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ON ERROR ESTIMATION OF AUTOMATIC QUADRATURE

SCHEME FOR THE EVALUATION OF HADAMARD INTEGRAL

OF SECOND ORDER SINGULARITY

Suzan J. Obaiys1, Z.K. Eshkuvatov2 and N.M.A. Nik Long2

This paper presents an automatic quadrature scheme (AQS) for the eval-
uation of hypersingular integrals (HSI)

Qi(f, x) = =

∫ 1

−1

wi(t)f(t)

(t− x)2
dt, x ∈ [−1, 1], i = 0, 1, 2, (1)

where w0(t) = 1, w1(t) =
√
1− t2, w2(t) = 1√

1−t2
are the weights, and the

given function f imperative to have certain smoothness or continuity properties.
Particular attention is paid to error estimate of the developed AQS, where it shows
the acquired AQS scheme is obtained in the class of functions CN+2,α[−1, 1] which
converges to the exact very fast by increasing the knot points. The first and sec-
ond kind of Chebyshev polynomials are used in the conjecture. Several numeri-
cal examples clearly demonstrate the developed AQS rendering efficient, accurate
and reliable results. This research gives comparative performances of the present
method with others.

Keywords: Hypersingular integrals, Chebyshev series, Interpolation, Automatic
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1. Introduction

One of the most valuable mathematical tools is the subject of singular integrals
in both pure and applied mathematics. There are many papers in the literature on
singular and hypersingular integral. A precise evaluation of HSI is only possible in
rare cases, therefore there is a need to enrich the approximate methods for evaluating
it. By the implementation of various techniques, the transformation of HSIs into
singular or weakly singular integrals by using different techniques, provides basis
to one group of methods [1, 2, 3, 4, 5, 9] whereas another group is based on the
numerical computation of finite part integrals by various quadrature or cubature
formulas [6, 7, 10]. In 2012, Tadeu and Antonio [1] present an analytical evaluation
of the singular and hypersingular integrals for three-dimensional boundary acoustic
problems. A review of dual boundary element methods on hypersingular integrals
and divergent series can be found in the work Chen [8]. Yang [10] proposed a general
class of methods for the evaluation of hypesingular and supersingular integrals with
a periodic integrand of singularity higher than or equal to 2. Furthermore, HSI
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turns out in many engineering issues [11, 12] with a common usage in fracture
mechanics for the prediction of stress intensity and crack propagation [8]. The
automatic quadrature problem has been considered by Clenshaw and Curtis, for a
simple integral [9]. One of the nodal methods is the automatic quadrature formula
[3, 4, 9] which is combined with the collocation method to solve Cauchy principal-
value and hypersingular integrals. The Gaussian quadrature rule have been used
in [7] and the formula is then specialized into the Legendre and Chebyshev series
expansion, which use classical orthogonal polynomials and give high order accuracy
for hypersingular integrals with second-order singularities of the form

Q(f, x) = =

∫ b

a

f(t)dt

(t− x)2
. (2)

The widely used definition of HSI in the engineering society is

=

∫ 1

−1

f(t)dt

(t− x)2
= lim

α→0

[(∫ x−ε

−1
+

∫ 1

x+ε

)
f(t)dt

(t− x)2
− 2f(x)

ε

]
, (3)

where this limits of integration are exists and bounded. Providing that the regular
part of the integrand in Eq. (3) is a function f(t), a ≤ t ≤ b, which satisfies a Hölder
continuous first-derivative condition

|f(t)− f(x)− (t− x)f ′(x)| ≤ A|t− x|α+1 (4)

where A is a positive constant and α ∈ (0, 1]. Nevertheless, the differentiation of
Cauchy principle-value integral (CPVI)

I(f, x) = −
∫ 1

−1

f(t)

t− x
dt; x ∈ (a, b), (5)

with respect to the singular point x, gives another definition of HSI [13]

=

∫ 1

−1

f(t)

(t− x)2
dx =

d

dx
−
∫ 1

−1

f(t)

(t− x)
dt, x ∈ (−1, 1) (6)

which is very serviceable in evaluating HSI. The relation in (6) implies that the HSI
represent a natural extension of singular integrals in the Cauchy principal-value.
Other properties of finite-part integrals and many references to the related litera-
ture can be found in [13, 14].

In this paper, we develop AQS for the evaluation of hypersingular integrals,
which has a global error rate calculated by Chebyshev norm for functions of CN+2,α[−1, 1].
We extend Hasegawa’s work [3] for CPV integral to evaluate the HSI (2). To con-
struct the AQS for the HSI (2), we use the orthogonal Chebyshev series of the first
and second kinds. We have selected the same singular point and weight function as
in Hui and Shia [7] at different nodes. In our approach the parameter x is not equal
to the roots of the Chebyshev orthogonal polynomials of the first and second kinds,
and hence give more convenient in the practical computations.

The paper is organized as follows, the basic concepts pertaining to Chebyshev
polynomials are considered in Section 2. In Section 3, the details of construction
of AQS by Chebyshev series expansion of the first kind is given along with the
derivation of the recurrence relation for the sequence of the interpolating polynomials
{PN (t)}. Section 4 is related to the direct derivation of AQS for special weight
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function. Section 5 covers the proof of the efficiency of the proposed algorithm where
the error estimates have been studied in details. Finally, the numerical results for
the constructed AQS are presented, along with the comparison performance of Kutt
[21], Hui and Shia’s [7] results.

2. Basic concepts

The Chebyshev polynomials Tn(t), Un(t) of the first and second kinds are
elucidated on the interval [-1,1] according to the following trigonometric formulae
[15]

Tn(t) = cosnθ,

Un(t) =
sin(n+ 1)θ

sin θ
, n = 0, ..., N,

where t = cos θ, 0 ≤ θ ≤ π. These polynomials are orthogonal on [-1,1] with respect
to

W1(t) =
√

1− t2 and W2(t) =
1√

1− t2

respectively, and they both share the same recurrence relation

Pn(t) = 2tPn−1(t)− Pn−2(t), (7)

with a common starting value P0(t) = 1, and

P1(t) = T1(t) = t, P1(t) = U1(t) = 2t. (8)

The indefinite integral of Tn(t) and Un(t) can be expressed in terms of Chebyshev
polynomials as follows∫

Tn(t)dt =
1

2

(
Tn+1(t)

n+ 1
− Tn−1(t)

n− 1

)
, n ≥ 2, (9)∫

Un(t)dt =
Tn+1(t)

n+ 1
, n ≥ 2, (10)

and after setting t = cos θ, the differentiation formulae are

d

dt
Tn(t) =

n sinnθ

sin θ
= nUn−1(t). (11)

and
d

dt
Un(t) =

(n+ 1)Tn+1(t)− tUn(t)

t2 − 1
. (12)

It is well revealed that the Chebyshev polynomials of first and second kinds are
integral transforms of each other with respect to weighted Hilbert kernels,

d

dt

(√
1− t2Un−1(t)

)
=

−nTn(t)√
1− t2

, (13)

and

−
∫ 1

−1

√
1− t2Un−1(t)

t− x
dx = −πTn(x), (14)

which may readily be proved by induction [16]. Notice that, for the Chebyshev
polynomials of first kind, we have [15]

−
∫ 1

−1

Tn+1(t)√
1− t2(t− x)

dt = πUn(x). (15)
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From Eq. (14), it is easy to show

=

∫ 1

−1

√
1− t2Uk(t)

(t− x)2
dt = −π(k + 1)Uk(x). (16)

3. Construction of the automatic quadrature scheme

For simplicity, we take a = −1, b = 1 in (2).
Let

PN (t) =

N∑′′

k=0

aNk Tk(t), −1 ≤ t ≤ 1 (17)

where the double prime means the first and last terms are halved. The sample nodes
tj = cos(πj/N), 0 ≤ j ≤ N , are the zeros of the polynomial ωN+1(t) defined by

ωN+1(t) = TN+1(t)− TN−1(t) = 2(t2 − 1)UN−1(t). (18)

It is known that this approximation leads directly to the Clenshaw-Curtis method
(CC method). To be specific, the approximation (17) yields the integration rule
IN (f, x) to I(f, x) (see [3]). Subtracting out the singularity, I(f, x) in (5) gives

I(f, x) = −
∫ 1

−1

f(t)− f(x)

t− x
dt+ f(x) log

(
1− x

1 + x

)
, (19)

and by applying the approximate polynomial PN (t) in (17) to interpolate f(t), the
above integral becomes

I(f, x) ≈ IN (f, x) = −
∫ 1

−1

PN (t)− PN (x)

t− x
dt+ f(x) log

(
1− x

1 + x

)
. (20)

The integrant in (20), can be written as

PN (t)− PN (x)

t− x
=

N−1∑′

k=0

dkTk(t). (21)

Taking into account (9)-(10) and by integrating term by term, Eq. (21) becomes

−
∫ 1

−1

PN (t)− PN (x)

t− x
dt = 2d0 +

N−1∑′

k=2

dk
1

2

[
Tk+1(t)

k + 1
− Tk−1(t)

k − 1

]1
−1

. (22)

Substitution (22) into (19) yields an AQS for Cauchy value integral [3]

IN (f, x) = −
∫ 1

−1

f(t)

t− x
dt = 2

[N
2
−1]∑′

k=0

d2k
1− 4k2

+ f(x) log

(
1− x

1 + x

)
, (23)

where the prime means the first term is halved and assume that N is even. The poly-
nomial coefficients dk in (21) can be stably calculated by employing the recurrence
relation

dk+1 − 2xdk + dk−1 = 2aNk , k = N,N − 1, . . . , 1, (24)
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in the backward direction with the starting condition dN = dN+1 = 0.
From the interpolation condition

PN (cosπj/N) = f(cosπj/N), 0 ≤ j ≤ N (25)

the coefficients aNk in (17) are determined as follows

aNk =
2

N

N∑′′

j=0

f(cosπj/N) cos(πkj/N), 0 ≤ k ≤ N. (26)

It is known that the Fast Fourier Transform (FFT) is valuable for efficiently evalu-
ating equation (26) [17].
Differentiate (23), and assuming that d2k = d2k(x), and taking into account (6),
yields

Q0(f, x) = =

∫ 1

−1

f(t)

(t− x)2
dt = 2

[N
2
−1]∑′

k=0

d′2k(x)

1− 4k2
+f ′(x) log

(
1− x

1 + x

)
− 2f(x)

1− x2
+R0(f, x),

(27)
which is the AQS formula for Eq. (2).
In Eq. (27) the coefficients d′2k(x) are computed in a similar way as in (24). The
derivative of (24) with respect to x leading to the following backward recurrence
relation.

d′k+1(x)− 2xd′k(x) + d′k−1(x) = 2dNk , k = N,N − 1, . . . , 1, (28)

with the initial values d′N (x) = d′N+1(x) = 0, while the values of dNk in (28) are
calculated using Eq. (24) along with the starting condition dN = dN+1 = 0 and N
takes

N = 3, 4, 5, . . . , 3× 2n, 4× 2n, 5× 2n, . . . (n = 1, 2, . . .). (29)

4. Automatic quadrature scheme for special weight functions

Consider HSIs of the form

Q1(f, x) = =

∫ 1

−1

√
1− t2f(t)

(t− x)2
dt. (30)

The AQS for Eq. (30) is acquired by approximating f(x) by the Chebyshev poly-
nomial of the second kind,

f(t) ≈
N∑
k=1

bkUk−1(t), −1 ≤ t ≤ 1. (31)

Substituting (31) into (30) and applying (16), gives

Q1(f, x) ∼=
N∑
k=1

bk =

∫ 1

−1

√
1− t2Uk−1(t)

(t− x)2
dt = −π

N∑
k=1

kbkUk−1(x). (32)
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Coefficients bk in (32) are determined by involving Eqs. (31) and (11) along with
the orthogonality relation [19]

N∑′′

k=0

sin

(
kiπ

N

)
sin

(
kjπ

N

)
=


0 if i ̸= j,
N
2 if i = j ̸= 0 or N,

N if i = j = 0 or N.

(33)

The collocation points are chosen as the roots of extrema of TN (x) on [-1,1], i.e.

t = tj = cos
jπ

N
, j = 0, · · · , N, (34)

implies,
N∑
k=1

bk sin
kjπ

N
≈ g(cos

jπ

N
) sin

jπ

N
. (35)

From Eqs. (34) and (35), it follows that

bk =
2

N

N∑
j=1

f(cosπj/N) sin(πj/N) sin(πkj/N), 1 ≤ j ≤ N. (36)

For the case of i = 2 in Eq. (1), we have

Q2(f, x) = =

∫ 1

−1

f(t)√
1− t2(t− x)2

dt (37)

The AQS for Eq (37) is obtained by using the following Chebyshev series [18],

f(t) ≈
N∑′′

k=0

akTk(t), −1 ≤ t ≤ 1. (38)

With the help of Eq. (6) along with the concepts (12) and (15), yields

=

∫ 1

−1

f(t)√
1− t2(t− x)2

dt ∼=
N∑
k=0

ak =

∫ 1

−1

Tk(t)√
1− t2(t− x)2

dt

= π

N∑
k=0

ak

(
kUk(x)− (k + 1)xUk−1(x)

x2 − 1

)
. (39)

From Eq. (38) and choosing the collocation points as in Eq. (34) along with the
orthogonality relation [19]

N∑′′

k=0

cos

(
kiπ

N

)
cos

(
kjπ

N

)
=


0 if i ̸= j,
N
2 if i = j ̸= 0 or N,

N if i = j = 0 or N.

(40)

We obtain

ak =
2

N

N∑′′

j=0

f(cos
jπ

N
) cos

jkπ

N
, 0 ≤ j ≤ N. (41)
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5. Error estimate

Let eN (t) = f(t)− PN (t) and the Chebyshev norm of the form

∥ eN ∥c = max
−1≤a≤t≤b≤1

|f(t)− PN (t)|, (42)

and

R0N (f, x) =
∣∣∣Q0(f, x)−Q0N (f, x)

∣∣∣. (43)

Theorem 5.1. Let f(t) ∈ CN+2,α[−1, 1] and x ∈ (−1, 1), then the error term of
AQS (27) is estimated as

||R0N (f, x)|| ≤ 9.23L1

2N−1(N − 1)!

ln(N + 1)

N
+

L3

2N−1(N + 1)!(N + 1)α

(
21.58 +

11.16C

α

)
,

(44)

where

L1 = max{M1,M2}; M1 = max
−1≤ηt≤1

∣∣∣f (N+1)(ηt)
∣∣∣ , M2 = max

−1≤ηt≤1

∣∣∣∣ ddxf (N+1)(ηt)

∣∣∣∣
L3 = max{A2,M2B2, A1,M1B1,3}, B1,3 = max{B1, B3},

andA2 is a Holder constant of
d

dx
f (N+1)(ηx), A1 is a Lipschitz constant of f

(N+1)(ηx),

B1 and B3 are Lipschitz constant of Chebyshev polynomial of first kind TN (ξx) and
second kind UN (ξx) times polynomial ξx respectively, and
|ηt − x| ≤ c|t− x|, ηt, t ∈ (x− ϵ, x+ ϵ).

Proof:

Without losing the generality, we prove for x ∈ [0, 1). The case x ∈ (−1, 0] is proved
in a similar way to x ∈ [0, 1). The error term of AQS (27) can be written as

RN (f, x) =
d

dx

(
−
∫ 1

−1

eN (t)− eN (x)

t− x
dt

)
. (45)

By dividing the interval [-1,1] into two parts, we get

RN (f, x) =
d

dx

((
−
∫ x−ϵ

−1
+−
∫ 1

x+ϵ

)
eN (t)− eN (x)

t− x
dt+ −

∫ x+ϵ

x−ϵ

eN (t)− eN (x)

t− x
dt

)
= R1(x) +R2(x), (46)

where

R1(x) =
d

dx

(
−
∫ x−ϵ

−1
+−
∫ 1

x+ϵ

)
eN (t)− eN (x)

t− x
dt,

R2(x) =
d

dx
−
∫ x+ϵ

x−ϵ

eN (t)− eN (x)

t− x
dt.

It is known that [20]

d

dx
−
∫ B(x)

A(x)
K(x, t)dt = −

∫ B(x)

A(x)

∂K(x, t)

∂x
dt+K(x,B(x))B′(x)−K(x,A(x))A′(x).

(47)



92 Suzan J. Obaiys, Z.K. Eshkuvatov, N.M.A. Nik Long

The kernel K(x, t) in Eq. (46) is given by

K(x, t) =
eN (t)− eN (x)

t− x
,

and its derivative is

∂K

∂x
=

eN (t)− eN (x)

(t− x)2
−

e′N (x)

t− x
.

Applying (47) for R1(x) in Eq. (46), yields

R1(x) =

(
−
∫ x−ϵ

−1
+−
∫ 1

x+ϵ

)
eN (t)− eN (x)

(t− x)2
dt− e′N (x)

(
ln

1− x

1 + x

)
+

+
1

ϵ
(eN (x)− eN (x− ϵ)− (eN (x+ ϵ)− eN (x)))

= R11(x) +R12(x) +R13(x), (48)

where

R11(x) =

(
−
∫ x−ϵ

−1
+−
∫ 1

x+ϵ

)
eN (t)− eN (x)

(t− x)2
dt,

R12(x) = −e′N (x) ln
1− x

1 + x
,

R13(x) =
1

ϵ
[eN (x)− eN (x− ϵ)− (eN (x+ ϵ)− eN (x))] .

In the sequel, we implement (42), and by applying the Mean Value Theorem, we
acquire

|R11(x)| ≤
∣∣∣∣−∫ x−ϵ

−1

e′N (ξ1t)

t− x
dt

∣∣∣∣+ ∣∣∣∣−∫ 1

x+ϵ

e′N (ξ2t)

t− x
dt

∣∣∣∣
≤∥ e′N (ξ1) ∥1 C1(ϵ) + ∥ e′N (ξ2) ∥2 C2(ϵ)

≤ (C1(ϵ) + C2(ϵ)) ∥ e′N ∥c, (49)

where

∥ e′N ∥c = max
−1≤t≤1

| e′N (t) |,

C1(ϵ) =

∣∣∣∣∣∣∣∣−∫ x−ϵ

−1

dt

t− x

∣∣∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣ln ϵ

1 + x

∣∣∣∣∣∣∣∣ = max
0<x<1

∣∣∣∣ln ϵ

1 + x

∣∣∣∣ = ∣∣∣ln ϵ

2

∣∣∣ ,
C2(ϵ) =

∣∣∣∣∣∣∣∣−∫ 1

x+ϵ

dt

t− x
dt

∣∣∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣ln 1− x

ϵ

∣∣∣∣∣∣∣∣ = max
0≤x<1

∣∣∣∣ln 1− x

ϵ

∣∣∣∣ = ∣∣∣∣ln 1

ϵ

∣∣∣∣ .
Applying (13), and from [4]

eN (t) =
f (N+1)(ηt)

2N−1(N + 1)!
(t2 − 1)UN−1(t), ξt ∈ (−1, 1) (50)

we have

e′N (t) =
−1

2N−1(N + 1)!

[
d

dt
f (N+1)(ηt)(1− t2)UN−1(t) + f (N+1)(ηt)

(
NTN (t) + tUN−1(t)

)]
.

(51)
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Since ξ1t, ηt ∈ [−1, x− ϵ], we obtain

∣∣e′N (t)
∣∣ ≤ 1

2N−1(N + 1)!

[
M2 +M1

(
N +

1√
ϵ(2− ϵ)

)]
≤ L1

2N−1(N + 1)!

[
N + 1 +

1√
ϵ(2− ϵ)

]
,

(52)

where

L1 = max{M1,M2}, M1 = max
−1≤ηt≤1

∣∣∣f (N+1)(ηt)
∣∣∣ , M2 = max

−1≤ηt≤1

∣∣∣∣ ddxf (N+1)(ηt)

∣∣∣∣ .
From Eq. (49), and let ϵ = 2

(N+1)2
; N ≥ 5, the error for R11 is as follows:

∥ R11 ∥ ≤ 6.11L1

2N−1(N − 1)!

ln(N + 1)

N
(53)

For the estimation of R12, we have

|R12| = |e′N (x)|
∣∣∣∣ln 1− x

1 + x

∣∣∣∣ ≤∥ e′N ∥c
∣∣∣∣∣∣∣∣ln 1− x

1 + x

∣∣∣∣∣∣∣∣
≤ L1

2N−1(N + 1)!

[
N + 1 +

1√
ϵ(2− ϵ)

] ∣∣∣∣ln ϵ

2− ϵ

∣∣∣∣ ,

and substitute the chosen ϵ = 2
(N+1)2

; N ≥ 5, and following the same procedures as

in (52) for the norm of e′N (x), results

|R12| ≤
3.12L1

2N−1(N − 1)!

ln(N + 1)

N
. (54)

For R13(x), we apply the Mean Value Theorem, yields

R13(x) = e′N (ξ1x)− e′N (ξ2x),



94 Suzan J. Obaiys, Z.K. Eshkuvatov, N.M.A. Nik Long

where ξ1x ∈ (x − ϵ, x), ξ2x ∈ (x, x + ϵ) and ∥ ξ2x − ξ1x ∥= 2ϵ, then by following
Mushkelishvili [22] p.13, for the inequality of product function, we obtain

|R13(x)| ≤
1

2N−1(N + 1)!

[∣∣∣∣ ddxf (N+1)(η1x)−
d

dx
f (N+1)(η2x)

∣∣∣∣ ∣∣∣(1− ξ21x)UN−1(ξ1x)
∣∣∣

+

∣∣∣∣ ddxf (N+1)(η2x)

∣∣∣∣ ∣∣∣(1− ξ21x)UN−1(ξ1x)− (1− ξ22x)UN−1(ξ2x)
∣∣∣

+
∣∣∣f (N+1)(η1x)− f (N+1)(η2x)

∣∣∣ ∣∣∣NTN (ξ1x) + ξ1xUN−1(ξ1x)
∣∣∣

+
∣∣∣f (N+1)(η2x)

∣∣∣ ∣∣∣N(TN (ξ1x)− TN (ξ2x)) + ξ1xUN−1(ξ1x)− ξ2xUN−1(ξ2x)
∣∣∣]

(55)

≤ 1

2N−1(N + 1)!

[
A2|η1x − η2x|α +M2B2|ξ1x − ξ2x|+A1|η1x − η2x|

(
N +

1√
1− ξ21x

)
+M1

(
NB1

∣∣∣ξ1x − ξ2x

∣∣∣+B3

∣∣∣ξ1x − ξ2x

∣∣∣)]
≤ L3

2N−1(N + 1)!(N + 1)α

(
(2/3)α +

10

(N + 1)1−α

)
≤ 10.79L3

2N−1(N + 1)!(N + 1)α
.

(56)

From (53), (54) and (56), Eq. (48) gives

R1(x) ≤
9.23L1

2N−1(N − 1)!

ln(N + 1)

N
+

10.79L3

2N−1(N + 1)!(N + 1)α
. (57)

Finally, we estimate R2 in Eq (46). Using (47), we obtain

R2(x) = −
∫ x+ϵ

x−ϵ

e′N (ηt)− e′N (x)

t− x
dt+ e′N (ξ1x)− e′N (ξ2x) = R21(x) +R22(x),

where ξ1x ∈ (x, x+ ϵ), ξ2x ∈ (x− ϵ, x) and

R21(x) = −
∫ x+ϵ

x−ϵ

e′N (ξt)− e′N (x)

t− x
dt, R22(x) = e′N (ξ1x)− e′N (ξ2x), (58)

Since |ηt − x| ≤ c|t− x| and by applying Eqs. (51) and (55), we get∣∣e′N (ηt)− e′N (x)
∣∣ ≤ 1

2N−1(N + 1)!

[
A2|η1t − ηx|α +M2B2|ηt − x|+

+A1|η1t − ηx|

(
N +

1√
1− η2t

)
+M1(NB1|ηt − x|+B3|ηt − x|)

]
≤ L3

2N−1(N + 1)!

[
c1|t− x|α + c2|t− x|+

+c1|t− x|

(
N +

1√
ϵ(2− ϵ)

)
+ (N + 1)c2|t− x|

]
≤ CL3

2N−1(N + 1)!

(
1 + (2 + 3/

√
35)(N + 1)ϵ1−α

)
|t− x|α,
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so that

|R21| ≤
CL3

2N−1(N + 1)!

(
1 + 2.62(N + 1)ϵ1−α

)
−
∫ x+ϵ

x−ϵ

dt

|t− x|1−α

≤ 11.16CL3

α2N−1(N + 1)!(N + 1)α
, (59)

where C = max{c1, c2}, and L3 is the constant stated in R13.
For the last part of RN (f, x), we estimate R22 in the sense of Eq. (56), and since
ξ1x ∈ (x, x+ ϵ), ξ2x ∈ (x− ϵ, x),

|R22(x)| = |e′N (ξ1x)− e′N (ξ2x)| ≤
10.79L3

2N−1(N + 1)!(N + 1)α
.

Thus

|R2(x)| =
L3

2N−1(N + 1)!(N + 1)α

(
10.79 +

11.16C

α

)
. (60)

Substitution Eqs. (46), (57) and (60), we obtaine the desired estimation •

6. Numerical examples

Example 1. Consider the following HSIs

Qi(f, x) = =

∫ 1

−1

fi(t)

(t− x)2
dt, i = 0, 1, 2, 3

where

f1(t) = et cos t, (61)

f2(t) =
√

1− t2 cos t, (62)

and

f3(t) = et
√

1− t2 (63)

For each function, there is no analytical solution, therefore we compared our results
with Hui and Shia’s method [7] and Kutt’s result [21] at singular point x = 0.

Table I: Numerical results of AQS (27),
compared with Hui and Shia [7], and Kutt [21]

for the function (61)

n Eq. (27) Hui and Shia [7] Kutt [21]
4 -2.01335 -2.11100 -2.11100
5 -2.11159 NA -2.11100
6 -2.11054 -2.11100 -2.11102
7 -2.11087 NA -2.11100
8 -2.11107 -2.11100 -2.11187

Table II: Numerical results of AQS (32),
compared with Hui and Shia [7], and Kutt [21]

for the function (62)
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n Eq. (32) Hui and Shia [7] Kutt [21]
4 -3.89481 -3.90699 -3.90719
5 -3.87100 NA -3.90916
6 -3.91076 -3.90945 -3.90997
7 -3.91043 NA -3.91033
8 -3.91090 -3.91022 -3.91140

Table III: Numerical results of AQS (32),
compared with Hui and Shia [7], and Kutt [21] for the function (63)
n Eq. (32) Legendre Polynomial, Chebyshev Polynomial, Kutt’s method,

[7] [7] [21]
4 -2.32292 -2.32613 -2.33956 -2.32683
5 -2.29762 NA NA -2.33406
6 -2.33970 -2.33503 -2.33956 -2.33668
7 -2.34004 NA NA -2.33784
8 -2.33956 -2.33751 -2.33956 -2.33933

Example 2. Consider the quadratic density function andN takes the value 2n, (n =
2, 5).

φ(f, x) =

∫ 1

−1

t2 + 1

(t− x)2
dt, N = 4, 32. (64)

The exact solution is

φ(f, x) = 2 + 2x ln

(
1− x

1 + x

)
− (1 + x2)

2

1− x2
. (65)

From the results showed in Table IV, it can be seen that the present scheme is exact

for the polynomial of degree 2, for a set of x-values in (−1, 1), where we have defined
the error term by

EN (f) = ∥φ(f, x)− φN (f, x)∥c (66)

Table IV. The results of problem (64)
N x EN (f) N x EN (f)

-0.998 1.13687e−013 -0.998 2.38742e−012

-0.5 8.88178e−016 -0.5 9.94760e−014

4 0 4.44089e−016 32 0 2.10054e−013

0.5 8.88178e−016 0.5 1.09246e−013

0.998 1.13687e−013 0.998 1.53477e−011

Example 3. Consider the rational function f(t) = 1/(1 + t2) and

φ(f, x) =

∫ 1

−1

1

(1 + t2)(t− x)2
dt, N = 8, 16, 32, 64. (67)
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Table V. The results of problem (67)
N x EN (f) N x EN (f)

-0.998 0.32583 -0.998 2.84297e−009

-0.5 0.03381 -0.5 9.44458e−011

8 0 0.02454 32 0 7.59712e−011

0.5 0.033814 0.5 9.44964e−011

0.998 0.32583 0.998 2.83890e−009

-0.998 0.00129 -0.998 3.18323e−012

-0.5 1.07772e−005 -0.5 3.21076e−013

16 0 4.79270e−005 64 0 3.04201e−013

0.5 1.07772e−005 0.5 2.93543e−013

0.998 0.00129 0.998 8.86757e−012

From the figures in Table V, it shows that the error term EN (f) in (66) goes to zero
very fast as N increases. The method also provide a good convergence numerical
results even when x is close to the boundary points.

Example 4. Consider the special case when f(x) is a rational function and N
takes the value 2n, (n = 2, 6).

φ(f, x) =

∫ 1

−1

t2 + 1√
1− t2(t− x)2

dt, N = 4, 64. (68)

The exact solution is
φ(f, x) = π. (69)

From the results showed in Table VI, it can be seen that the present scheme is exact,

for a set of x-values in (−1, 1), where the error term is defined by Eq (66).

Table VI. The results of problem (68)
N x EN (f) N x EN (f)

-0.998 8.79297e−014 -0.998 9.47602e−011

-0.5 1.33227e−015 -0.5 4.70735e−013

4 0 8.88178e−016 64 0 6.83453e−013

0.5 1.33227e−015 0.5 -2.62013e−013

0.998 8.79297e−014 0.998 2.28972e−010

7. Conclusions

In this paper, an AQS for hypersingular integrals is developed. This method
is an extension of the CC method for Cauchy principal value integrals, where the
AQS exerts a classical Chebyshev polynomials of the first and second kinds. It is
found that our approach has the potency to assess (27) for all values of N , whereas
Hui and Shia’s [7] approach works only for even N . It is also found that the Cheby-
shev polynomials give better approximation to Legendre polynomial [7]. Moreover,
the numerical results show that by increasing the value of N and by choosing the
appropriate weight function, the error decreases very quickly and the convergence is
very fast, even when x is close to the end points.



98 Suzan J. Obaiys, Z.K. Eshkuvatov, N.M.A. Nik Long

REFERENCES

[1] A.Tadeu and J.Antonio, 3D acoustic wave simulation using BEM formulations: Closed form

integration of singular and hypersingular integrals, Engineering Analysis with Boundary Ele-

ments, 36(2012), 1389-1396.

[2] P.A. Martin and F. J. Rizzo, Hypersingular integrals: how smooth must the density be?, Int.

J. Num. Meth. Engng, 39(1996), 687-704.

[3] T. Hasegawa and T. Torii, An automatic Quadrature for Cauchy principle value integrals,

Math. Comp. 56(1991), 741-754.

[4] Z.K. Eskhuvatov, A. Ahmedov, N.M.A. Nik Long and N.J. Amalina, Approximating Cauchy-

type singular integral by an automatic quadrature scheme, J. Comp. Appl. Math., 235 (2011),

4675-4686.

[5] Z.K. Eskhuvatov and N.M.A. Nik Long, Approximating the singular integrals of Cauchy type

with weight function on the interval, J. Comp. Appl. Math., 235(2011), 47424753.

[6] H.R. Kutt, Quadrature formulae for finite part integrals, Report WISK 178, The National

Research Institute for Mathematical Sciences, Pretoria, 1975.

[7] C.Y. Hui and D. Shia, Evaluation of hypersingular integrals using Gaussian Quadrature. Int.

J. Numer. Meth. Engng., 44(1999), 205-214.

[8] J.T. Chen, H-K Hong, Review of dual boundary element methods with emphasis on hypersin-

gular integrals and divergent series, Appl. Mech. Rev., ASME, 52(1999), 17-33.

[9] C.W. Clenshaw and A.R. Curtis, A method for numerical integration on an automatic com-

puter, Numer. Math., 2(1960), p. 197.

[10] C. Yang, A unified approach with spectral convergence for the evaluation of hypersin-

gular and supersingular integrals with a periodic kernel, J. Comp. Appl. Math.,(DOI

10.1016/j.cam.2012.08.028).

[11] Y.Z. Chen, A numerical solution technique of hypersingular integral equation for curved cracks,

Comm. Num. Meth. Engng. 19(2003), 645-655.

[12] N.M.A. Nik Long and Z.K. Eskhuvatov, Hypersingular integral equation for multiple curved

cracks problem in plane elasticity, Int. J. Solids Struct. 46(2009), 2611-2617.

[13] C.Y. Hui and S. Mukherjee, Evaluation of hypersingular integrals in the boundary element

method by complex variable techniques, Int. J. Solids Struct., 34(1997), 203-221.

[14] P.A. Martin, Exact solution of a simple hypersingular integral equation, J. Int. Eq. Appl.,

4(1992), No. 2, 197-204.

[15] J.C. Mason and D.C. Handscomb, Chebyshev polynomials, CRC Press LLC (2003).

[16] I.K. Lifanov, L.N. Poltavskii, and G.M. Vainikko, Hypersingular integral equatios and their

applications, CRC Press, London (2004).

[17] W.M. Gentleman, Implementing Clenshaw-Curtis quadrature II: Computing the cosine trans-

formation, Comm. ACM 15(1972), 343-346.

[18] J.C. Mason, Chebyshev polynomials of the second, third and fourth kinds in approximation,

indefinite integration, and integral transforms, J. Comp. Appl. Math., 49(1993), 169-178.

[19] Prem K. Kythe, Handbook of computational methods for integration, Chapman & Hall, CRC

Press, USA (2005).

[20] R.P. Kanwal, Linear Integral Equations, Theory and Technique. Second Edition. Birkhauser.

Boston, (1997).

[21] H.R. Kutt, On the numerical evaluation of finite part integrals involving an algebraic singular-

ity, CSIR Special Report WISK 179, National Research Institute for Mathematical Sciences,

Pretoria, (1975).

[22] N.I Muskhelishvili, Singular integral equations. Noordhoff, Groningen, (1953).


