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A PROXIMAL ALGORITHM FOR SOLVING SPLIT MONOTONE
VARIATIONAL INCLUSIONS

Xiaopeng Zhao', Jen-Chih Yao?, Yonghong Yao®

In this paper, we study the split monotone variational inclusion problem in
Hilbert spaces. We suggest a proxzimal algorithm for finding a solution of the split
monotone variational inclusion problem. Strong convergence theorem is given under
some mild conditions.
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1. Introduction

Let H; and Hs be two real Hilbert spaces. Let G : Hy — Hs be a bounded linear
operator. Let Ay : Hi — Hy and Ay : Hy — Hy be two single-valued operators. Let
By : Hy — 281 and By : Hy — 272 be two multi-valued maximal monotone operators. Let
C and @ be nonempty closed convex subsets of H; and Hs, respectively.

Recall that the split feasibility problem is formulated as follows:

find a point 7 € C such that G(27) € Q. (1)

The split feasibility problem (1) was originally formulated from medical image reconstruction
by Censor and Elfving [3]. Consequently, some more prototypes were found in applications,
for example, in signal processing, control theory, biomedical engineering and so on. Since
then, the split problems were studied extensively by many scholars, for instance, the reader
can refer to [5, 6, 7, 9, 10, 15, 20, 21, 22, 23, 24, 26, 30, 33, 34, 37] and related literature.

Recently, Moudafi [16] introduced the following split variational inclusion problem of
finding 2t € H; verifying

ot € (A1 + B1)~1(0) and G(at) € (As + By)~1(0). 2)

Denote the solution set of split variational inclusion problem (2) by T

Special cases:
(i) If A; = 0and Ay = 0, then problem (2) reduces to the following split variational inclusion
problem of finding u € Hy verifying

u € By (0) and G(u) € By *(0). (3)

Denote the solution set of split variational inclusion problem (3) by I'y.
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Many iterative algorithms have been presented for solving problem (3). In [2], Byrne
suggested the following iteration with weak convergence for solving problem (3). Let A > 0
and select an arbitrary starting point 2 € H;. For given the current iterate z*, compute

Z‘k+l _ J)\Bl (Z‘k _ ’}/G*(I _ J}\B?)C;(J;k))7 k > 07 (4)

where v € (0,1/]|G|]?).
(ii) If By = N¢ and By = Ng normal cones to closed convex sets C' and @, we have
the following split variational inequality problem of finding v € C such that

(A1(u),v —u) >0 (Vv € C) and (A2(G(u)),z — G(u)) >0 (Vz € Q). (5)

Variational inequality problems are being used as mathematical programming tools and
models to study a wide class of unrelated problems arising in mathematical, physical, re-
gional, engineering and nonlinear optimization sciences. See, for instance, [8, 11, 13, 17, 18,
25, 27, 28, 29, 32, 35, 36]. To solve the (5), Censor, Gibali and Reich [4] proposed the fol-
lowing algorithm: Let A > 0, select an arbitrary starting point x° € H;. Given the current
iterate ¥, compute

2 = proje(I — )\Al)(mk —vG*(I —projo(I — /\Ag))G(xk)), k> 0. (6)

Motivated by the above work, in this paper, we further study the split monotone variational
inclusion problem (2) in Hilbert spaces. We suggest a proximal algorithm for finding a
solution of the split monotone variational inclusion problem (2). Strong convergence theorem
is given under some mild conditions.

2. Preliminaries

Let H be a real Hilbert space with inner product (-,-) and norm || - ||, respectively.
Let C' be a nonempty closed convex subset of H. Let T': C — C be an operator. We use
Fixz(T) to denote the set of fixed points of T, that is, Fiz(T) = {z|x = Tz,z € C}.

An operator T : C' — (' is said to be

(i) nonexpansive if [|Tz — Ty| < ||z — y|| for all z,y € C.
(i) averaged iff it can be written as T'= (1 — u)I + pS, where p € (0,1) and S : C — C'is
nonexpansive.

(iii) firmly nonexpansive if || Tz — Ty||*> < |z —y||? = |(I = T)z — (I = T)y||* for all z,y € C.
p-contractive with p € [0,1) if || Tz — Ty|| < pllz — y|| for all z,y € C.
a-inverse strongly monotone with o > 0 if

OéHTZL’ - TyH2 < <T$ - Ty,x - y>> Viﬂ,y eC.

An operator T is said to be demiclosed if, for any sequence {x,,} which weakly converges to
Z, and if the sequence {T'(x, )} strongly converges to z, then T'(Z) = z.

An operator F' is said to be a strongly positive bounded linear operator on H if there
exists a constant p such that p|lul|? < (F(u),u),Vu € H.

Recall that an operator with domain D(B) := {& € H : B(z) # (0} and range
R(B) :=U,ep(p) B(z) is said to be monotone iff (v — v,z —y) > 0 whenever u € B(z) and
v € B(y). It is said to be maximal monotone iff its graph is not properly contained in the
graph of any other monotone operator. Let B : H — 2H be a maximal monotone multi-
valued operator. Let JZ be the resolvent of B defined by JZ(x) := (I + AB)™'(z),A > 0
for all x € H. It is known that the resolvent operator J/{g is single-valued and firmly
nonexpansive.

The metric projection, denoted by projc : H — C, assigns for each © € H the unique
point projox € C such that ||z — projez| = inf{||lz — y|| : v € C}. projo : H — C has the
property (vf — projcvt,v — projov?) <0, v e C, vt € H.
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For all ,y € H, the following conclusions hold:

[tz + (1 = )yl* = tllz[|* + (1 =) ||yl]* — t(1 = t)[|= — y||*, t € [0,1], (7)
2 +yl1? = llz)* + 2(z,y) + [ly]?, (8)

and
2 +yl1? < llz)|* + 2{(y, = + ). 9)

Lemma 2.1 ([16]). Let u1 > 0, p2 > 0 and By and Bz be two mazimal monotone operators.
Then, p solves (2) iff p € Fix(J2 (I — pAy)) and Gp € Fix(J22 (I — paAz)).

Lemma 2.2 ([16]). Let C be a nonempty closed convex subset of a real Hilbert space H.
Let p > 0, A be an a-inverse strongly monotone operator and B be a mazximal monotone
operator. If u € (0,2«), then the operator Jf([ — pA) is averaged.

Lemma 2.3 ([31]). Let C be a nonempty closed convex subset of a real Hilbert space H.
Let S : C — C be a nonexpansive mapping. Then I — S is demi-closed at 0.

Lemma 2.4 ([19]). Assume that {0,,n > 1} is a sequence of nonnegative real numbers such
that
5n+1 < (]- - gn)(sn +€n0'n>
where {&n,m > 1} is a sequence in (0,1) and {on,n > 1} is a sequence in R such that
o 220:1 gn = O3
e limsup, ,. 0n <0 0or Y 07 |{non| < 0o
Then lim,, o 6, = 0.

Lemma 2.5 ([12]). Let {w,} be a sequence of real numbers. Assume there exists at least a
subsequence {wy, } of {wyp} such that wy,, < wy, 41 for all k > 0. For every n > Ny, define
an integer sequence {T(n)} as

7(n) = max{i <n:wp, < wp,41}-

Then 7(n) — oo as n — oo and for all n > Ny, we have max{w; (), Wn} < Wr(n)41-

3. Main results

Let Hy and Hy be two real Hilbert spaces. Let G : Hy — Hs be a bounded linear
operator with its adjoint operator G*. Let By : H; — 21 and By : Hy — 272 be two multi-
valued maximal monotone operators. Let Ay : Hy — Hy and A, : Hy — Hs be two inverse
strongly monotone operators with coefficients a; and «s, respectively. Let f : H; — H; be
a pi-contractive operator and F': H; — H; ba a strongly positive bounded linear operator
with coefficient py. Assume that T' = ().

Now, we present our algorithm for solving problem (2).

Algorithm 3.1. Let {a*} be a sequence in [0,1]. Let 7, 1, pe and ~ be four positive
constants. Choose an arbitrary initial guess z° € Hy. Compute the sequences {y*} and
{2*} wvia the following iterations
y* =ab + 7GHID2(I — paAr)G (") — G(a¥)] k> 0, (10)
and
2Rt = Jﬁl (I — A [yak f(2®) + (I — o*F)y*),k > 0. (11)
Theorem 3.1. Assume that the following conditions are satisfied
(C1) & limy_yo0 & =0 and > 5 ) ¥ = oo;
(C2): p1 € (0,201), p2 € (0,20a2), 7 € (0,1/|G|*) and 1 > pa > yp1.
Then the sequence {x*} generated by (11) converges strongly to x* = projr(vf + 1 — F)x*.
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Proof. Denote by z* the unique fixed point of the contractive operator projr(I +~vf — F)
with coefficient 14 yp1 — pa (see [14, 27]). By Lemma 2.1, we have z* = JP' (I — py Ay )z*

and G(z*) = J22 (I — paA2)G(2*). Then,

17521 = p2A2)G(a") = Ga™)|| = 17522 (1 — 2 A2)G(a™) = T2 (I = paA2) G (27) |

< G (=") = Ga)].
Set z¥ = ok f(a*) + (I — ok F)y* for all k > 0. Tt follows that
125 = a*|| = [lya® f(2*) + (I — " F)y* —2*|
= et (f(*) — £(z%) + aF(rf(a") — F(a"))
(I - afF) (" — 2
< ypatljat — 2| + aFlly () — F@)ll + (1= paa®)lly — o
From (11), we have
a7 — ) = (T — i A — IP (T~ A
< Jl2* =27
In terms of (10) and (8), we get
Iy —a*|* = l|la* —a* + 7G*[J2 (I — p2A2)G(2*) — G(")]|?
= |l2® — 2|2 + |G [ 12 (I — paA2)G(a*) — GaP)]|”
20 (G(a") — G(a), JE (I — paAa)G(a") — G(ah)).
Observe that
(G(a") = G(z"), T2 (1 — uzAQ)G( ") - Gb))
= (J2 (I = p2A2)G(a") = G(a*), Jy2 (I — p2A2) G (2") — G(2%))
— T2 (I = p2A2)G(2*) — G®) |12
Applying (8), we obtain

(Ji2 (I = paA2)G(a*) — G(a*), Jy2 (I — p2A2)G(a") — G(2*))
= %(HJ,%(I — H2A2)G(2") = G(a")|* — |G (2*) — G(a")|?
+ 12 (I = 2 A2)G (") = GM)|?).
By virtue of (12), (16) and (17), we get
(G(z") = G(z"), T2 (I — n2A2)G(a*) — G(a"))
= %(HJ,%‘ (I = p2A2)G(2") = G(a")|* — |G (2*) — G(a")||?
12 (I = 2 A2)G(a") = GEM)P) = 152 (I = 2A2)G (2*) — G(a)|?
< BT — 2 A)Ca*) — G
This together with (15) implies that
ly* = 2*[* < l|l2* = 2* | + TGP (7,2 (I = p2A2)G () = G )|
= Tl (I = p2A2)G(a*) — G(«")]||?
Foat P+ (PGNP = )1 (- 2 A2)Ga) - G|

(12)

(14)

(16)

(17)
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Substituting (18) into (13) to deduce
12 = 2%|* < yprafla® —a*| + ¥y f(a*) - F(z")]
+ (1= ppa®)llz” — o (19)
= o[y f(@*) = F(a)l| + [L = (p2 — vp1)a][la® — z*|.
According to (14) and (19), we get
2"+ = 2*|| < aF|ly f(2*) = F(@)| + [1 = (p2 = ypr)a’][la* — 27|

(") = Pl

< max{||z* — ||,
p2 = Vp1

The boundedness of the sequence {z*} yields. Consequently, the sequences {y*} and {z*}
are all bounded.

There are two possible cases regarding the convergence analysis of the sequence {||z* —
2*||}x>0. Case 1. There exists ko such that the sequence {||z* — z*||}1>, is decreasing. In
this case, the limitation limy o [|2% — 2*| exists. In the light of (13), (14) and (18), we
deduce

lz** = 2*||* < [ypra®a® — 2| + oF[|lyf(a*) = F(2")]
+ (1= p2a®)ly* — 272
= (a")?(vpulla” — 2| + [y f(2*) = F(z")[)* + 20" (1 — p2a®)
x (ypullz® — || + Iy f(a*) = F(@)lly* - 2*|

(20)
(1= paa Ryt — o
< (1= p2a®)[ly* — ¥ + Ma®
< (1= p2a®) (PGNP = T2 (I — p2A2)G(2*) — G(2F)|)?
(1= paa®) o — o712 + Mo,
where M > 0 is a constant such that
supp{(vprlle® — || + I f(z*) — F(z*)|))? + 2(vpa [|l2* — 2|
+Hvf(z*) — F(z*)|)||z* — 2*||} < M (by the boundedness of {z*}).
By (20), we derive
(1= poa®) (7 = P2GIP) T2 (I — p2A2)G(a*) — G| (21)

< (1= paaf)fa® — 2™ = [la™* — 2*|* + Mok,

Note that ||z%F — 2*||? — ||#%*! — 2*||2 — 0 by the existence of limg_,o. ||#¥ — 2*||. This fact
together with conditions (C1) and (C2) and (21) implies that

Tim (51 — 1y A2)G(a) — G(a)] = 0. (22)
From (10), we have
Iy = a*| = ITG*[J;2 (I — p2A2)G(2") — G(a")]|
< 7G5 (T = p2A2)G(z") — G (™).
It follows from (22) that

li k_ k = 0.
Jim |27 =y =0 (23)
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Note that [[2* — z*|| < o*|lyf(2*) — F(y*)|| + ly* — «¥||. This together with (23) implies
that

lim ||zF —2F|| = 0. (24)

k— o0

Since JP'(I — p1Ay) is averaged by Lemma 2.2, we can write z¥t! = (2% 4 (1 — ¢)S(z¥)
with S being nonexpansive and ¢ € (0,1). Thus, applying (7), we obtain

lz*+t — 2|2 = [I¢(2* = 2*) + (1 = O)(S(=*) — ")
= (2" =2+ (1= QISR =2 = ¢ = Ollz" = SN
< 2% = = ¢ = Oll=* = S|P
< Fllyfa*) = F@)|P/(p2 = vp1) = C(1 = Q2" = S(M)|I?

+ 1= (p2 —yp1)aM]||2" — 2%
It follows that
CA= Ol = SEMI? < by f@*) = F)IP/(p2 = vp1) — [l — 27|
+[1 = (p2 —yp1)at][|lz* — 27|
— 0.

Hence, limy,_, o ||2*¥ — S(2%)|| = 0. Therefore,

i 25— ¥ = lim (1 - ¢)* — S(4)] =0, 25)
k—o0
Note that a* 1 = JB1(I — py A1)zF. So, by (24) and (25), we deduce
: k_ 1B k| _
Jm {27 = SR = A 2P| = 0. (26)

Next, we show that limsup,_, . (vf(z*) — F(z*),2* — 2*) < 0. Since {z*} is bounded,
without loss of generality, we can choose a subsequence {z*} of {z¥} such that 2z — z and

limsup(r(z*) = ("), 2 — ) = lim (1 (&") = F(a"). 2% — o). (27)

Consequently, 2 — z and Gz* — Gz. By Lemma 2.3 and (26), we deduce z € Fix(Jfll (I-

p1A1)). By Lemma 2.3 and (22), we deduce Gz € Fix(JP> (I — p2Asz)). Thus, z € . By
(27), we deduce

limsup(yf(a*) — F(z*), 2" —a*) = lim (vf(z") - F(z*),2" —2*)
k—o0 i—00 (28)
(vf(a") = F(z7),z = 27) < 0.

Applying (9), we have

|24 — 2% = I — & F) (" — 2*) + o* (1 (a*) — F(a"))]?
< (1= poa® Pyt — 2*]? + 208 (rf(2*) — F(a"), 2 — o)
< (1= poa®)2ak — a*| + 270k (f(ah) — F(a*), 25 — o)

+2a8 (v f(a*) = F(a*), 2" —27)

< (1= paa®)?||a® = 2¥|* + 2yprab |z — 27 ||[|2" — 2|
+ 2% (vf(2*) — F(z*), 2% — z*)

< (1= poa®)?[|z® — 2| + yprata® — |2
+apaf(|2F =P+ 208 (v f (2) = F(a*), 25 —a%).
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It follows that
2(p2 — yp1)a*]

r k)2
e’
I — a2 < [1- Ot — a2 2
1 —vp1cx I —ypa
2ak * * k *
+W<’Yf(x ) — F(a*), 2" —a%)
r 2 _ k1 k\2
<|1- (p2 A/pl)ka ||(Ek—.’E*H2+ (p2a ) .
1—9yp1a 1—ypa
2ak * * *
W(Vf(x ) —F(z )azk—x )
Therefore,
2 _ k k)2
ka+1 71,*”2 < [1- (P2 ’Ypl)ka ||.Tk 71,*”2+ (ngé ) -
I —ypra I —ypra 99
20k (29)
+ — *) — F(z*), 28 — 2*).
@)~ Pla), 2t )

Applying Lemma 2.4 and (28) to (29), we deduce z* — z*.
Case 2. For any k¥, there exist integer m > k° such that [|z™ — x*|| < [[z™*! — 2*].
Set Qx = {||z* — 2*||}. Then, we have Q0 < Qj0,1. Define an integer sequence {7, } for all
k> Kk by 7(k) = max{i € Nk <i < k,Q; <Q;11}. It is clear that 7(k) is a non-decreasing
sequence satisfying limy o0 7(k) = 0o and Q) < Qr()11, for all k > k°. By the similar
argument as that of Case 1, we can obtain limg_,e |27 — JB(I — py Ay)2™®]|| = 0 and
limy, o0 [|J522(1 — 2 A2)G(z™®)) — G(27(F))|| = 0. Thus, all weak cluster points w,, (z7*)) C
I'. Consequently,
limsup(yf(z*) — F(z*), 27" —z*) <0. (30)

k—o0

Since Q) < Qr(x)+1, we have from (29) that

2 2
D) < Q)41

2(p2 —yp1)a”™ ™7 (p2a™®))2
1—yprar® 1—yprar® (31)
207 (k)

W<7Jc($*) - F(z7), k) — z*).

It follows that

1 (p2)2ar(k)
Q2 < ———(yf(@") = F(z¥),2™™ —2*) 4 2222 — 32
() < Gy V) E(E) ETpS—y 32)
Combining (30) and (32), we have limsupy,_, ., ;) < 0 and hence

From (31), we deduce that lim sup,_, o 97 3y, < limsupy_,, Q2 ;). This together with (33)
implies that limg 00 Q- (x)+1 = 0. Applying Lemma 2.5 to get 0 < Q, < max{Q; ), Qr(x)+1}-
Therefore, Q;, — 0. That is, ¥ — z*. This completes the proof. |

Algorithm 3.2. Let {a*} be a sequence in [0,1]. Let 7, p1 and po be three positive con-
stants. Choose an arbitrary initial guess x° € Hy. Compute the sequences {y*} and {z*}
via the following iterations

Yyt =2k + TG'*[Ji? (I — 2 A2)G(z) — G(zF)], k >0,
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and
= BT = A [(1 - 0Pyt k = 0. (34)

M1

Corollary 3.1. Assume that the following conditions are satisfied

(C1) : limp—yoo aF =0 and 352, aF = oo;

(C3): 1 € (0,2a1), p2 € (0,2az) and 7 € (0,1/||G|?).
Then the sequence {x*} generated by (34) converges strongly to projr(0), the minimum
norm solution in I

Algorithm 3.3. Let {a*} be a sequence in [0,1]. Let T, p1, pe and vy be four positive

. . 'y O k
constants. Choose an arbitrary initial guess z° € Hy. Compute the sequences {y*} and
{z*} wia the following iterations

y* =k G [TP2G(2*) — G(2M)), k> 0,

H2

and

W = TP [k (@) + (T - aF F)y*),k > 0. (35)

M1

Corollary 3.2. Suppose I'y # 0. Assume that the following conditions are satisfied
(C1) & limy_yo0 & =0 and > 7 ) a* = oo;
(C4) : py € (0,00), a2 € (0,00), 7 € (0,1/||G||?) and 1 > ps > vp1.
Then the sequence {x*} generated by (35) converges strongly to * = projr, (vf +1 — F)z*.

Algorithm 3.4. Let {a*} be a sequence in [0,1]. Let 7, w1 and po be three positive con-
stants. Choose an arbitrary initial guess x° € Hy. Compute the sequences {y*} and {x*}
via the following iterations

y* =2k +7G*[J2G (") — G(aF)), k > 0,
and
=21 - o)y k> 0. (36)

Corollary 3.3. Suppose I'y # 0. Assume that the following conditions are satisfied

(C1) : limp—yoo aF =0 and Y72, aF = oo;

(C5): py € (0,00) and ps € (0,00), 7 € (0,1/]|G||?).
Then the sequence {x*} generated by (36) converges strongly to projr,(0), the minimum
norm solution in I';.
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