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ALMOST H-CONFORMAL SEMI-SLANT RIEMANNIAN MAPS TO 
QUATERNIONIC HERMITIAN MANIFOLDS

Kwang Soon PARK1

We introduce the concept of almost h-conformal semi-slant Riemannian maps
from Riemannian manifolds to almost quaternionic Hermitian manifolds, with the aim of

exploring new geometric properties and map behaviors within these structures. Specif-

ically, we define several key types of maps, including invariant, pluriharmonic, and
geodesic maps, and investigate conditions for these maps to exhibit harmonicity and

total geodesicity. Through these conditions, we show that h-conformal slant Riemann-

ian maps can, in certain cases, act as pseudo-horizontally weakly conformal maps and
pseudo-harmonic morphisms.
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1. Introduction

The study of Riemannian manifolds and their structures is fundamental in differ-
ential geometry, with applications spanning mathematics, physics, and computer science.
The incorporation of geometrical structures such as almost contact, Sasakian, Kahler, and
quaternionic Hermitian structures enhances the understanding of both intrinsic and extrin-
sic properties of these manifolds. Among them, quaternionic Hermitian manifolds provide a
generalized framework for complex and Kahler geometry, playing a significant role in theo-
retical physics, including supergravity, Yang-Mills theory, and Kaluza-Klein theory, as well
as in applied fields like computer vision and medical imaging ([21], [18], [2], [12], [15], [5],
[13], [23], [24]).

In addition to manifold structures, the study of maps between Riemannian manifolds
is essential for understanding how geometric properties transfer between spaces. Riemannian
submersions and slant Riemannian maps offer insight into the behavior of distributions under
different geometrical constraints. Almost h-slant Riemannian maps, in particular, exhibit
pseudo-horizontally weakly conformal properties and can act as pseudo-harmonic morphisms
[17], making them valuable tools for analyzing target manifolds and their applications in
mathematical and physical theories ([16], [9], [6], [10], [7], [20], [1]).

This paper extends these ideas by introducing almost h-conformal semi-slant Rie-
mannian maps from Riemannian manifolds to almost quaternionic Hermitian manifolds.
These maps integrate conformal and slant conditions within quaternionic structures, al-
lowing for new geometric insights. We investigate their harmonicity, contributing to the
study of rigidity and stability in quaternionic Hermitian geometry. The paper is structured
as follows: Section 2 reviews preliminary concepts, Section 3 introduces h-conformal and
almost h-conformal semi-slant Riemannian maps, Section 4 examines the associated distri-
butions and their harmonicity conditions, and Section 5 explores pseudo-horizontally weakly
conformal maps and pseudo-harmonic morphisms.
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2. Preliminaries

Let (P, gP ) and (Q, gQ) be Riemannian manifolds, where gP and gQ are Riemannian
metrics on the C∞-manifolds P and Q, respectively.

Let φ : (P, gP ) 7→ (Q, gQ) be a C∞-map.
Then we define the adjoint map ∗(φ∗)x of the differential (φ∗)x, x ∈ P , as follows:

gQ((φ∗)xY, W ) = gP (Y,
∗(φ∗)xW ) (2.1)

for Y ∈ TxP and W ∈ Tφ(x)Q.
The second fundamental form of φ is defined by

(∇φ∗)(Y,Z) := ∇φ
Y φ∗Z − φ∗(∇Y Z) for Y, Z ∈ Γ(TP ),

where ∇φ is the pullback connection [3].
We call the map φ harmonic and totally geodesic if the tension field τ(φ) = trace (∇φ∗) =

0 and (∇φ∗)(Y,Z) = 0 for Y,Z ∈ Γ(TP ), respectively [3].

Lemma 2.1. ([22]) Let (P, gP ) and (Q, gQ) be Riemannian manifolds and φ : (P, gP ) 7→
(Q, gQ) a C∞-map. Then we have

∇φ
Y φ∗Z −∇φ

Zφ∗Y − φ∗([Y,Z]) = 0 (2.2)

for Y,Z ∈ Γ(TP ).

Remark 2.1. From (2.2), ∇φ∗ is symmetric.

Let ker(φ∗)x = {Y ∈ TxP | (φ∗)xY = 0} for x ∈ P and denote by (ker(φ∗)x)
⊥ the

orthogonal complement of ker(φ∗)x in TxP . Let range (φ∗)x = {(φ∗)xY | Y ∈ TxP} for x ∈
P and denote by (range (φ∗)x)

⊥ the orthogonal complement of range (φ∗)x in φ−1Tφ(x)Q.
The map φ is said to be horizontally weakly conformal (HWC) at x ∈ P if either (i)

(φ∗)x = 0 or (ii) the differential (φ∗)x maps (ker(φ∗)x)
⊥ conformally into Tφ(x)Q. i.e.,

gQ((φ∗)xY, (φ∗)xZ) = λ2(x) · gP (Y, Z) (2.3)

for Y, Z ∈ (ker(φ∗)x)
⊥. We call the positive number λ(x) the dilation of φ at x. If it satisfies

the case (i), then we call the point x a critical point. If it satisfies the case (ii), then we call
the point x a regular point. The map φ is said to be a horizontally weakly conformal (HWC)
map if it is horizontally weakly conformal at any point of P [3].

A HWC map φ is called a conformal Riemannian map if every point of P is a regular
point and 0 < rank (φ∗)x = rank (φ∗)y ≤ min(dimP,dimQ) for x, y ∈ P . A HWC map φ is
said to be horizontally homothetic if Y (λ) = 0 for Y ∈ Γ((kerφ∗)

⊥).
Let φ : (P, gP ) 7→ (Q, gQ) be a conformal Riemannian map with dilation λ.
Then we have

(φ∗)x
∗(φ∗)xW = λ2W for W ∈ range (φ∗)x (2.4)

and
∗(φ∗)x (φ∗)xY = λ2Y for Y ∈ (ker(φ∗)x)

⊥. (2.5)

Given U ∈ Γ(φ−1TQ), we write

U = PU +QU, (2.6)

where PU ∈ Γ(rangeφ∗) and QU ∈ Γ((rangeφ∗)
⊥).

Given Y,Z ∈ Γ((kerφ∗)
⊥) and U ∈ Γ((rangeφ∗)

⊥), we define

∇̂φ
Y φ∗Z := P∇φ

Y φ∗Z (2.7)

and

∇φ
Y U = −SUφ∗Y +∇φ⊥

Y U, (2.8)

where −SUφ∗Y = P∇φ
Y U ∈ Γ(rangeφ∗) and ∇φ⊥

Y U = Q∇φ
Y U ∈ Γ((rangeφ∗)

⊥).
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Theorem 2.1. ([20]) Let φ : (P, gP ) 7→ (Q, gQ) be a conformal Riemannian map with
dilation λ. Then given Y,Z ∈ Γ((kerφ∗)

⊥), we obtain

(∇φ∗)(Y,Z) (2.9)

= P (∇φ∗)(Y,Z) +Q(∇φ∗)(Y, Z)

= Y (lnλ)φ∗Z + Z(lnλ)φ∗Y − gP (Y,Z)φ∗(∇ lnλ) + (∇φ∗)
⊥(Y, Z),

where (∇φ∗)
⊥(Y, Z) = Q(∇φ∗)(Y, Z).

Conveniently, we also define (∇φ∗)
r(Y,Z) := P (∇φ∗)(Y,Z), ∇̂φ

Y W := P∇φ
Y W , and

∇φ⊥
Y φ∗Z := Q∇φ

Y φ∗Z for Y, Z ∈ Γ((kerφ∗)
⊥) and W ∈ Γ(rangeφ∗).

Throughout this paper, we will use these notations.

3. Almost h-conformal semi-slant Riemannian maps

In this paper, we denote by (Q,E, gQ) an almost quaternionic Hermitian mani-
fold, where E is an almost quaternionic structure on Q (See [19]). We also denote by
(Q, I, J,K, gQ) a hyperkähler manifold, where (I, J,K, gQ) is a hyperkähler structure on Q
(See [19]). In this section, we introduce the notions of h-conformal semi-slant Riemann-
ian maps, almost h-conformal semi-slant Riemannian maps, h-conformal slant Riemannian
maps, h-conformal semi-invariant Riemannian maps, almost h-conformal semi-invariant Rie-
mannian maps and give some examples of such maps.

Definition 3.1. Let φ : (P, gP ) 7→ (Q,E, gQ) be a conformal Riemannian map. We call the
map φ an almost h-conformal semi-slant Riemannian map if given p ∈ P with a neighborhood
U , there is an open set V ⊂ Q with φ(U) ⊂ V and a quaternionic Hermitian basis {I, J,K}
of sections of E on V such that for R ∈ {I, J,K}, there exist two orthogonal complementary
distributions DR

1 ,D
R
2 ⊂ (kerφ∗)

⊥ on U such that

(kerφ∗)
⊥ = DR

1 ⊕DR
2 , R(φ∗D

R
1 ) = φ∗D

R
1 , (3.1)

and the angle θR = θR(Y ) between R (φ∗)qY and the space (φ∗)q(D
R
2 )q is constant for

nonzero Y ∈ (DR
2 )q and q ∈ U .

We call such a basis {I, J,K} an almost h-conformal semi-slant Riemannian basis
and the angles {θI , θJ , θK} almost h-conformal semi-slant Riemannian angles.

Remark 3.1. Let φ : (P, gP ) 7→ (Q,E, gQ) be an almost h-conformal semi-slant Riemannian
map. Furthermore,

(a) If D1 = DI
1 = DJ

1 = DK
1 and D2 = DI

2 = DJ
2 = DK

2 , then we call the map φ
an h-conformal semi-slant Riemannian map, the basis {I, J,K} an h-conformal semi-slant
Riemannian basis and the angles {θI , θJ , θK} h-conformal semi-slant Riemannian angles.

(b) If θI = θJ = θK = π
2 , then we call the map φ an almost h-conformal semi-invariant

Riemannian map and the basis {I, J,K} an almost h-conformal semi-invariant Riemannian
basis.

(c) If D1 = DI
1 = DJ

1 = DK
1 , D2 = DI

2 = DJ
2 = DK

2 , and θI = θJ = θK = π
2 , then we

call the map φ an h-conformal semi-invariant Riemannian map and the basis {I, J,K} an
h-conformal semi-invariant Riemannian basis.

(d) If DI
2 = DJ

2 = DK
2 = (kerφ∗)

⊥, then we call the map φ an h-conformal slant
Riemannian map, the basis {I, J,K} an h-conformal slant Riemannian basis and the angles
{θI , θJ , θK} h-conformal slant Riemannian angles.

(e) If DI
2 = DJ

2 = DK
2 = (kerφ∗)

⊥ and θI = θJ = θK = π
2 , then we call the map

φ an h-conformal anti-invariant Riemannian map and the basis {I, J,K} an h-conformal
anti-invariant Riemannian basis.
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In convenience, we denote an almost h-conformal semi-slant Riemannian map, an
h-conformal semi-slant Riemannian map, an almost h-conformal semi-invariant Riemann-
ian map, an h-conformal semi-invariant Riemannian map, an h-conformal slant Riemannian
map, an h-conformal anti-invariant Riemannian map, an almost h-conformal semi-slant Rie-
mannian basis, an h-conformal semi-slant Riemannian basis, an almost h-conformal semi-
invariant Riemannian basis, an h-conformal semi-invariant Riemannian basis, an h-conformal
slant Riemannian basis, an h-conformal anti-invariant Riemannian basis, almost h-conformal
semi-slant Riemannian angles, h-conformal semi-slant Riemannian angles, h-conformal slant
Riemannian angles by an ahssR map, an hssR map, an ahsiR map, an hsiR map, an hsR
map, an haiR map, an ahssR basis, an hssR basis, an ahsiR basis, an hsiR basis, an hsR
basis, an haiR basis, ahssR angles, hssR angles, hsR angles, respectively.

We obtain some examples of such maps. Consider a hyperkähler manifold (R4m, I, J,K, ⟨ , ⟩)
such that

I( ∂
∂x4k+1

) = ∂
∂x4k+2

, I( ∂
∂x4k+2

) = − ∂
∂x4k+1

, I( ∂
∂x4k+3

) = ∂
∂x4k+4

, I( ∂
∂x4k+4

) = − ∂
∂x4k+3

,

J( ∂
∂x4k+1

) = ∂
∂x4k+3

, J( ∂
∂x4k+2

) = − ∂
∂x4k+4

, J( ∂
∂x4k+3

) = − ∂
∂x4k+1

, J( ∂
∂x4k+4

) = ∂
∂x4k+2

,

K( ∂
∂x4k+1

) = ∂
∂x4k+4

,K( ∂
∂x4k+2

) = ∂
∂x4k+3

,K( ∂
∂x4k+3

) = − ∂
∂x4k+2

,K( ∂
∂x4k+4

) = − ∂
∂x4k+1

for k ∈ {0, 1, · · · ,m− 1}, where ⟨ , ⟩ is the Euclidean metric on R4m.

Example 3.1. Let (Q1, E1, g1) and (Q2, E2, g2) be almost quaternionic Hermitian mani-
folds. Let φ : Q1 7→ Q2 be a quaternionic submersion. Then the map φ is an h-conformal
slant Riemannian map (hsR map) with the hsR angles θI = θJ = θK = 0 and dilation λ = 1
[11].

Example 3.2. Let (P, gP ) be an n-dimensional Riemannian manifold and (Q,E, gQ) a 4m-
dimensional almost quaternionic Hermitian manifold. Let φ : (P, gP ) 7→ (Q,E, gQ) be a
conformal Riemannian map such that rankφ = 4m − 1 and dilation a smooth function λ.
Then the map φ is an almost h-conformal semi-invariant Riemannian map (ahsiR map) such
that with a local quaternionic Hermitian basis {I, J,K} of E, φ∗D

R
2 = R((φ∗[(kerφ∗)

⊥])⊥)
for R ∈ {I, J,K} and dilation λ.

Example 3.3. Let φ : Rn 7→ R4m be a conformal Riemannian map such that rankφ = 4m−1
and dilation a smooth function λ. Then the map φ is an almost h-conformal semi-invariant
Riemannian map (ahsiR map) such that φ∗D

R
2 = R((φ∗[(kerφ∗)

⊥])⊥) for R ∈ {I, J,K}
and dilation λ.

Example 3.4. Define a map φ : R7 7→ R8 by

φ(s1, · · · , s7) = (t1, · · · , t8) = π(s3, s5, s2 cosα, s7, 0, 78, s2 sinα, 56),
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where α ∈ (0, π
2 ). Then the map φ is an almost h-conformal semi-slant Riemannian map

(ahssR map) such that

kerφ∗ =<
∂

∂s1
,

∂

∂s4
,

∂

∂s6
>,

(kerφ∗)
⊥ =<

∂

∂s2
,

∂

∂s3
,

∂

∂s5
,

∂

∂s7
>,

DI
1 =<

∂

∂s3
,

∂

∂s5
>,DI

2 =<
∂

∂s2
,

∂

∂s7
>,

φ∗D
I
1 =<

∂

∂t1
,
∂

∂t2
>,φ∗D

I
2 =<

∂

∂t4
, sinα

∂

∂t7
+ cosα

∂

∂t3
>,

DJ
1 =<

∂

∂s5
,

∂

∂s7
>,DJ

2 =<
∂

∂s2
,

∂

∂s3
>,

φ∗D
J
1 =<

∂

∂t2
,
∂

∂t4
>,φ∗D

J
2 =<

∂

∂t1
, sinα

∂

∂t7
+ cosα

∂

∂t3
>,

DK
1 =<

∂

∂s3
,

∂

∂s7
>,DK

2 =<
∂

∂s2
,

∂

∂s5
>,

φ∗D
K
1 =<

∂

∂t1
,
∂

∂t4
>,φ∗D

K
2 =<

∂

∂t2
, sinα

∂

∂t7
+ cosα

∂

∂t3
>,

ahssR angles {θI = α, θJ = α, θK = α}, and dilation π.

Example 3.5. Define a map φ : R5 7→ R4 by

φ(s1, · · · , s5) = (t1, · · · , t4) = e(s2, s1, 0, 68).

Then the map φ is an almost h-conformal semi-slant Riemannian map (ahssR map) such
that

kerφ∗ =<
∂

∂s3
,

∂

∂s4
,

∂

∂s5
>,

(kerφ∗)
⊥ =<

∂

∂s1
,

∂

∂s2
>,

DI
1 = (kerφ∗)

⊥, φ∗D
I
1 =<

∂

∂t1
,
∂

∂t2
>,

DJ
2 = (kerφ∗)

⊥, φ∗D
J
2 =<

∂

∂t1
,
∂

∂t2
>,

DK
2 = (kerφ∗)

⊥, φ∗D
K
2 =<

∂

∂t1
,
∂

∂t2
>,

ahssR angles {θI = 0, θJ = π
2 , θK = π

2 }, and dilation e.

4. Geometry of distributions

In this section we consider the geometry of distributions and introduce invariant maps,
pluriharmonic maps, and geodesic maps.

Let φ : (P, gP ) 7→ (Q,E, gQ) be an ahssR map with an ahssR basis {I, J,K}.
Given Y ∈ Γ((kerφ∗)

⊥) and R ∈ {I, J,K}, we write

Y = PRY +QRY, (4.1)

where PRY ∈ Γ(DR
1 ) and QRY ∈ Γ(DR

2 ).
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Given U ∈ Γ(rangeφ∗) and R ∈ {I, J,K}, we have

RU = ϕRU + ωRU, (4.2)

where ϕRU ∈ Γ(rangeφ∗) and ωRU ∈ Γ((rangeφ∗)
⊥).

Given V ∈ Γ((rangeφ∗)
⊥) and R ∈ {I, J,K}, we get

RV = BRV + CRV, (4.3)

where BRV ∈ Γ(rangeφ∗) and CRV ∈ Γ((rangeφ∗)
⊥).

Define the tensor

φR := ∗(φ∗)ϕRφ∗ for R ∈ {I, J,K}. (4.4)

Remark 4.1. In Example 3.4, we have φI(
∂

∂s3
) = π2 ∂

∂s5
, φI(

∂
∂s5

) = −π2 ∂
∂s3

, φI(
∂

∂s2
) =

π2 cosα ∂
∂s7

, φI(
∂

∂s7
) = −π2 cosα ∂

∂s2
, φJ(

∂
∂s5

) = −π2 ∂
∂s7

, φJ(
∂

∂s7
) = π2 ∂

∂s5
, φJ(

∂
∂s2

) =

−π2 cosα ∂
∂s3

, φJ(
∂

∂s3
) = π2 cosα ∂

∂s2
, φK( ∂

∂s3
) = π2 ∂

∂s7
, φK( ∂

∂s7
) = −π2 ∂

∂s3
, φK( ∂

∂s2
) =

−π2 cosα ∂
∂s5

, φK( ∂
∂s5

) = π2 cosα ∂
∂s2

.

Lemma 4.1. Let φ : (P, gP ) 7→ (Q,E, gQ) be an ahssR map with an ahssR basis {I, J,K}
and ahssR angles {θI , θJ , θK}. Then we get

ϕ2
Rφ∗Y = − cos2 θR · φ∗Y (4.5)

for Y ∈ Γ(DR
2 ) and R ∈ {I, J,K}.

Proof. Given nonzero Y ∈ Γ(DR
2 ) and R ∈ {I, J,K}, we have

cos θR =
gQ(Rφ∗Y, ϕRφ∗Y )

|Rφ∗Y | |ϕRφ∗Y |
=

|ϕRφ∗Y |
|φ∗Y |

.

It deduces

cos2 θR gQ(φ∗Y, φ∗Y ) = gQ(ϕRφ∗Y, ϕRφ∗Y ) = −gQ(ϕ
2
Rφ∗Y, φ∗Y ).

Hence, by polarization,

cos2 θR gQ(φ∗Y1, φ∗Y2) = −gQ(ϕ
2
Rφ∗Y1, φ∗Y2)

for Y1, Y2 ∈ Γ(DR
2 ). Therefore, the result follows. □

Corollary 4.1. Let φ : (P, gP ) 7→ (Q,E, gQ) be an ahssR map with an ahssR basis {I, J,K},
ahssR angles {θI , θJ , θK}, and dilation λ. Then given R ∈ {I, J,K}, we have

φ2
RY = −λ4 cos2 θR · Y for Y ∈ Γ(DR

2 ) (4.6)

Definition 4.1. Let φ : (P, gP ) 7→ (Q, I, J,K, gQ) be an ahssR map with dilation λ such
that {I, J,K} is an ahssR basis with the ahssR angles {θI , θJ , θK}. Given R ∈ {I, J,K},
we call the map φ R-pluriharmonic, (kerφ∗)

⊥-R-pluriharmonic, kerφ∗-R-pluriharmonic,
DR

1 -R-pluriharmonic, DR
2 -R-pluriharmonic, (kerφ∗)

⊥-kerφ∗-R-pluriharmonic if

(∇φ∗)(φRY, Z)− (∇φ∗)(Y, φRZ) = 0. (4.7)

for Y,Z ∈ Γ(TP ), for Y,Z ∈ Γ((kerφ∗)
⊥), for Y,Z ∈ Γ(kerφ∗), for Y, Z ∈ Γ(DR

1 ), for
Y, Z ∈ Γ(DR

2 ), for Y ∈ Γ((kerφ∗)
⊥) and Z ∈ Γ(kerφ∗), respectively.

Definition 4.2. Let φ : (P, gP ) 7→ (Q, I, J,K, gQ) be an ahssR map with dilation λ such
that {I, J,K} is an ahssR basis with the ahssR angles {θI , θJ , θK}. Given R ∈ {I, J,K},
we call the map φ R-invariant, (kerφ∗)

⊥-R-invariant, kerφ∗-R-invariant, DR
1 -R-invariant,

DR
2 -R-invariant, (kerφ∗)

⊥-kerφ∗-R-invariant if

(∇φ∗)(φRY, Z) + (∇φ∗)(Y, φRZ) = 0. (4.8)

for Y,Z ∈ Γ(TP ), for Y,Z ∈ Γ((kerφ∗)
⊥), for Y,Z ∈ Γ(kerφ∗), for Y, Z ∈ Γ(DR

1 ), for
Y, Z ∈ Γ(DR

2 ), for Y ∈ Γ((kerφ∗)
⊥) and Z ∈ Γ(kerφ∗), respectively.
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Definition 4.3. Let φ : (P, gP ) 7→ (Q, I, J,K, gQ) be an ahssR map with dilation λ such that
{I, J,K} is an ahssR basis with the ahssR angles {θI , θJ , θK}. Given R ∈ {I, J,K}, we call
the map φ totally geodesic, (kerφ∗)

⊥-geodesic, kerφ∗-geodesic, D
R
1 -geodesic, D

R
2 -geodesic,

(kerφ∗)
⊥-kerφ∗-geodesic if

(∇φ∗)(Y, Z) = 0. (4.9)

for Y,Z ∈ Γ(TP ), for Y,Z ∈ Γ((kerφ∗)
⊥), for Y,Z ∈ Γ(kerφ∗), for Y, Z ∈ Γ(DR

1 ), for
Y, Z ∈ Γ(DR

2 ), for Y ∈ Γ((kerφ∗)
⊥) and Z ∈ Γ(kerφ∗), respectively.

Remark 4.2. (1) Given R ∈ {I, J,K}, we have (∇φ∗)(φRY, φRZ) = 0 for Y ∈ Γ(kerφ∗)
and Z ∈ Γ(TP ).

(2) By (2.4), (2.5), (4.4), and (4.6),

φ2
RY =

 0, Y ∈ Γ(kerφ∗)
−λ4Y, Y ∈ Γ(DR

1 )
−λ4 cos2 θRY, Y ∈ Γ(DR

2 )
(4.10)

for R ∈ {I, J,K}.

Lemma 4.2. Let φ : (P, gP ) 7→ (Q, I, J,K, gQ) be an ahssR map with dilation λ such that
{I, J,K} is an ahssR basis with the ahssR angles {θI , θJ , θK}. If the map φ is DR

1 -R-
pluriharmonic for some R ∈ {I, J,K}, then we obtain

(∇φ∗)(φRY, φRZ) = −λ4(∇φ∗)(Y,Z) for Y, Z ∈ Γ(DR
1 ). (4.11)

Proof. Given Y,Z ∈ Γ(DR
1 ), by (4.7) and (4.10), we have

(∇φ∗)(φRY, φRZ) = (∇φ∗)(Y, φ
2
RZ)

= (∇φ∗)(Y,−λ4Z)

= −λ4(∇φ∗)(Y,Z).

□

Similarly,

Lemma 4.3. Let φ : (P, gP ) 7→ (Q, I, J,K, gQ) be an ahssR map with dilation λ such that
{I, J,K} is an ahssR basis with the ahssR angles {θI , θJ , θK}. If the map φ is DR

1 -R-
invariant for some R ∈ {I, J,K}, then we get

(∇φ∗)(φRY, φRZ) = λ4(∇φ∗)(Y,Z) for Y,Z ∈ Γ(DR
1 ). (4.12)

Lemma 4.4. Let φ : (P, gP ) 7→ (Q, I, J,K, gQ) be an ahssR map with dilation λ such that
{I, J,K} is an ahssR basis with the ahssR angles {θI , θJ , θK}. If the map φ is DR

2 -R-
invariant for some R ∈ {I, J,K}, then we obtain

(∇φ∗)(φRY, φRZ) = λ4 cos2 θR(∇φ∗)(Y, Z) for Y,Z ∈ Γ(DR
2 ). (4.13)

Lemma 4.5. Let φ : (P, gP ) 7→ (Q, I, J,K, gQ) be an ahssR map with dilation λ such that
{I, J,K} is an ahssR basis with the ahssR angles {θI , θJ , θK}. If the map φ is DR

2 -R-
pluriharmonic for some R ∈ {I, J,K}, then we obtain

(∇φ∗)(φRY, φRZ) = −λ4 cos2 θR(∇φ∗)(Y,Z) for Y, Z ∈ Γ(DR
2 ). (4.14)

Theorem 4.1. Let φ : (P, gP ) 7→ (Q, I, J,K, gQ) be an ahssR map with dilation λ. If the
map φ is (kerφ∗)

⊥-geodesic, then the map φ is horizontally homothetic.

Proof. Since the map φ is a conformal Riemannian map, given X,Y, Z ∈ Γ((kerφ∗)
⊥), we

have

gQ(φ∗Y, φ∗Z) = λ2gP (Y, Z) (4.15)
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so that

XgQ(φ∗Y, φ∗Z) = X(λ2gP (Y,Z)). (4.16)

We obtain

XgQ(φ∗Y, φ∗Z) = gQ(∇φ
Xφ∗Y, φ∗Z) + gQ(φ∗Y,∇φ

Xφ∗Z)

= gQ(φ∗∇XY, φ∗Z) + gQ(φ∗Y, φ∗∇XZ)

= λ2gP (∇XY,Z) + λ2gP (Y,∇XZ)

= λ2XgP (Y, Z)

and

X(λ2gP (Y, Z)) = X(λ2)gP (Y, Z) + λ2XgP (Y, Z)

= 2λX(λ)gP (Y,Z) + λ2XgP (Y,Z).

Hence,

X(λ) = 0 for X ∈ Γ((kerφ∗)
⊥).

Therefore, the result follows. □

Now, we deal with a rigidity theorem on ahssR maps.

Theorem 4.2. Let φ : (P, gP ) 7→ (Q, I, J,K, gQ) be an ahssR map with dilation λ such that
{I, J,K} is an ahssR basis with the ahssR angles {θI , θJ , θK} ⊂ [0, π

2 ). Assume that the

tensor ωR is parallel for some R ∈ {I, J,K} and (∇φ∗)
⊥(Y,Z) ̸= 0 for some Y, Z ∈ Γ(DR

2 ).
Then there does not exist a map φ : (P, gP ) 7→ (Q, I, J,K, gQ) such that the map φ is
DR

2 -R-invariant.

Proof. Suppose that there exists a map φ : (P, gP ) 7→ (Q, I, J,K, gQ) such that the map φ
is DR

2 -R-invariant. Given Y, Z ∈ Γ(DR
2 ), from (??) and (4.13), we have

(∇φ∗)
⊥(φRY, φRZ) = −λ4 cos2 θR · (∇φ∗)

⊥(Y,Z)

and

(∇φ∗)
⊥(φRY, φRZ) = λ4 cos2 θR · (∇φ∗)

⊥(Y,Z).

It is not possible.
Therefore, we get the result. □

Let φ : (P, gP ) 7→ (Q, I, J,K, gQ) be an ahssR map with dilation λ such that {I, J,K}
is an ahssR basis with the ahssR angles {θI , θJ , θK}.

Since R(φ∗D
R
1 ) = φ∗D

R
1 for R ∈ {I, J,K}, we can choose a local orthonormal frame

{φ∗v1, Rφ∗v1, · · · , φ∗vlR , Rφ∗vlR} of φ∗D
R
1 so that {λv1, 1

λφRv1 , · · · , λvlR , 1
λφRvlR} is a lo-

cal orthonormal frame ofDR
1 . We can also choose a local orthonormal frame {φ∗e1, sec θRϕRφ∗e1, · · · , φ∗ekR

, sec θRϕRφ∗ekR
}

of φ∗D
R
2 for θR ∈ [0, π

2 ) so that {λe1, 1
λ sec θRφRe1, · · · , λekR

, 1
λ sec θRφRekR

} is a local or-

thonormal frame of DR
2 .

Theorem 4.3. Let φ : (P, gP ) 7→ (Q, I, J,K, gQ) be an ahssR map with dilation λ such that
{I, J,K} is an ahssR basis with the ahssR angles {θI , θJ , θK} ⊂ [0, π

2 ). Assume that all the
fibers are minimal submanifolds of P . Then each of the following assertions implies that φ
is harmonic.

(a) The map φ is DI
1-I-pluriharmonic and DI

2-I-pluriharmonic.
(b) The map φ is DJ

1 -J-pluriharmonic and DJ
2 -J-pluriharmonic.

(c) The map φ is DK
1 -K-pluriharmonic and DK

2 -K-pluriharmonic.
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Proof. Since TP = kerφ∗ ⊕ (kerφ∗)
⊥ = kerφ∗ ⊕DR

1 ⊕DR
2 for R ∈ {I, J,K},

τ(φ) = trace (∇φ∗)

= trace (∇φ∗)|kerφ∗ + trace (∇φ∗)|DR
1
+ trace (∇φ∗)|DR

2
.

Furthermore, all the fibers are minimal submanifolds of P if and only if trace (∇φ∗)|kerφ∗ =
0.

By Corollary 4.2, we have

trace (∇φ∗)|DR
1
=

lR∑
i=1

{(∇φ∗)(λvi, λvi) + (∇φ∗)(
1

λ
φRvi,

1

λ
φRvi)}

=

lR∑
i=1

{λ2(∇φ∗)(vi, vi) +
1

λ2
(∇φ∗)(φRvi, φRvi)}

=

lR∑
i=1

{λ2(∇φ∗)(vi, vi) +
1

λ2
(−λ4(∇φ∗)(vi, vi))}

= 0.

By Corollary 4.5, we obtain

trace (∇φ∗)|DR
2
=

kR∑
j=1

{(∇φ∗)(λej , λej) + (∇φ∗)(
1

λ
sec θRφRej ,

1

λ
sec θRφRej)}

=

kR∑
j=1

{λ2(∇φ∗)(ej , ej) +
1

λ2
sec2 θR(∇φ∗)(φRej , φRej)}

=

kR∑
j=1

{λ2(∇φ∗)(ej , ej) +
1

λ2
sec2 θR(−λ4 cos2 θR(∇φ∗)(ej , ej))}

= 0.

Therefore, the result follows. □

5. Pseudo-horizontally weakly conformal maps

In this section we deal with some notions: pseudo-horizontally weakly conformal
(PHWC) maps, pseudo-harmonic morphisms (PHM). From [3], we get

Lemma 5.1. Let φ : (P, gP ) 7→ (Q, gQ) be a C∞-map and let x ∈ P . Then the following
assertions are equivalent:

(a) The map φ is HWC at x with dilation λ(x).
(b) The adjoint ∗(φ∗)x of (φ∗)x satisfies

(φ∗)x ◦ ∗(φ∗)x = λ(x)2 · id on range (φ∗)x. (5.1)

Let φ be a C∞-map from a Riemannian manifold (P, gP ) to an almost Hermitian
manifold (Q, J, gQ). The map φ is called a pseudo-horizontally weakly conformal (PHWC)

at x ∈ P if ∗(φ∗)x(T
1,0
φ(x)Q) is isotropic. i.e.,

gP (
∗(φ∗)xU,

∗(φ∗)xV ) = 0 for U, V ∈ T 1,0
φ(x)Q. (5.2)

We call the map φ a pseudo-horizontally weakly conformal (PHWC) map if it is pseudo-
horizontally weakly conformal at each point of P [3]. From [3], we have
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Lemma 5.2. Let φ be a C∞-map from a Riemannian manifold (P, gP ) to an almost Her-
mitian manifold (Q, J, gQ) and x ∈ P . Then the following assertions are equivalent:

(a) The map φ is PHWC at x.
(b) The composition of ∗(φ∗)x and (φ∗)x commutes with J . i.e.,

[(φ∗)x ◦ ∗(φ∗)x, J ] = 0. (5.3)

Corollary 5.1. Let φ : (P, gP ) 7→ (Q, I, J,K, gQ) be an hsR map with dilation λ such that
{I, J,K} is an hsR basis with the hsR angles {θI , θJ , θK}. Assume that θR = 0 for some
R ∈ {I, J,K}. Then the map φ : (P, gP ) 7→ (Q,R, gQ) is PHWC.

Proof. Given x ∈ P , since θR = 0, we deduce R(range (φ∗)x) ⊂ range (φ∗)x so that by (2.4),

(φ∗)x
∗(φ∗)xRZ = λ2RZ

= R(λ2Z)

= R(φ∗)x
∗(φ∗)xZ

for Z ∈ range (φ∗)x.
By Lemma 5.2, the result follows. □

Let φ be a PHWC map from a Riemannian manifold (P, gP ) to a Kähler manifold
(Q, J, gQ). We call the map φ a pseudo-harmonic morphism (PHM) if it is harmonic.

Remark 5.1. Let φ be a C∞-map from a Riemannian manifold (P, gP ) to a Kähler manifold
(Q, J, gQ). Loubeau [14] proved that the map φ pulls back local ± holomorphic functions to
local harmonic functions if and only if the map φ is a PHM.

Using Theorem 4.3, Corollary 5.1, and Remark 5.1, we obtain

Theorem 5.1. Let φ : (P, gP ) 7→ (Q, I, J,K, gQ) be an hsR map with dilation λ such that
{I, J,K} is an hsR basis with the hsR angles {θI , θJ , θK}. Assume that all the fibers are
minimal submanifolds of P and the map φ is DR

1 -R-pluriharmonic and DR
2 -R-pluriharmonic

for some R ∈ {I, J,K}.
If θR = 0, then the map φ : (P, gP ) 7→ (Q,R, gQ) is a PHM so that φ pulls back local

± holomorphic functions to local harmonic functions.

6. Applications

The study of almost h-conformal semi-slant Riemannian maps has significant impli-
cations in both theoretical and applied fields, particularly in areas involving quaternionic
structures and harmonic maps. In theoretical physics, these maps play a role in Kaluza-Klein
theory, Yang-Mills theory, and supergravity, offering geometric tools for unifying physical
forces and modeling smooth transitions in gravitational and particle physics contexts [[2],
[12], [15]]. Their harmonic properties provide insights into continuous mappings essential
for stability in these frameworks.

In applied fields, quaternionic and Riemannian structures are widely used in computer
vision and medical imaging, particularly in shape analysis, object recognition, and 3D image
registration [[13], [23], [24]]. Almost h-conformal semi-slant Riemannian maps contribute
to these applications by providing tools for precise spatial transformations and geometric
modeling. Additionally, the criteria developed for pseudo-horizontally weakly conformal and
pseudo-harmonic morphisms lay the groundwork for applying these maps in conformal and
harmonic transformations, advancing computational algorithms in various disciplines.



Almost h-conformal semi-slant Riemannian maps 21

7. Conclusion

In this paper, we introduced almost h-conformal semi-slant Riemannian maps from
Riemannian manifolds to almost quaternionic Hermitian manifolds, extending classical Rie-
mannian maps by incorporating conformal and slant conditions within quaternionic struc-
tures. We defined various types of maps, such as invariant, pluriharmonic, and geodesic
maps, and established conditions for harmonicity. These results showed that, under cer-
tain conditions, h-conformal slant Riemannian maps can act as pseudo-horizontally weakly
conformal maps and pseudo-harmonic morphisms, expanding their theoretical and applied
significance.

Our findings deepen the understanding of quaternionic Hermitian manifolds and pro-
vide a foundation for future research. Potential directions include applications in mathemat-
ical physics and computer science, as well as investigations into the stability and rigidity of
these maps in dynamic settings. Further exploration of their properties in real-world mod-
eling, from theoretical physics simulations to computational imaging, could enhance their
practical relevance.
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