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CLASSICAL MOTION OF A TEST PARTICLE IN THE
BERTOTTI-ROBINSON SPACETIME

Gholam Reza Soleimani', Morteza Yavari?

In this paper, the motion of a test particle in the Bertotti-Robinson space-
time by using the Hamilton-Jacobi method is studied. Then, in threading formal-
ism, the gravitoelectromagnetism! force acting on this particle in this spacetime is
calculated.

Keywords: Bertotti-Robinson spacetime, gravitoelectromagnetism force, test par-
ticle trajectory.

1. Introduction

A stationary spacetime® (M, 843) is a 4-dimensional Lorentzian manifold with
a global timelike Killing vector field . We now assume that there exists a global
time function t : M — R such that n = %. Thus, the quotient space of M by
the integral curves of 7 is a 3-dimensional orbit manifold ¥ with projected metric
tensor +;; to which we refer as space manifold. Hence, this decomposition attempts
to decompose spacetime quantities into pieces orthogonal to the given congruence
of curves and pieces tangent to the congruence, [3,4]. The threading decomposition

leads to the following line element, [4,5]:
ds® = gaﬁdxad:cﬁ = h(dt — g;dz")? — y;;dx'da’, (1)

where the components of metric are

goo = h, goi = —hg;, 8ij = —Vij T hgigja (2)
and their inverse are
1 . S L
g =—g*+ 5 g =—g', g7 =—", (3)

in which g2 = glg, = 7% gig;- We now consider a moving test particle of mass m in a
spacetime with the time dependent metric tensor (1). The gravitoelectromagnetism
force acting on this particle, as measured by the threading observers, is described
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by the following equation®, [6]
*d*p m
F = — E+ v x "B+ f 4
. *4)! 9 L . vt
here *p* = such that *v* = ~;;*v**v? in which *»* = ————
P T2 7 Vi (1= gpob)
i
and v' = T Also, the starry total derivative with respect to time is defined as
E == E + v al where E = EE and *1 87, = al + gla In equatlon (4),
the last term is defined as
J' = =N 4 2D}, (5)
. 1 .
*\14 *’Yll(’)’jl*k +

where 3-dimensional starry Christoffel symbols are defined as ik = 3
Vilxj *ij*l) and deformation rates of the reference frame with respect to the observer
_ 170 DU — _}*({W” (6)

2 Ot

are represented by the following tensors

D.. ==
Y2 ot
Finally, time dependent gravitoelectromagnetism fields are defined in terms of gravo-
electric potential ® = Inv/h and gravomagnetic vector potential g = (g1,89,83) as
follows®
9 9g;
E=—*V®—- = E;, = —&,; — =2, 7
o’ oot 0
(8)

*

B B

For more details about applications of gravitoelectromagnetism fields, see references

[7,8].
2. Motion of a test particle in the Bertotti-Robinson spacetime

2.1. Calculation of trajectory
At first, we assume that the metric of spacetime is given by the following line

element
ds? = M dt? — 22 ar? — 402, (9)
cidk
—— A;By in which v = det(v;;) and 3-

4The vector C = A x B has components as C' =
v
dimensional Levi-Civita tensor ;. is skew-symmetric in any exchange of indices while el? =

€123 = 1, [5].
5We use the gravitational units with c=1.
GHere, curl of an arbitrary vector in a 3-space with metric v, is defined by (*VxA)? =

while the symbol [ ] represents the anticommutation over indices.
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which is usually assumed to cover all static spherical spacetimes. As is well known,
the only static conformally flat spacetime of the form (9) is the Bertotti-Robinson
solution which may be written in the following form, [9]:

1
ds* = ﬁ(dﬂ — dr? — r?dQ?). (10)

Below, we will calculate the trajectory of a test particle in the Bertotti-Robinson
spacetime by using the Hamilton-Jacobi equation, [10-12]. Therefore, this equation
is of the form

0S\ 2 0S\ 2 9S\ 2 1 9S\?2 )
(Tat> _<T8r> _<60> _<sin96¢> —-m” =0 (11)

where m is the mass of particle. For solving this partial differential equation, we use
the method of separation of variables for the Hamilton-Jacobi function as follows

S(t,r,0,¢) = —Et + A(r) + B(0) + Lo, (12)

where F and L are arbitrary constants and can be identified respectively as energy
and angular momentum of test particle along ¢-direction. With substituting the last
relation in the Hamilton-Jacobi equation, the integral expressions for the unknown
functions A and B are given by

r2 2
A_eE/rrndr, (13)

B= e/ V2 — L2%cesc?0db, (14)
vm? + ¢?

where n = e————— while c is the constant of separation and ¢ = %1 stands for the

sign changing whenever r(or 6) passes through a zero of the integrand, [13]. Now the
trajectory of the test particle can be obtained by using the Hamilton-Jacobi method
as follows, [10-12]:

—— = constant 95 _ constant 95 _ constant (15)

oE " OL " Oc ’
Consequently, the set of equations (15) change to the following relations (respec-

tively)
r =Vt +n?, (16)
db

=eclL , 17
¢ / sin? 0v/c2 — L2 csc2 (a7)

(18)

/ dr B / do
rEvr? —n? Ve —L2csc?6
we have taken the constants in equations (15) to be zero, without any loss of gener-
ality. In continuation, after solving the equation (18), we obtain

sin? @ = a + ebsin(¢ arcsin(ﬁ)), (19)
r
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2+ L2 b= ?—L2
2¢2 0 7 T 2¢2

dr
=€l . 20
o=¢ / rEsin? 0v/r2 — n2 (20)

However, calculations show that the above integral can be solved exactly only for

where a = and ¢ = 22, Also, from equations (17) and (18), we

conclude

the values ( = 1,2. Here, we discuss these two cases as follows:
Case (1) : ¢(=1.
It can be shown that the exact solution of the equation (20) is of the form

enbe 4P 4+ 4n2aqe=2€? 4 4endb (21)
r= : :
ae~4€d + denbe—21€¢ 4 An2q ’

where ¢ = v/—1. Let us now restrict our analysis to the following cases:
subcase (1) : a = 0.

In this case, the equation (21) is transformed to

r=n2e¥e 4 3672“‘[’. (22)
If we choose n = i%, then we have the following results
1
r=g cos(2¢), (23)

0 = arcsin \/sec(2¢) . (24)

Therefore, the trajectories that describe by these equations will be bounded, i.e. the
particle can be trapped by the extended object with the Bertotti-Robinson geometry.

subcase (2) : b=0.

In this case, the equation (21) is transformed to

1 2i€ 1 —2ie
e 2 e ( 5)

Like in previous case, if we choose n = i%, then we have

% = 2c0s(2¢). (26)

From this equation, we can see that the trajectory of particle is bounded and motion
b
occurs on surface 6 = 5 with time period T = m. In these two subcases, the energy

4m
of particle is” F = — which depends on the particle mass.

V3

subcase (3) : a ="b.

T
In this case, particle is at rest at point (en, 5 0) at time ¢t = 0.

"In the next section, we will show that the energy of particle is equal to F.
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Case (2) : (=2

As before, it is easy to show that the following identity is valid, [14]:

arcsin(2zxv1 — a2) lz] < %,
2arcsinz = { 7 — arcsin(2zv'1 — 22) % <z <1, (27)
—71 —arcsin(2zv1 —22) —1<z<-—-L

V2’

where z is an arbitrary variable. By considering this identity and applying the
equation (16), the solution of equation (20) in terms of ¢ will be

(at + enb)c
t ="\ 28
ang =" (28)
But for value ¢ = 2, we have m = 0. Hence, we ignore the study of this case.
2.2. Calculation of the gravitoelectromagnetism force
At first, from the equations (16-18), we can deduce
r? —n? i=1,
=g Yepeel =2, (29)
L c
’I’EZiI’IQ 0 =3
With applying this equation and after simplifying, we infer
LL—— ) (30)

/1 _ *U2

Before continuing, we know that the energy of particle, as measured by threading
mvh
il
quantity during the motion of particle, [3]. As a result, from the equation (30), we

conclude that € = E. In the next step, all nonzero components of starry Christoffel

observers located at the trajectory, is given by & = which is a conserved

symbols are calculated as®

1
*)\1 _
11 r )
*A2, = —sinfcosé, (31)
*A33 = cot 6.

Also, the nonzero components of deformation tensors are

eVT2 — n?
D].l = - T'S ) (32)
esin 20v/c2 — L2 csc2 0
Daa =
, - (33)

8In our notation (r,6, ¢) = (1,2,3).
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At this stage, from the equations (29-33), we can derive the following expressions

3(r2—n?)

- 1 =1,
i L2 cot S
fr= r2E2sin? @ =2, (34)
_ 4eL cot O/ c2—L2 csc2 6 i=3
r2E2sin? 6 o
and
. 4(2r2 —ntHE i=1,
*d*pz _ 4L2% cot 0 i =2 (35)
dt rEsin? 0 e
_ 8eL cot v/ c2—L2 csc2 6 i=3
rEsin? 0 o

By considering equations (30), (34), (35) and some calculations, we finally obtain

3VbL2\/r —en _2enbL\/r2 —n? >

(ar + enb)%E 7 (ar + enb)?

‘F = ((47«2 -nHE, (36)
To continue our analysis, we are going to determine the potential function corre-
sponding to the gravitoelectromagnetism force. For doing this, we can prove that in
a 3-space with time dependent metric 7;; the following identity is valid, [7]:

*0

[0, *05) = VI 5 (37)
With the help of this identity and equation (8), we obtain the following relation®
*Ov
V x*V T , (38)

where W is an arbitrary scalar function. But the gravitomagnetic fields for the metric
(10) are zero, so the above relation changes to

“V x *VT = 0. (39)

On the other hand, by taking the curl of the force, we get

4elVo/r—en (avrZ—nZ n? + 3eLVby/rFen (2ar—ne(3a+b))
ar—+enb ar—+enb r/r2—n2 2(ar+-enb)?
* N 3 2en? E2v/ar+enby/r2—n? 2enbL aVr?2—n? n?
(VX F) = T2 Lr3 B 3 artenb o\ /r2_n2
r(ar+enb)2 rvre—n
_ 3L2Vb(2ar—ne(3a+b))  4nEr—en
2E\/r—en (ar+enb)3 r?
£ 0.

Consequently, by comparing the equations (39) and (40), we cannot define the po-
tential function (V) corresponding to the gravitoelectromagnetism force with the
following familiar form

“F = —*VV. (41)

9IProof of this identity is simple and have been omitted.

=1,
1= 2,
=3,

(40)
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3. Conclusions

In this work, we studied the classical motion of a test particle in the Bertotti-

Robinson spacetime. We proved that the particle can be trapped by this gravita-
tional field. By determining the gravitoelectromagnetism force, it was shown that
the existence of the potential function with the classical definition is impossible.
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