92R 9%R %R\ B
- P
c2 0t? 0x2  dy2  0x2
1( R (65)2 +R (65)2 +R (65)2 +R (as)2 oiS/h = T
nz\ c2\at ax ay 9z I
- iS iS
20(10RDS isn _ORDS 7 OROS b OROS) isjh _
h \c? at ot dx 0x dy dy 0z 0z
i(10%S 0%S 0%S 0°%S R % T
— — — — — eh =
h\c?0t? 0x? dy? 0z? b
2.2 iS
mqgcC -
2 Renr =Tg 21)
In the limit case when p, = const, p, =p, =0, E = const and § =
DX — Et
as a?%s as as _ 8s a?%s a%?s _ 9%s
w- BET05 e 57570 527 20 (2
Thus

1 0°R 09%R 0%R 0°R
Ta= (558~ 5 5y ) (23)

(the same form)
. 2 X
Ty = {— 5 (—E)? + p} + 0+ 0} Re™/" = = (p2 = Z) Re/" (24)
Yet (according to special relativity theory)

E? = p?c? + mic* (25)
implying
m2ct = E? — p2c?
m2c? = E2_ 2
¢ = p
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m3c? 1 (E?
- =n(e-r)
2 ,
mh Rezs/h — lez (E_ pz) Rels/h (26)

The Left-Hand-Side corresponds to Tg, the Right-Hand-Side corresponds to (—Tp),
according to previous formulae. It results

TB = - TE (27)
For T and T}, it results by substituting with previously written partial derivatives
in this limit case

1 4R
TC_h(cZat(_ )——px—O 0) S

_ 2 OR E OR is/h
Te = (6tcz+px6)
TD=E(C—2.0—O—O—0)Re"5/h=O (28)

Inserting the above expressions (for the limit case when p, = const, p, =p, =
0, E = const) into
OZ(TA+TB+TC+TD)+TE (29)

(the Klein-Gordon equation applied upon W = Re'S/" with partial derivatives
iS
grouped into T,.Tg, T¢ , Tp , the term T corresponding to (mgc?/h*) Re™ ), and

taking into account that Ty = —Tg, Tp = 0 it results
TA + TC =0
192R 9%R 092R 092R\ B dR E orR\ 5
(_2_2__2__2__2) " ——( =t D« )eh =0
c? ot 0x ady 0x h \0t c ox
1 8%R 09%?R 09%R 97%R 2i (AR E dR iS/h _
{( 29t2  9x2  9y? 6x2) (at 2 TPxgy )} =0 (30)
Since /" is not a null function, the previous equation implies that

1 0%R 09?R 9%R 0?%R OR E AR
(G52~ 5~ 5~ ) ~ 3 Gres Pea) =0 3
This equality holds if both real and imaginary parts Left-Hand-Side are null. This
implies
10%R 09?R 9%R 0?%R

oz o oy w0 (32)
OR E R
Gt peg) =0 63)
Briefly analyzing the first equation
2 2 2 2
L10R_OR_OR_IR_ (34)

it can be noticed that it corresponds to the three dimensional wave equation for a
wave with light speed c. Yet this result is in contradiction with the assumption that
the amplitude of the propagating wave-train (corresponding to a free-moving
particle) should be centered in a point (where the amplitude presents a maximum)
which moves with speed v (the speed of the particle) along a certain direction (let
us suppose Ox axis).
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4. Conclusions

This study has shown that by applying Klein-Gordon equation upon a wave-
function described by a product of an envelope function R and a phase factor (a
complex number) corresponding to an alternating function with almost constant
frequency and wavelength and using formula connecting energy, linear momentum
p and rest mass from special relativity, it results for the envelope function the three
dimensional wave equation for a wave with light speed c. This aspect is similar to
the result obtained using the Hamiltonian formalism for electron speed. There are
two main possibilities to solve this contradiction:

a) the function R(x, y, z, t) is propagating in zig-zag trajectories, with speed
¢ along each linear segment (similar to light within optical fibers with a very narrow
section), BUT the main speed (the average speed) of this function R(x,y, z,t) is
represented by v (the velocity of the particle along the propagating direction,
supposed to be represented by Ox axis), similar to fractional vibrations connected
to beams presented in [6] or to response at sinusoidal forces [7], [8]

b) there is ALWAYS a certain inner dynamics of the associated wave-train,
implying that the space-time positions and moments when the wave is passing
through zero are not equally spaced (otherway ANY function with equally spaced
zeros can be written as an envelope function multiplying a space-time sinusoidal
function).
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