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PARTICLE SWARM OPTIMIZATION BASED ON WEIGHTED 
AGGREGATION DEGREE AND ADAPTIVE DECISION 

Renxia WAN1, Lijun ZHU2, Kai LIU3, Ruidian CHEN4 

In response to the problem that particle swarm optimization algorithm (PSO) is prone to falling 
into local optimum and premature convergence in later operations, this paper reconstructs the concept of 
weighted aggregation based on a redefined similarity to describe the degree of diversity of the 
population, and adjusts the particle searching space with an adaptive decision to improve the global 
searching ability of PSO. Optimization ability, convergence speed and stability of the particle swarm 
algorithm are finally effectively improved. The experimental analysis further shows the effectiveness of 
the algorithm. 
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1. Introduction 

Particle Swarm Optimization (PSO) was first proposed by Kennedy and Elberhart in 
1995[1,2], and began as a simulation of a simplified social system. It is a population-based method 
inspired from the social behavior of bird flocking or fish schooling, and it has been widely used to 
solve different kind of optimization tasks. Up to now, many improved PSO algorithms[3,4] have 
been proposed, and widely used to solve problems in neural networks[5], pattern recognition[6], 
decision support[7], intrusion detection[8], multi-objective optimization[9].and other academic 
and applied fields[10-13]. However, PSO may result in premature convergence, local optimum 
and loss of population diversity[14], in order to overcome these drawbacks, some strategies of 
increasing the population diversity have been proposed by many scholars, such as solving conflicts 
between particles[15], introducing speed variation and position variation[16,17], mutation 
strategy[4], the small probability reinitialization[18], and so on.  

Riget and Vesterstorm[19]presented a method for the inverse process of interparticle 
attraction, they added a mutual exclusion process to the interparticle attraction to enlarge the 
search space of particles for increasing the diversity of population. Liu and Fan[20] reassigned the 
moving value of each particle based on similarity and aggregation to improve the global search 
ability of PSO. This paper describes the diversity of PSO population with the weighted 
aggregation degree which was produced by a redefined similarity, and adjusts the particle 
searching space with adaptive decision to improve the global searching ability of PSO. 

2. Standard particle swarm optimization 
In 1998, Shi and Eberhart [21] introduced the inertia weight ω into the original PSO, and 

thus produced the standard particle swarm optimization algorithm which was widely accepted by 
later researchers. 

The standard particle swarm optimization algorithm can be described as follows:  
Suppose there is a particle swarm of m individuals in a D -dimensional space, the i-th 

particle is described as 1 2( , , , )g g g gDP p p p= L  where 1,2, ,i m= L . Each position of the particle 
represents a possible solution, and a fitness value can be calculated by substituting such position 
into the objective function of the problem. According to the fitness value, PSO determines how 
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"good" or "bad" the particle's current position is. Here, we denote the optimal position that has 
been experienced by iX as 1 2( , , , )i i i iDP p p p= L , and 1 2( , , , )g g g gDP p p p= L  represents the 
optimal position of the entire population. The positions and velocities of particles then can be 
determined as follows: 

1
1 1 2 2( ) ( )k k k k k k

id id id id gd idv v c r p x c r p xω+ = + − + −
                          (1) 

1 1k k k
id id idx x v+ += +                                                                 (2) 

where 1,2, ,i m= L , 1,2, ,d D= L . k  is the number of current iteration, 1 2,r r  are the random 
numbers in the interval[0,1] , ω is the inertia weight, 1c and 2c are the acceleration factors. 1k

idv + is 
the velocity vector. 

3. Improved particle swarm algorithm with aggregation 
Generally, with the increasing of the number of iterations, all particles will gather to the 

current optimal position gP , and individuals’ positions are more similar to each other, the PSO 
algorithm will then converge to the gP , consequently, such convergence cannot guarantee that 
PSO finds the real global optimum. In order to overcome the problem that PSO algorithm is prone 
to lose the population diversity in the later period of operation and falls into the deficiency of local 
optimization, in this paper, the concept of similarity degree is introduced to measure the 
relationship between every particle and the current optimal position and the aggregation degree is 
used to judge particle’s density. An adaptive threshold decision is employed to determine the 
searching space of particle and random variation based on the weighted aggregation is performed 
to redistribute adaptive value. Thus, the purpose of increasing the diversity of particles is then 
achieved. 

3.1. The concept of aggregation and similarity 
Since particle position and velocity in PSO are all described by vectors, we introduce 

Pearson's correlation coefficient[22] to define the similarity in order to describe the relationship 
between iX and gP . 

cov( , )
( ) ( )

i g

i g

X P
sim

Var X Var P
=                                           (3) 

Since particles are all the more sim is close to 1, the smaller the vector angle of two 
concerned particles becomes and the more similar these two particles are in a D -dimensional 
space, then, ; otherwise, the more sim is close to 0, the lager the vector angle of two concerned 
particles becomes and the more dissimilar these two particles are. 

In order to reflect the different influences of particles in the swarm, the aggregation 
degree is used to describe the concentration of the population as the following formula  

1

1

( )
n
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jn

j
i

i

sim
C k sim

sim=

=

= ∑
∑                                            (4) 

where )(kC  is the aggregation degree of the k-th generation of particle swarm, n  is the 
population size.  

The aggregation degree can measure the population concentration base on the similarity 
between every particle in the swarm and the current optimal position gP , it adopts a weighting 
approach, and the more the particle is more similar to gP , the bigger weightings it may get, then, it 
accounts for a larger proportion in the calculation of the aggregation degree. 
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3.2. Adaptive threshold decision   
In the standard particle swarm optimization algorithm, Under the guidance of individual 

optimum and global optimum, the particles are always in the state of contraction, and when an 
optimal solution (relative to the previous iterations) is found, the searching behaviors of the 
particles are essentially in stagnation, but this solution may be locally optimal. Riget and 
Vesterstorm introduced an inverse process of contraction to avoid such situation[19], they changed 
the coefficient of the two learning factors to a negative form, and got the following formula: 

1
1 1 2 2( ) ( )k k k k k k

id id id id gd idv v c r p x c r p xω+ = − − − −                                  (5) 
When the population shrinks to a certain state, the diversity falls to a predetermined 

threshold (Th), the algorithm then invokes the formula(5) instead of formula(1) to calculate 
velocity. And when the diversity of particles returns to be above the predetermined level, the 
inverse process is then aborted and replaced by the standard PSO processing. But, since the 
threshold (Th) is a predefined constant, it is relatively single for the all iterations and may lead to 
an excessive searching oscillation in the late iterations.   

Referring to the method of controlling inertia weight w with nonlinear function[24], we 
introduced an adaptive function ( )kθ  instead of a constant threshold to control velocity calculation 
to control the decision of particles’ diversities 

( )max
max min min

max

( )
s

k kk
k

θ λ λ λ
 −

= ⋅ − + 
 

                                    (6)  

where minλ , maxλ are constants and take values in(0,1), min maxλ λ≤ . maxk is the maximum number 
of iterations, k is the number of current iteration. s is an exponential coefficient. We set s=1 in our 
experiments, and our experimental results also show that maxλ =0.9, minλ =0.4 is the best choice in 
our most instances. 

The individual's velocity is then decided by the strategy as 
( ) ( ) , update with the formula (1)
( ) ( ) , update with the formula (5)

k
id
k
id

If C k k Th v
If C k k Th v

θ
θ

 < ⋅


> ⋅  
3.3 Updating particles’ positions with aggregation 
 A particle swarm optimization algorithm with similarity was proposed by Liu and Fan in 

2007[20], it embodies the idea that when the population concentration reaches a certain degree, the 
particles’ positions turn to update, and the diversity of individual then increases. Here, we make 
use of this idea with some improvements 

If ( )rand h C k sim< ⋅ ⋅  

0

2
max min 0

0

( ) ( , ),       [1, ]

,            [1, ] 
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id gd

x x x p rand Gausssian d U D

x p d U D and d d

µ σ = − ⋅ ⋅ ⋅ =


= ∈ ≠
                             （7） 

where rand is the random number in the range [0,1] , maxidx and minidx are the upper and lower 

limits of the search space, 2( , )Gaussian µ σ is the Gaussian function, max min( ) t
T

σ σ σ= − ⋅ , and in 

this paper, we set maxσ =1.0, minσ =0.1. h is a constant parameter, the bigger h  is , the more 
probabilistic  mutation operation is, PSO is then apt to jump out of local optimum, in this paper, 
we refer to literature[14] and set h=3 

3.4 The CSPSO algorithm 
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According to the solutions described above, an adaptive PSO based on weighted 
aggregation degree and adaptive decision is then proposed in this paper. The logical flow of the 
new PSO algorithm called as CSPSO is presented as follows: 

Step 1  Create and initialize with a group of random particles and set parameters. 
Step 2  Evaluate each individual's fitness.  
Step 3  Determine the global best position gP and the current individual best position iP . 

Step 4  Calculate the sim from the formula (3) and the ( )C k from the formula (4). 
Step 5  Update the individual's velocity. 

 

( ) ( ) , then update the velocity by the formula (1)
( ) ( ) , then update the velocityby the formula (5)

If C k k Th
If C k k Th

θ
θ

< ⋅
 > ⋅  

Step 6  Update the individual's position. 
If ( )rand h C k sim< ⋅ ⋅  
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Step 7  If requirements are met, then stop. Otherwise, go back to step 2 

4. Experimental results and performance comparison 
Some typical test functions were chosen to evaluate the performance of the algorithm. 

4.1 Test functions  

The typical test functions listed in Table1 are used are widely used in performance 
comparison of global optimization algorithms. All the test functions are divided into two groups 
based on their significant physical properties and shapes. The first group consists of five unimodal 
functions (f1-f4) where there is only one mode (global optimum) in its geometric distribution of 
each function. The second group includes four multimodal functions (f5-f9) where every function 
has multiple local minima, and finding the global optimum is the typically challenging work. 

Table 1 
Test functions used in experiments  

f Name Function Optimum 
(x) 
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f(x) 
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4.2 Parameter settings  
In order to measure the optimization ability, convergence speed and stability of 

algorithm, CSPSO and other three available ECTs were evaluate by the nine unimodal and 
multimodal functions given in Table 1. Population size in these algorithms is set at 40, dimension 
is set at 30 (Kowalik function is set at 4, Hartman function is set at 6), the acceleration factors 1c  
and 2c  are all set at 1.49445, the number of iterations Kmax is set at 500, the initial threshold Th=5. 

We adopted a nonlinear function as the inertia weight: 2
max0.9 0.5 ( / )k kω = − × [24], All 

experiments were repeated 30 times independently, namely, Nrun=30. 
In order to evaluate performance of CSPSO and its matching algorithms in terms of 

accuracy, and reliability, BFV (Best Fitness Value: defined as the minimum optimized f(x) value 
obtained from Nrun independent runs), WFV (Worst Fitness Value: defined as the maximum 
optimized f(x) value obtained from Nrun independent runs), MFV (Mean Fitness Value: defined as 
the average of the Nrun BFVs) and 2

0σ  (Variance of the Nrun BFVs) are defined as the 
performance measures.  

Experimental results are shown in Table 2 and Fig. 1. 
Table 2 

Performance comparison between CSPSO and its competitors on test functions 

Function Algorithm Fitness Value（FV） 2
0σ  WFV BFV  MFV 

1f  

PSO 13.0606 2.2331 7.3282 10.4400 
ARPSO 22.2565 5.1831 10.8257 30.7887 
SPSO 18.7574 3.0807 7.8425 17.4451 

CSPSO 6.6628 1.6580 3.1689 2.4152 

2f  

PSO 14.0942 4.9555 9.3483 10.7214 
ARPSO 24.2667 11.0227 16.8064 20.3572 
SPSO 33.2447 8.8509 21.6020 52.1040 

CSPSO 4.5907 0 1.9486 3.0339 

3f  

PSO 2.0952 1.1746 1.8002 0.1184 
ARPSO 2.4113 1.5132 1.8339 0.0823 
SPSO 2.3620 1.7274 2.0780 0.0642 
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CSPSO 1.1768 0.5869 0.9466 0.0311 

4f  

PSO 1992 706 1219.4545 155555.272 
ARPSO 2313 742 1483.4545 264085.672 
SPSO 2264 519 1306.0909 312116.090 

CSPSO 23 1 9.8182 68.1636 

5f  

PSO 226.1740 92.1761 126.9195 1670.5657 
ARPSO 276.3192 130.6707 168.7579 1748.4357 
SPSO 171.5772 112.3695 144.2489 366.6862 

CSPSO 94.3342 33.2073 57.5121 347.1176 

6f  

PSO 0.6430 0.1596 0.3464 0.0154 
ARPSO 0.6081 0.2716 0.4915 0.0147 
SPSO 0.4381 0.1752 0.2605 0.0066 

CSPSO 0.1622 0 0.0791 0.0028 

7f  

PSO 1.3299 0.2595 0.5490 0.0850 
ARPSO 1.8966 0.3185 0.8555 0.2175 
SPSO 1.2106 0.1303 0.8044 0.1798 

CSPSO 0.1673 0.0260 0.0828 0.0024 

8f  

PSO 0.001 0.0004 0.0009 3.0667e-08 
ARPSO 0.0018 0.0007 0.0012 1.1156e-07 
SPSO 0.0011 0.0003 0.0007 1.0267e-07 

CSPSO 0.0009 0.0003 0.0004 2.0351e-09 

9f  

PSO -3.2031 -3.3220 -3.2923 0.0029 
ARPSO -1.5781 -3.3154 -2.9187 0.3818 
SPSO -3.2031 -3.3220 -3.2626 0.0039 

CSPSO -3.2031 -3.3220 -3.3022 0.0021 

 

Fig. 1. Comparison of FV between CSOPS and three ECTs 



Particle swarm optimization based on weighted aggregation degree and adaptive decision    241 

4.3 Observation and analysis  
Table 2 shows that CSPSO has the best MFVs in all competitive algorithms over the 

given test functions, it indicates that the proposed CSPSO performs better than other three ECTs in 
the term of global optimizing accuracy and effectiveness. Table2 also shows that the 
variance 2

0σ of CSPSO is always smallest in all competitive algorithms, meaning that the proposed 
CSPSO outperforms other three ECTs in the term of global optimizing reliability and stability. 

When the number of iterations is large enough, some PSO algorithms can achieve a 
certainly satisfactory optimal position. In our experiment, we limited the number of iterations to 
500 to examine the convergence and time efficiency of the algorithm in a relatively short time. 
Figure 1 is the effect curves of one experiment randomly selected from our 30 experiments. From 
Figure 1, we can see that CSPSO can achieve much better convergence accuracy than other three 
ECTs in limited iterations, and CSPSO is faster in finding out the approximate optimal solution 
than other three ECTs. It means that the proposed CSPSO outperforms other three ECTs in the 
term of success rate and execution time of global optimizing. 

5. Conclusions  
A novel PSO algorithm (CSPSO) was proposed whose performance is found to be 

superior to its ECTs. CSPSO controls the diversity of the population with the weighted 
aggregation and adopts the adaptive threshold decision to improve the global searching ability of 
individual. From the experimental analysis, we have shown that CSPSO outperforms its ECTs in 
terms of convergence, accuracy, reliability and executing time. 
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