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A PROXIMAL ALGORITHM FOR SOLVING SPLIT MONOTONE

VARIATIONAL INCLUSIONS
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In this paper, we study the split monotone variational inclusion problem in
Hilbert spaces. We suggest a proximal algorithm for finding a solution of the split

monotone variational inclusion problem. Strong convergence theorem is given under

some mild conditions.
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1. Introduction

Let H1 and H2 be two real Hilbert spaces. Let G : H1 → H2 be a bounded linear
operator. Let A1 : H1 → H1 and A2 : H2 → H2 be two single-valued operators. Let
B1 : H1 → 2H1 and B2 : H2 → 2H2 be two multi-valued maximal monotone operators. Let
C and Q be nonempty closed convex subsets of H1 and H2, respectively.

Recall that the split feasibility problem is formulated as follows:

find a point x† ∈ C such that G(x†) ∈ Q. (1)

The split feasibility problem (1) was originally formulated from medical image reconstruction
by Censor and Elfving [3]. Consequently, some more prototypes were found in applications,
for example, in signal processing, control theory, biomedical engineering and so on. Since
then, the split problems were studied extensively by many scholars, for instance, the reader
can refer to [5, 6, 7, 9, 10, 15, 20, 21, 22, 23, 24, 26, 30, 33, 34, 37] and related literature.

Recently, Moudafi [16] introduced the following split variational inclusion problem of
finding x† ∈ H1 verifying

x† ∈ (A1 +B1)−1(0) and G(x†) ∈ (A2 +B2)−1(0). (2)

Denote the solution set of split variational inclusion problem (2) by Γ.
Special cases:

(i) If A1 ≡ 0 and A2 ≡ 0, then problem (2) reduces to the following split variational inclusion
problem of finding u ∈ H1 verifying

u ∈ B−1
1 (0) and G(u) ∈ B−1

2 (0). (3)

Denote the solution set of split variational inclusion problem (3) by Γ1.
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Many iterative algorithms have been presented for solving problem (3). In [2], Byrne
suggested the following iteration with weak convergence for solving problem (3). Let λ > 0
and select an arbitrary starting point x0 ∈ H1. For given the current iterate xk, compute

xk+1 = JB1

λ (xk − γG∗(I − JB2

λ )G(xk)), k ≥ 0, (4)

where γ ∈ (0, 1/‖G‖2).
(ii) If B1 = NC and B2 = NQ normal cones to closed convex sets C and Q, we have

the following split variational inequality problem of finding u ∈ C such that

〈A1(u), v − u〉 ≥ 0 (∀v ∈ C) and 〈A2(G(u)), z −G(u)〉 ≥ 0 (∀z ∈ Q). (5)

Variational inequality problems are being used as mathematical programming tools and
models to study a wide class of unrelated problems arising in mathematical, physical, re-
gional, engineering and nonlinear optimization sciences. See, for instance, [8, 11, 13, 17, 18,
25, 27, 28, 29, 32, 35, 36]. To solve the (5), Censor, Gibali and Reich [4] proposed the fol-
lowing algorithm: Let λ > 0, select an arbitrary starting point x0 ∈ H1. Given the current
iterate xk, compute

xk+1 = projC(I − λA1)(xk − γG∗(I − projQ(I − λA2))G(xk)), k ≥ 0. (6)

Motivated by the above work, in this paper, we further study the split monotone variational
inclusion problem (2) in Hilbert spaces. We suggest a proximal algorithm for finding a
solution of the split monotone variational inclusion problem (2). Strong convergence theorem
is given under some mild conditions.

2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively.
Let C be a nonempty closed convex subset of H. Let T : C → C be an operator. We use
Fix(T ) to denote the set of fixed points of T , that is, Fix(T ) = {x|x = Tx, x ∈ C}.

An operator T : C → C is said to be
(i) nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C.
(ii) averaged iff it can be written as T = (1− µ)I + µS, where µ ∈ (0, 1) and S : C → C is

nonexpansive.
(iii) firmly nonexpansive if ‖Tx−Ty‖2 ≤ ‖x−y‖2−‖(I−T )x− (I−T )y‖2 for all x, y ∈ C.
(iv) ρ-contractive with ρ ∈ [0, 1) if ‖Tx− Ty‖ ≤ ρ‖x− y‖ for all x, y ∈ C.
(v) α-inverse strongly monotone with α > 0 if

α‖Tx− Ty‖2 ≤ 〈Tx− Ty, x− y〉, ∀x, y ∈ C.

An operator T is said to be demiclosed if, for any sequence {xn} which weakly converges to
x̃, and if the sequence {T (xn)} strongly converges to z, then T (x̃) = z.

An operator F is said to be a strongly positive bounded linear operator on H if there
exists a constant ρ such that ρ‖u‖2 ≤ 〈F (u), u〉,∀u ∈ H.

Recall that an operator with domain D(B) := {x ∈ H : B(x) 6= ∅} and range
R(B) :=

⋃
x∈D(B)B(x) is said to be monotone iff 〈u− v, x− y〉 ≥ 0 whenever u ∈ B(x) and

v ∈ B(y). It is said to be maximal monotone iff its graph is not properly contained in the
graph of any other monotone operator. Let B : H → 2H be a maximal monotone multi-
valued operator. Let JBλ be the resolvent of B defined by JBλ (x) := (I + λB)−1(x), λ > 0
for all x ∈ H. It is known that the resolvent operator JBλ is single-valued and firmly
nonexpansive.

The metric projection, denoted by projC : H → C, assigns for each x ∈ H the unique
point projCx ∈ C such that ‖x− projCx‖ = inf{‖x− y‖ : y ∈ C}. projC : H → C has the
property 〈v† − projCv†, v − projCv†〉 ≤ 0, v ∈ C, v† ∈ H.
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For all x, y ∈ H, the following conclusions hold:

‖tx+ (1− t)y‖2 = t‖x‖2 + (1− t)‖y‖2 − t(1− t)‖x− y‖2, t ∈ [0, 1], (7)

‖x+ y‖2 = ‖x‖2 + 2〈x, y〉+ ‖y‖2, (8)

and
‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉. (9)

Lemma 2.1 ([16]). Let µ1 > 0, µ2 > 0 and B1 and B2 be two maximal monotone operators.
Then, p solves (2) iff p ∈ Fix(JB1

µ1
(I − µ1A1)) and Gp ∈ Fix(JB2

µ2
(I − µ2A2)).

Lemma 2.2 ([16]). Let C be a nonempty closed convex subset of a real Hilbert space H.
Let µ > 0, A be an α-inverse strongly monotone operator and B be a maximal monotone
operator. If µ ∈ (0, 2α), then the operator JBµ (I − µA) is averaged.

Lemma 2.3 ([31]). Let C be a nonempty closed convex subset of a real Hilbert space H.
Let S : C → C be a nonexpansive mapping. Then I − S is demi-closed at 0.

Lemma 2.4 ([19]). Assume that {δn, n ≥ 1} is a sequence of nonnegative real numbers such
that

δn+1 ≤ (1− ξn)δn + ξnσn,

where {ξn, n ≥ 1} is a sequence in (0, 1) and {σn, n ≥ 1} is a sequence in R such that
•
∑∞
n=1 ξn =∞;

• lim supn→∞ σn ≤ 0 or
∑∞
n=1 |ξnσn| <∞.

Then limn→∞ δn = 0.

Lemma 2.5 ([12]). Let {wn} be a sequence of real numbers. Assume there exists at least a
subsequence {wnk

} of {wn} such that wnk
≤ wnk+1 for all k ≥ 0. For every n ≥ N0, define

an integer sequence {τ(n)} as

τ(n) = max{i ≤ n : wni
< wni+1}.

Then τ(n)→∞ as n→∞ and for all n ≥ N0, we have max{wτ(n), wn} ≤ wτ(n)+1.

3. Main results

Let H1 and H2 be two real Hilbert spaces. Let G : H1 → H2 be a bounded linear
operator with its adjoint operator G∗. Let B1 : H1 → 2H1 and B2 : H2 → 2H2 be two multi-
valued maximal monotone operators. Let A1 : H1 → H1 and A2 : H2 → H2 be two inverse
strongly monotone operators with coefficients α1 and α2, respectively. Let f : H1 → H1 be
a ρ1-contractive operator and F : H1 → H1 ba a strongly positive bounded linear operator
with coefficient ρ2. Assume that Γ 6= ∅.

Now, we present our algorithm for solving problem (2).

Algorithm 3.1. Let {αk} be a sequence in [0, 1]. Let τ , µ1, µ2 and γ be four positive
constants. Choose an arbitrary initial guess x0 ∈ H1. Compute the sequences {yk} and
{xk} via the following iterations

yk = xk + τG∗[JB2
µ2

(I − µ2A2)G(xk)−G(xk)], k ≥ 0, (10)

and

xk+1 = JB1
µ1

(I − µ1A1)[γαkf(xk) + (I − αkF )yk], k ≥ 0. (11)

Theorem 3.1. Assume that the following conditions are satisfied
(C1) : limk→∞ αk = 0 and

∑∞
k=0 α

k =∞;
(C2) : µ1 ∈ (0, 2α1), µ2 ∈ (0, 2α2), τ ∈ (0, 1/‖G‖2) and 1 > ρ2 > γρ1.

Then the sequence {xk} generated by (11) converges strongly to x∗ = projΓ(γf + I − F )x∗.
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Proof. Denote by x∗ the unique fixed point of the contractive operator projΓ(I + γf − F )
with coefficient 1 + γρ1 − ρ2 (see [14, 27]). By Lemma 2.1, we have x∗ = JB1

µ1
(I − µ1A1)x∗

and G(x∗) = JB2
µ2

(I − µ2A2)G(x∗). Then,

‖JB2
µ2

(I − µ2A2)G(xk)−G(x∗)‖ = ‖JB2
µ2

(I − µ2A2)G(xk)− JB2
µ2

(I − µ2A2)G(x∗)‖

≤ ‖G(xk)−G(x∗)‖.
(12)

Set zk = αkγf(xk) + (I − αkF )yk for all k ≥ 0. It follows that

‖zk − x∗‖ = ‖γαkf(xk) + (I − αkF )yk − x∗‖

= ‖γαk(f(xk)− f(x∗)) + αk(γf(x∗)− F (x∗))

+ (I − αkF )(yk − x∗)‖

≤ γρ1α
k‖xk − x∗‖+ αk‖γf(x∗)− F (x∗)‖+ (1− ρ2α

k)‖yk − x∗‖.

(13)

From (11), we have

‖xk+1 − x∗‖ = ‖JB1
µ1

(I − µ1A1)zk − JB1
µ1

(I − µ1A1)x∗‖

≤ ‖zk − x∗‖.
(14)

In terms of (10) and (8), we get

‖yk − x∗‖2 = ‖xk − x∗ + τG∗[JB2
µ2

(I − µ2A2)G(xk)−G(xk)]‖2

= ‖xk − x∗‖2 + τ2‖G∗[JB2
µ2

(I − µ2A2)G(xk)−G(xk)]‖2

+ 2τ〈G(xk)−G(x∗), JB2
µ2

(I − µ2A2)G(xk)−G(xk)〉.
(15)

Observe that

〈G(xk)−G(x∗), JB2
µ2

(I − µ2A2)G(xk)−G(xk)〉

= 〈JB2
µ2

(I − µ2A2)G(xk)−G(x∗), JB2
µ2

(I − µ2A2)G(xk)−G(xk)〉

− ‖JB2
µ2

(I − µ2A2)G(xk)−G(xk)‖2.
(16)

Applying (8), we obtain

〈JB2
µ2

(I − µ2A2)G(xk)−G(x∗), JB2
µ2

(I − µ2A2)G(xk)−G(xk)〉

=
1

2
(‖JB2

µ2
(I − µ2A2)G(xk)−G(x∗)‖2 − ‖G(xk)−G(x∗)‖2

+ ‖JB2
µ2

(I − µ2A2)G(xk)−G(xk)‖2).

(17)

By virtue of (12), (16) and (17), we get

〈G(xk)−G(x∗), JB2
µ2

(I − µ2A2)G(xk)−G(xk)〉

=
1

2
(‖JB2

µ2
(I − µ2A2)G(xk)−G(x∗)‖2 − ‖G(xk)−G(x∗)‖2

+ ‖JB2
µ2

(I − µ2A2)G(xk)−G(xk)‖2)− ‖JB2
µ2

(I − µ2A2)G(xk)−G(xk)‖2

≤ −1

2
‖JB2
µ2

(I − µ2A2)G(xk)−G(xk)‖2.

This together with (15) implies that

‖yk − x∗‖2 ≤ ‖xk − x∗‖2 + τ2‖G‖2‖JB2
µ2

(I − µ2A2)G(xk)−G(xk)‖2

− τ‖[JB2
µ2

(I − µ2A2)G(xk)−G(xk)]‖2

= ‖xk − x∗‖2 + (τ2‖G‖2 − τ)‖JB2
µ2

(I − µ2A2)G(xk)−G(xk)‖2

≤ ‖xk − x∗‖2.

(18)
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Substituting (18) into (13) to deduce

‖zk − x∗‖2 ≤ γρ1α
k‖xk − x∗‖+ αk‖γf(x∗)− F (x∗)‖

+ (1− ρ2α
k)‖xk − x∗‖

= αk‖γf(x∗)− F (x∗)‖+ [1− (ρ2 − γρ1)αk]‖xk − x∗‖.
(19)

According to (14) and (19), we get

‖xk+1 − x∗‖ ≤ αk‖γf(x∗)− F (x∗)‖+ [1− (ρ2 − γρ1)αk]‖xk − x∗‖

≤ max{‖xk − x∗‖, ‖γf(x∗)− F (x∗)‖
ρ2 − γρ1

}.

The boundedness of the sequence {xk} yields. Consequently, the sequences {yk} and {zk}
are all bounded.

There are two possible cases regarding the convergence analysis of the sequence {‖xk−
x∗‖}k≥0. Case 1. There exists k0 such that the sequence {‖xk − x∗‖}k≥k0 is decreasing. In
this case, the limitation limk→∞ ‖xk − x∗‖ exists. In the light of (13), (14) and (18), we
deduce

‖xk+1 − x∗‖2 ≤ [γρ1α
k‖xk − x∗‖+ αk‖γf(x∗)− F (x∗)‖

+ (1− ρ2α
k)‖yk − x∗‖]2

= (αk)2(γρ1‖xk − x∗‖+ ‖γf(x∗)− F (x∗)‖)2 + 2αk(1− ρ2α
k)

× (γρ1‖xk − x∗‖+ ‖γf(x∗)− F (x∗)‖)‖yk − x∗‖

+ (1− ρ2α
k)2‖yk − x∗‖2

≤ (1− ρ2α
k)‖yk − x∗‖2 +Mαk

≤ (1− ρ2α
k)(τ2‖G‖2 − τ)‖JB2

µ2
(I − µ2A2)G(xk)−G(xk)‖2

+ (1− ρ2α
k)‖xk − x∗‖2 +Mαk,

(20)

where M > 0 is a constant such that

supk{(γρ1‖xk − x∗‖+ ‖γf(x∗)− F (x∗)‖)2 + 2(γρ1‖xk − x∗‖
+‖γf(x∗)− F (x∗)‖)‖xk − x∗‖} ≤M (by the boundedness of {xk}).

By (20), we derive

(1− ρ2α
k)(τ − τ2‖G‖2)‖JB2

µ2
(I − µ2A2)G(xk)−G(xk)‖2

≤ (1− ρ2α
k)‖xk − x∗‖2 − ‖xk+1 − x∗‖2 +Mαk.

(21)

Note that ‖xk − x∗‖2 − ‖xk+1 − x∗‖2 → 0 by the existence of limk→∞ ‖xk − x∗‖. This fact
together with conditions (C1) and (C2) and (21) implies that

lim
k→∞

‖JB2
µ2

(I − µ2A2)G(xk)−G(xk)‖ = 0. (22)

From (10), we have

‖yk − xk‖ = ‖τG∗[JB2
µ2

(I − µ2A2)G(xk)−G(xk)]‖

≤ τ‖G‖‖JB2
µ2

(I − µ2A2)G(xk)−G(xk)‖.

It follows from (22) that

lim
k→∞

‖xk − yk‖ = 0. (23)
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Note that ‖zk − xk‖ ≤ αk‖γf(xk) − F (yk)‖ + ‖yk − xk‖. This together with (23) implies
that

lim
k→∞

‖zk − xk‖ = 0. (24)

Since JB1
µ1

(I − µ1A1) is averaged by Lemma 2.2, we can write xk+1 = ζzk + (1 − ζ)S(zk)
with S being nonexpansive and ζ ∈ (0, 1). Thus, applying (7), we obtain

‖xk+1 − x∗‖2 = ‖ζ(zk − x∗) + (1− ζ)(S(zk)− x∗)‖2

= ζ‖zk − x∗‖2 + (1− ζ)‖S(zk)− x∗‖2 − ζ(1− ζ)‖zk − S(zk)‖2

≤ ‖zk − x∗‖2 − ζ(1− ζ)‖zk − S(zk)‖2

≤ αk‖γf(x∗)− F (x∗)‖2/(ρ2 − γρ1)− ζ(1− ζ)‖zk − S(zk)‖2

+ [1− (ρ2 − γρ1)αk]‖xk − x∗‖2.

It follows that

ζ(1− ζ)‖zk − S(zk)‖2 ≤ αk‖γf(x∗)− F (x∗)‖2/(ρ2 − γρ1)− ‖xk+1 − x∗‖2

+ [1− (ρ2 − γρ1)αk]‖xk − x∗‖2

→ 0.

Hence, limk→∞ ‖zk − S(zk)‖ = 0. Therefore,

lim
k→∞

‖xk+1 − zk‖ = lim
k→∞

(1− ζ)‖zk − S(zk)‖ = 0. (25)

Note that xk+1 = JB1
µ1

(I − µ1A1)zk. So, by (24) and (25), we deduce

lim
k→∞

‖zk − JB1
µ1

(I − µ1A1)zk‖ = 0. (26)

Next, we show that lim supk→∞〈γf(x∗) − F (x∗), zk − x∗〉 ≤ 0. Since {zk} is bounded,
without loss of generality, we can choose a subsequence {zki} of {zk} such that zki ⇀ z and

lim sup
k→∞

〈γf(x∗)− F (x∗), zk − x∗〉 = lim
i→∞
〈γf(x∗)− F (x∗), zki − x∗〉. (27)

Consequently, xki ⇀ z andGxki ⇀ Gz. By Lemma 2.3 and (26), we deduce z ∈ Fix(JB1
µ1

(I−
µ1A1)). By Lemma 2.3 and (22), we deduce Gz ∈ Fix(JB2

µ2
(I − µ2A2)). Thus, z ∈ Γ. By

(27), we deduce

lim sup
k→∞

〈γf(x∗)− F (x∗), zk − x∗〉 = lim
i→∞
〈γf(x∗)− F (x∗), zki − x∗〉

= 〈γf(x∗)− F (x∗), z − x∗〉 ≤ 0.
(28)

Applying (9), we have

‖zk − x∗‖2 = ‖(I − αkF )(yk − x∗) + αk(γf(xk)− F (x∗))‖2

≤ (1− ρ2α
k)2‖yk − x∗‖2 + 2αk〈γf(xk)− F (x∗), zk − x∗〉

≤ (1− ρ2α
k)2‖xk − x∗‖2 + 2γαk〈f(xk)− f(x∗), zk − x∗〉

+ 2αk〈γf(x∗)− F (x∗), zk − x∗〉

≤ (1− ρ2α
k)2‖xk − x∗‖2 + 2γρ1α

k‖xk − x∗‖‖zk − x∗‖

+ 2αk〈γf(x∗)− F (x∗), zk − x∗〉

≤ (1− ρ2α
k)2‖xk − x∗‖2 + γρ1α

k‖xk − x∗‖2

+ γρ1α
k‖zk − x∗‖2 + 2αk〈γf(x∗)− F (x∗), zk − x∗〉.
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It follows that

‖zk − x∗‖2 ≤
[
1− 2(ρ2 − γρ1)αk

1− γρ1αk

]
‖xk − x∗‖2 +

(ρ2α
k)2

1− γρ1αk
‖xk − x∗‖2

+
2αk

1− γρ1αk
〈γf(x∗)− F (x∗), zk − x∗〉

≤
[
1− 2(ρ2 − γρ1)αk

1− γρ1αk

]
‖xk − x∗‖2 +

(ρ2α
k)2

1− γρ1αk
M

+
2αk

1− γρ1αk
〈γf(x∗)− F (x∗), zk − x∗〉.

Therefore,

‖xk+1 − x∗‖2 ≤
[
1− 2(ρ2 − γρ1)αk

1− γρ1αk

]
‖xk − x∗‖2 +

(ρ2α
k)2

1− γρ1αk
M

+
2αk

1− γρ1αk
〈γf(x∗)− F (x∗), zk − x∗〉.

(29)

Applying Lemma 2.4 and (28) to (29), we deduce xk → x∗.
Case 2. For any k0, there exist integer m ≥ k0 such that ‖xm − x∗‖ ≤ ‖xm+1 − x∗‖.

Set Ωk = {‖xk − x∗‖}. Then, we have Ωk0 ≤ Ωk0+1. Define an integer sequence {τn} for all
k ≥ k0 by τ(k) = max{i ∈ N|k0 ≤ i ≤ k,Ωi ≤ Ωi+1}. It is clear that τ(k) is a non-decreasing
sequence satisfying limk→∞ τ(k) = ∞ and Ωτ(k) ≤ Ωτ(k)+1, for all k ≥ k0. By the similar

argument as that of Case 1, we can obtain limk→∞ ‖xτ(k) − JB1
µ1

(I − µ1A1)xτ(k)‖ = 0 and

limk→∞ ‖JB2
µ2

(I−µ2A2)G(xτ(k))−G(xτ(k))‖ = 0. Thus, all weak cluster points ωw(xτ(k)) ⊂
Γ. Consequently,

lim sup
k→∞

〈γf(x∗)− F (x∗), zτ(k) − x∗〉 ≤ 0. (30)

Since Ωτ(k) ≤ Ωτ(k)+1, we have from (29) that

Ω2
τ(k) ≤ Ω2

τ(k)+1

≤
[
1− 2(ρ2 − γρ1)ατ(k)

1− γρ1ατ(k)

]
Ω2
τ(k) +

(ρ2α
τ(k))2

1− γρ1ατ(k)
M

+
2ατ(k)

1− γρ1ατ(k)
〈γf(x∗)− F (x∗), zτ(k) − x∗〉.

(31)

It follows that

Ω2
τ(k) ≤

1

ρ2 − γρ1
〈γf(x∗)− F (x∗), zτ(n) − x∗〉+

(ρ2)2ατ(k)

2(ρ2 − γρ1)
M. (32)

Combining (30) and (32), we have lim supk→∞ Ωτ(k) ≤ 0 and hence

lim
k→∞

Ωτ(k) = 0. (33)

From (31), we deduce that lim supk→∞Ω2
τ(k)+1 ≤ lim supk→∞ Ω2

τ(k). This together with (33)

implies that limk→∞Ωτ(k)+1 = 0. Applying Lemma 2.5 to get 0 ≤ Ωk ≤ max{Ωτ(k),Ωτ(k)+1}.
Therefore, Ωk → 0. That is, xk → x∗. This completes the proof. �

Algorithm 3.2. Let {αk} be a sequence in [0, 1]. Let τ , µ1 and µ2 be three positive con-
stants. Choose an arbitrary initial guess x0 ∈ H1. Compute the sequences {yk} and {xk}
via the following iterations

yk = xk + τG∗[JB2
µ2

(I − µ2A2)G(xk)−G(xk)], k ≥ 0,
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and

xk+1 = JB1
µ1

(I − µ1A1)[(1− αk)yk], k ≥ 0. (34)

Corollary 3.1. Assume that the following conditions are satisfied
(C1) : limk→∞ αk = 0 and

∑∞
k=0 α

k =∞;
(C3) : µ1 ∈ (0, 2α1), µ2 ∈ (0, 2α2) and τ ∈ (0, 1/‖G‖2).

Then the sequence {xk} generated by (34) converges strongly to projΓ(0), the minimum
norm solution in Γ.

Algorithm 3.3. Let {αk} be a sequence in [0, 1]. Let τ , µ1, µ2 and γ be four positive
constants. Choose an arbitrary initial guess x0 ∈ H1. Compute the sequences {yk} and
{xk} via the following iterations

yk = xk + τG∗[JB2
µ2
G(xk)−G(xk)], k ≥ 0,

and

xk+1 = JB1
µ1

[γαkf(xk) + (I − αkF )yk], k ≥ 0. (35)

Corollary 3.2. Suppose Γ1 6= ∅. Assume that the following conditions are satisfied
(C1) : limk→∞ αk = 0 and

∑∞
k=0 α

k =∞;
(C4) : µ1 ∈ (0,∞), µ2 ∈ (0,∞), τ ∈ (0, 1/‖G‖2) and 1 > ρ2 > γρ1.

Then the sequence {xk} generated by (35) converges strongly to x∗ = projΓ1(γf + I −F )x∗.

Algorithm 3.4. Let {αk} be a sequence in [0, 1]. Let τ , µ1 and µ2 be three positive con-
stants. Choose an arbitrary initial guess x0 ∈ H1. Compute the sequences {yk} and {xk}
via the following iterations

yk = xk + τG∗[JB2
µ2
G(xk)−G(xk)], k ≥ 0,

and

xk+1 = JB1
µ1

[(1− αk)yk], k ≥ 0. (36)

Corollary 3.3. Suppose Γ1 6= ∅. Assume that the following conditions are satisfied
(C1) : limk→∞ αk = 0 and

∑∞
k=0 α

k =∞;
(C5) : µ1 ∈ (0,∞) and µ2 ∈ (0,∞), τ ∈ (0, 1/‖G‖2).

Then the sequence {xk} generated by (36) converges strongly to projΓ1(0), the minimum
norm solution in Γ1.
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