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PARTICLE SWARM OPTIMIZATION BASED ON WEIGHTED
AGGREGATION DEGREE AND ADAPTIVE DECISION

Renxia WAN?, Lijun ZHU?, Kai LIU3, Ruidian CHEN*

In response to the problem that particle swarm optimization algorithm (PSO) is prone to falling
into local optimum and premature convergence in later operations, this paper reconstructs the concept of
weighted aggregation based on a redefined similarity to describe the degree of diversity of the
population, and adjusts the particle searching space with an adaptive decision to improve the global
searching ability of PSO. Optimization ability, convergence speed and stability of the particle swarm
algorithm are finally effectively improved. The experimental analysis further shows the effectiveness of
the algorithm.
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1. Introduction

Particle Swarm Optimization (PSO) was first proposed by Kennedy and Elberhart in
1995[1,2], and began as a simulation of a simplified social system. It is a population-based method
inspired from the social behavior of bird flocking or fish schooling, and it has been widely used to
solve different kind of optimization tasks. Up to now, many improved PSO algorithms[3,4] have
been proposed, and widely used to solve problems in neural networks[5], pattern recognition[6],
decision support[7], intrusion detection[8], multi-objective optimization[9].and other academic
and applied fields[10-13]. However, PSO may result in premature convergence, local optimum
and loss of population diversity[14], in order to overcome these drawbacks, some strategies of
increasing the population diversity have been proposed by many scholars, such as solving conflicts
between particles[15], introducing speed variation and position variation[16,17], mutation
strategy[4], the small probability reinitialization[18], and so on.

Riget and Vesterstorm[19]presented a method for the inverse process of interparticle
attraction, they added a mutual exclusion process to the interparticle attraction to enlarge the
search space of particles for increasing the diversity of population. Liu and Fan[20] reassigned the
moving value of each particle based on similarity and aggregation to improve the global search
ability of PSO. This paper describes the diversity of PSO population with the weighted
aggregation degree which was produced by a redefined similarity, and adjusts the particle
searching space with adaptive decision to improve the global searching ability of PSO.

2. Standard particle swarm optimization

In 1998, Shi and Eberhart [21] introduced the inertia weight « into the original PSO, and
thus produced the standard particle swarm optimization algorithm which was widely accepted by
later researchers.

The standard particle swarm optimization algorithm can be described as follows:

Suppose there is a particle swarm of m individuals in a D -dimensional space, the i-th

particle is described as P, = (Pgy, PyorL » Pyo) where i=1,2,L ,m. Each position of the particle

represents a possible solution, and a fitness value can be calculated by substituting such position
into the objective function of the problem. According to the fitness value, PSO determines how
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"good" or "bad" the particle's current position is. Here, we denote the optimal position that has
been experienced by X; as P =(p,, Pi,,.L ,Pp) ., and B, =(Pg, Pyail  Pyo) represents the

optimal position of the entire population. The positions and velocities of particles then can be

determined as follows:

K+l k k K K k
Vig - = Vi + L (P — Xig) + G ( Py — Xig) (1)
k+1 k+1

Xg = Xiz +Vig ()
wherei=21,2,L ,m, d=12L ,D. k is the number of current iteration, r,r, are the random

numbers in the interval[0,1], @ is the inertia weight, c,and c,are the acceleration factors. v¥™is
the velocity vector.

3. Improved particle swarm algorithm with aggregation

Generally, with the increasing of the number of iterations, all particles will gather to the
current optimal position P, and individuals’ positions are more similar to each other, the PSO
algorithm will then converge to the F,, consequently, such convergence cannot guarantee that
PSO finds the real global optimum. In order to overcome the problem that PSO algorithm is prone
to lose the population diversity in the later period of operation and falls into the deficiency of local
optimization, in this paper, the concept of similarity degree is introduced to measure the
relationship between every particle and the current optimal position and the aggregation degree is
used to judge particle’s density. An adaptive threshold decision is employed to determine the
searching space of particle and random variation based on the weighted aggregation is performed
to redistribute adaptive value. Thus, the purpose of increasing the diversity of particles is then
achieved.

3.1. The concept of aggregation and similarity

Since particle position and velocity in PSO are all described by vectors, we introduce
Pearson's correlation coefficient[22] to define the similarity in order to describe the relationship
between X,and P, .
cov(X;,Ry,)

\/\/ar(xi)\/Var(Pg) ®)

Since particles are all the more sim is close to 1, the smaller the vector angle of two
concerned particles becomes and the more similar these two particles are in a D -dimensional
space, then, ; otherwise, the more sim is close to 0, the lager the vector angle of two concerned
particles becomes and the more dissimilar these two particles are.

In order to reflect the different influences of particles in the swarm, the aggregation
degree is used to describe the concentration of the population as the following formula

noosim.
C(k):z ——sim; @)
j=1 i
;SImi
where C'(k) is the aggregation degree of the k-th generation of particle swarm, 2 is the
population size.

The aggregation degree can measure the population concentration base on the similarity
between every particle in the swarm and the current optimal positionF,, it adopts a weighting
approach, and the more the particle is more similar to Py, the bigger weightings it may get, then, it
accounts for a larger proportion in the calculation of the aggregation degree.

sim =
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3.2. Adaptive threshold decision

In the standard particle swarm optimization algorithm, Under the guidance of individual
optimum and global optimum, the particles are always in the state of contraction, and when an
optimal solution (relative to the previous iterations) is found, the searching behaviors of the
particles are essentially in stagnation, but this solution may be locally optimal. Riget and
Vesterstorm introduced an inverse process of contraction to avoid such situation[19], they changed

the coefficient of the two learning factors to a negative form, and got the following formula:
k+1

Vi = wviﬁ - Clrl(piz - Xil; )— Czrz(p;d - XiZ) 5)
When the population shrinks to a certain state, the diversity falls to a predetermined
threshold (Th), the algorithm then invokes the formula(5) instead of formula(1l) to calculate
velocity. And when the diversity of particles returns to be above the predetermined level, the
inverse process is then aborted and replaced by the standard PSO processing. But, since the
threshold (Th) is a predefined constant, it is relatively single for the all iterations and may lead to
an excessive searching oscillation in the late iterations.
Referring to the method of controlling inertia weight w with nonlinear function[24], we
introduced an adaptive function (k) instead of a constant threshold to control velocity calculation

to control the decision of particles’ diversities

0(k) = [kmlzx—_kJ : (ﬂ'max - ﬂ’min ) + ﬂ’min (6)

max

where A, A are constants and take values in(0,1), A, < A - Kiax 1S the maximum number
of iterations, k is the number of current iteration. s is an exponential coefficient. We set s=1 in our
experiments, and our experimental results also show that 4., =0.9, 4., =0.4 is the best choice in

our most instances.
The individual's velocity is then decided by the strategy as

If C(k) < @(k)-Th, update v, with the formula (1)
If C(k) > @(k)-Th, update v, with the formula (5)

3.3 Updating particles’ positions with aggregation

A particle swarm optimization algorithm with similarity was proposed by Liu and Fan in
2007[20], it embodies the idea that when the population concentration reaches a certain degree, the
particles’ positions turn to update, and the diversity of individual then increases. Here, we make
use of this idea with some improvements

If rand <h-C(k)-sim

{xido = (Xigmax = Xigmin) * Pgg - rand -Gausssian(g, %), d, =U[L D]

X = Pyg » deU[L,D]and d =d, 7

and X;

id min

where rand is the random number in the range[0,1], x are the upper and lower

id max

limits of the search space, Gaussian(u, o) is the Gaussian function, o = (o,

t
—o..)-—,andin
max mln) T

this paper, we set o, =1.0, o, =0.1. his a constant parameter, the bigger h is , the more

probabilistic mutation operation is, PSO is then apt to jump out of local optimum, in this paper,
we refer to literature[14] and set h=3

3.4 The CSPSO algorithm
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According to the solutions described above, an adaptive PSO based on weighted
aggregation degree and adaptive decision is then proposed in this paper. The logical flow of the
new PSO algorithm called as CSPSO is presented as follows:

Step 1 Create and initialize with a group of random particles and set parameters.

Step 2 Evaluate each individual's fitness.

Step 3 Determine the global best position P, and the current individual best position P, .
Step 4 Calculate the sim from the formula (3) and the C(k) from the formula (4).
Step 5 Update the individual's velocity.
If C(k) < @(k)-Th, then update the velocity by the formula (1)
{ If C(k) > @(k)-Th, then update the velocity by the formula (5)
Step 6 Update the individual's position.
If rand <h-C(k)-sim
X = (Xigmax — Xigmin) - Pgq - 7N - Gaussian(u,o*), d =U[L D]
{xid = Py else
Step 7 If requirements are met, then stop. Otherwise, go back to step 2

4. Experimental results and performance comparison
Some typical test functions were chosen to evaluate the performance of the algorithm.

4.1 Test functions

The typical test functions listed in Tablel are used are widely used in performance
comparison of global optimization algorithms. All the test functions are divided into two groups
based on their significant physical properties and shapes. The first group consists of five unimodal
functions (fi-fs) where there is only one mode (global optimum) in its geometric distribution of
each function. The second group includes four multimodal functions (fs-fs) where every function
has multiple local minima, and finding the global optimum is the typically challenging work.

Table 1
Test functions used in experiments
f Name Function Opt(i;)wum Mir;z)rgum
fi Sphere f,()=> x> |x|<100 (oL ,0) 0
i=1
£ | Schwefel 1.2 ) =Y. O0x) 1% <100 (oL ,0) 0
=l
£ | Schwefel221 f3(x)=méx{| X[} |x |<100 (oL ,0) 0
n
fi Step f,()=>.(%+05))° |x|<100 (oL ,0) 0
i=1
I3 Rastrigin fy(x) =) (x ~10cos(27x) +10) | |<5.12 (oL ,0) 0
i=1




Particle swarm optimization based on weighted aggregation degree and adaptive decision 239

fo | Girewank fo(X)=> s~ [cos(Z)+1 | |<600 (oL ,0) 0
i=1 i=1
n-1
f, (%) =%Z(yi ~1)°[L+10sin* (7Y, )]+ % (y,-D)
2 Generilizzd = N (1’|_ ,1) 0
Penalize +Z[10sin?(zy,)]+> u(x,10,100,4) |x <50
i=1
(0.1928,0.1928,
. 11 2 -4
fi Kowalik 00 =38, - Xiz(bi +bix2)]2 x| <5 0.1231,0.1358) |  3.075x10
oy b +bx;, +X,
a 6 (0.201,0.15,0.477
f,(0=—> ¢ > a;(x; —p;)?] 0<x;< P
5 | Hartman 00 =2, el 8,0 = P)T 0=x =t o oen | 332

4.2 Parameter settings

In order to measure the optimization ability, convergence speed and stability of
algorithm, CSPSO and other three available ECTs were evaluate by the nine unimodal and
multimodal functions given in Table 1. Population size in these algorithms is set at 40, dimension

is set at 30 (Kowalik function is set at 4, Hartman function is set at 6), the acceleration factorsc,
and c, are all set at 1.49445, the number of iterations Kmax is set at 500, the initial threshold Th=5.

We adopted a nonlinear function as the inertia weight: @=0.9-05x(k/k_)° [24], All

experiments were repeated 30 times independently, namely, Nr,,=30.

In order to evaluate performance of CSPSO and its matching algorithms in terms of
accuracy, and reliability, BFV (Best Fitness Value: defined as the minimum optimized f(x) value
obtained from Ny, independent runs), WFV (Worst Fitness Value: defined as the maximum
optimized f(x) value obtained from Nrun independent runs), MFV (Mean Fitness Value: defined as

the average of the Nrun BFVs) and a(f (Variance of the Nrun BFVs) are defined as the

performance measures.
Experimental results are shown in Table 2 and Fig. 1.

Table 2
Performance comparison between CSPSO and its competitors on test functions
Function Algorithm Fitness Value (FV) Gg
WFV BFV MFV

PSO 13.0606 2.2331 7.3282 10.4400

£ ARPSO 22.2565 5.1831 10.8257 30.7887
! SPSO 18.7574 3.0807 7.8425 17.4451
CSPSO 6.6628 1.6580 3.1689 2.4152

PSO 14.0942 4.9555 9.3483 10.7214

f ARPSO 24.2667 11.0227 16.8064 20.3572
2 SPSO 33.2447 8.8509 21.6020 52.1040
CSPSO 4.5907 0 1.9486 3.0339

PSO 2.0952 1.1746 1.8002 0.1184

fy ARPSO 24113 1.5132 1.8339 0.0823

SPSO 2.3620 1.7274 2.0780 0.0642
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CSPSO 1.1768 0.5869 0.9466 0.0311
PSO 1992 706 1219.4545 155555.272
f ARPSO 2313 742 1483.4545 264085.672
4 SPSO 2264 519 1306.0909 312116.090
CSPSO 23 1 9.8182 68.1636
PSO 226.1740 92.1761 126.9195 1670.5657
f ARPSO 276.3192 130.6707 168.7579 1748.4357
5 SPSO 171.5772 112.3695 144.2489 366.6862
CSPSO 94.3342 33.2073 57.5121 347.1176
PSO 0.6430 0.1596 0.3464 0.0154
fs ARPSO 0.6081 0.2716 0.4915 0.0147
SPSO 0.4381 0.1752 0.2605 0.0066
CSPSO 0.1622 0 0.0791 0.0028
PSO 1.3299 0.2595 0.5490 0.0850
f ARPSO 1.8966 0.3185 0.8555 0.2175
7 SPSO 1.2106 0.1303 0.8044 0.1798
CSPSO 0.1673 0.0260 0.0828 0.0024
PSO 0.001 0.0004 0.0009 3.0667e-08
f ARPSO 0.0018 0.0007 0.0012 1.1156e-07
8 SPSO 0.0011 0.0003 0.0007 1.0267e-07
CSPSO 0.0009 0.0003 0.0004 2.0351e-09
PSO -3.2031 -3.3220 -3.2923 0.0029
f ARPSO -1.5781 -3.3154 -2.9187 0.3818
9 SPSO -3.2031 -3.3220 -3.2626 0.0039
CSPSO -3.2031 -3.3220 -3.3022 0.0021
—fusphere fuSchwefel 1.2  fuiSchwefel 2.21
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Fig. 1. Comparison of FV between CSOPS and three ECTs
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4.3 Observation and analysis

Table 2 shows that CSPSO has the best MFVs in all competitive algorithms over the
given test functions, it indicates that the proposed CSPSO performs better than other three ECTSs in
the term of global optimizing accuracy and effectiveness. Table2 also shows that the
variance ag of CSPSO is always smallest in all competitive algorithms, meaning that the proposed
CSPSO outperforms other three ECTSs in the term of global optimizing reliability and stability.

When the number of iterations is large enough, some PSO algorithms can achieve a
certainly satisfactory optimal position. In our experiment, we limited the number of iterations to
500 to examine the convergence and time efficiency of the algorithm in a relatively short time.
Figure 1 is the effect curves of one experiment randomly selected from our 30 experiments. From
Figure 1, we can see that CSPSO can achieve much better convergence accuracy than other three
ECTs in limited iterations, and CSPSO is faster in finding out the approximate optimal solution
than other three ECTs. It means that the proposed CSPSO outperforms other three ECTSs in the
term of success rate and execution time of global optimizing.

5. Conclusions

A novel PSO algorithm (CSPSO) was proposed whose performance is found to be
superior to its ECTs. CSPSO controls the diversity of the population with the weighted
aggregation and adopts the adaptive threshold decision to improve the global searching ability of
individual. From the experimental analysis, we have shown that CSPSO outperforms its ECTs in
terms of convergence, accuracy, reliability and executing time.
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