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GLOBAL STABILITY ANALYSIS OF A VEISV MODEL FOR
NETWORK WORM ATTACK

Mahmood Parsamanesh1

In this paper, a VEISV network worm attack model is investi-
gated. It is established that the worm-free equilibrium is locally as well as
globally asymptotically stable when R0 < 1. When R0 > 1, the local and
global asymptotic stability of the worm-epidemic equilibrium are derived em-
ploying the second additive compound matrix approach and the direct Lya-
punov method, respectively.
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1. Introduction

Toutonji et al. in [15] established the following VEISV model for network
worm attack: 

V ′ = −fEV − ψ1V + ϕS,
E ′ = fEV − (α + ψ2)E,
I ′ = αE − (γ + θ)I,
S ′ = µN + ψ1V + ψ2E + γI − ϕS

(1)

The parameters and notations in the model are summarized in Table 1. In
procedure of building the model it has been assumed that the number of re-
placed hosts is equal to the number of dysfunctional hosts as µN = θI [15].
Then by summarizing the equations of system (1) we find that N ′ = 0 and
thus total number of hosts N = V (t) + E(t) + I(t) + S(t) is fixed. obviously,
the region Γ = {(V,E, I, S) ∈ R4

+ : V + E + I + S = N} is the positively

invariant set of (1). Also f = αβ
N

represents the force of incident where β is
contact rate. Omitting the variable S = N − V − E − I from system (1) the
following system is obtained: V ′ = ϕN − fEV − (ψ1 + ϕ)V − ϕE − ϕI,

E ′ = fEV − (α + ψ2)E,
I ′ = αE − (γ + θ)I.

(2)
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Table 1. Notations and parameters in the VEISV model (1).

Parameter Explanation
V (t) Number of vulnerable hosts at time t
E(t) Number of exposed hosts at time t
I(t) Number of infectious hosts at time t
S(t) Number of secured hosts at timet
N Total number of hosts
β Contact rate
α State transition rate from E to I
ψ1 State transition rate from V to S
ψ2 State transition rate from E to S
γ State transition rate from I to S
ϕ State transition rate from S to V
θ Dysfunctional rate
µ Replacement rate

Two equilibria of system (2) are: the worm-free equilibrium when E = 0

EQwf = (V 0, E0, I0) =

(
ϕN

ψ1 + ϕ
, 0, 0

)
,

and the worm-epidemic equilibrium for E > 0

EQwe = (V ∗, E∗, I∗)

=

(α + ψ2)N

αβ
,
αβϕ− (ψ1 + ϕ)(ψ2 + α)

αβ
(
α + ψ2 + ϕ(1 + α

γ+θ
)
)N, α

γ + θ
E∗

 .

To find the basic reproduction number of the model, we use the next
generation matrix method developed in [16]. Suppose the vector y indicates all
infected states such as exposed and infectious individuals. Thus let y = (E, I),
then from system (2) it can be seen that

dy

dt
= F −W,

with F =

(
fEV

0

)
and W =

(
−(α + ψ2)E
αE − (γ + θ)I

)
.

Also let

F = ∂F
∂y

∣∣∣
EQwf

=

(
fV 0 0

0 0

)
and W = ∂W

∂y

∣∣∣
EQwf

=

(
α + ψ2 0
−α γ + θ

)
.

Therefore we obtain

R0 = ρ(FW−1) =
αβϕ

(ψ1 + ϕ)(ψ2 + α)
, (3)

where, R0 is called the basic reproduction number of model (2) and it is de-
fined as the number of secondary infectious hosts in a completely vulnerable
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network[3]. Note that

E∗ =
(ψ1 + ϕ)(ψ2 + α)(R0 − 1)

αβ
(
α + ψ2 + ϕ(1 + α

γ+θ
)
)N,

and thus the worm-epidemic equilibrium EQwe exists if R0 > 1.
By above discussion we have the following:

Lemma 1.1. System (2) has ONLY the worm-free equilibrium EQwf when
R0 ≤ 1. If R0 > 1 the system also has a UNIQUE worm-epidemic equilibrium
EQwe.

2. Stability of the worm-free equilibrium

It can be seen easily that the eigenvalues of the Jacobian matrix of system
(2) at the worm-free equilibrium EQwf are real and negative provided that
R0 < 1. from this or Theorem 2 in [16] we have the following:

Lemma 2.1. The worm-free equilibrium EQwf is locally asymptotically stable
for R0 < 1 and unstable for R0 > 1.

The global asymptotic stability of the disease-free equilibrium has been
studied separately by many authors[2, 5, 6, 10]. We use the approach intro-
duced in [2] to derive the global asymptotic stability of EQwf . We first describe
briefly this procedure.
Assume the system can be written in the following form:

dx

dt
= h(x,y),

dy

dt
= g(x,y), g(x, 0) = 0, (4)

where x and y denote uninfected states (such as susceptible, vaccinated and
quarantined individuals) and infected states (such as exposed and infectious
individuals), respectively. Also, denote U0 = (x0, 0) as the disease-free equi-
librium of the system and assume that two below conditions hold:
(H1) x0 is globally asymptotically stable for dx

dt
= h(x, 0),

(H2) g(x,y) = Ay − ĝ(x,y), ĝ(x,y) ≥ 0 ∈ Γ,

where A = ∂g
∂y

∣∣∣
U0

is a Metzler matrix (the off-diagonal elements of A are

non-negative) and Γ is the positive invariant region in which the system is
considered. Then the following lemma holds[2].

Lemma 2.2. The disease-free equilibrium U0 = (x0, 0) of system (4) is globally
asymptotically stable provided that R0 < 1 and assumptions (H1) and (H2) are
satisfied.

Now we state the following theorem:
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Theorem 2.1. The worm-free equilibrium EQwf of system (2) is globally
asymptotically stable if R0 < 1.

Proof. Let x = V and y = (E, I). Thus

h(x,y) = ϕN − fEV − (ψ1 + ϕ)V − ϕE − ϕI,

which is a linear system that is globally asymptotically stable at x0 = V 0. On
the other hand

g(x,y) =

(
fEV − (α + ψ2)E
αE − (γ + θ)I

)
,

and this follows that

A =
∂g

∂y

∣∣∣
U0

=

(
fV 0 − (α + ψ2) 0

α −(γ + θ)

)
,

and

ĝ = Ay − g =

(
fE(V 0 − V )

0

)
.

From first equation of system (1) we have

V ′ = −fEV − ψ1V + ϕS

≤ −ψ1V + ϕ(N − V − I − E)

≤ −(ψ1 + ϕ)V + ϕN.

Therefore we always have V ≤ V 0 = ϕN
ψ1+ϕ

and thus ĝ ≥ 0. Hence conditions

(H1) and (H2) of the Lemma 2.2 hold and this completes the global asymptotic
stability of EQwf .

Remark 2.1. The stability of EQwf also has been derived by Toutonji et al.
in [15]. They defined the Lyapunov function L(t) = E(t) for global stability
and showed that

L′(t) ≤ (α + ψ2)(R0 − 1)E(t).

3. Stability of the worm-epidemic equilibrium

In this section we focus on the stability of the worm-epidemic equilibrium
EQwe. First we consider the local asymptotic stability of EQwe by applying
the following lemma[12].

Lemma 3.1. Any matrix M ∈Mn(R) is stable if and only if
(1) The second additive compound matrix M [2] is stable,
(2)(−1)ndet(M) > 0.

A survey on definitions and properties of compound matrices and their
connections to differential equations can be found in [13]. The second additive
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compound matrix of a n × n matrix A =
(
aij

)
is an

(
n
2

)
×
(
n
2

)
matrix and it

is denoted by A[2]. For n = 3, it is as follows:

A[2] =

 a11 + a22 a23 −a13
a32 a11 + a33 a12
−a31 a21 a22 + a33

 .

The following theorem considers the local asymptotic stability of the worm-
epidemic state.

Theorem 3.1. The worm-epidemic equilibrium EQwe is locally asymptotically
stable if R0 > 1.

Proof. Note that EQwe is stable if and only if the corresponding Jaco-
bian matrix J(EQwe) is stable. The Jacobian matrix at EQwe and its second
additive compound matrix are

J(EQwe) =

 −(fE∗ + ψ1 + ϕ) −(α + ψ2 + ϕ) −ϕ
fE∗ 0 0

0 α −(γ + θ)

 .

and

J [2](EQwe) =

 −fE∗ − (ψ1 + ϕ) 0 ϕ
α −fE∗ − (ψ1 + ϕ+ γ + θ) −(α + ψ2 + ϕ)
0 fE∗ −(γ + θ)

 .

Then we have

det(J(EQwe)) = −fE∗[(α + ψ2 + ϕ)(γ + θ) + αϕ] < 0,

hence condition (2) of Lemma 3.1 holds. This also implies that λ1λ2λ3 < 0,
where λj, j = 1, 2, 3 is an eigenvalue of the Jacobian matrix J(EQwe). Thus
either R(λj) < 0 for j = 1, 2, 3 or R(λ1) < 0 ≤ R(λ2) ≤ R(λ3), in which R(λ)
indicates real part of λ.
Besides, it easily can be seen that tr(J(EQwe)) < 0. This means that λ1 +
λ2 + λ3 < 0 and thus we have R(λ1 + λ2) < 0 and R(λ1 + λ3) < 0.
Now note that eigenvalues of matrix J [2](EQwe) are λ1+λ2, λ1+λ3 and λ2+λ3.
In addition we have

−1 = sgn
(
J [2](EQwe)

)
= sgn (R(λ1 + λ2)R(λ1 + λ3)R(λ2 + λ3))

= sgn (R(λ2 + λ3)) .

Therefore all eigenvalues of J [2](EQwe) have negative real parts and this shows
that part (1) of Lemma 3.1 is also satisfied.

As the next object, we turn to establish the global stability of the worm-
epidemic equilibrium EQwe of system (1). Yang employed a geometric ap-
proach developed by Li and Muldowney[11] and proved that EQwe is globally
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asymptotically stable under some conditions[18]. To accomplish this task, we
use the Direct Lyapunov Method[9], one of the most powerful techniques for
qualitative analysis of a dynamical system. This method has been used widely
to global analysis of epidemic models[1, 4, 7, 8, 14, 17]. However, efficiency
of this method depends on finding an auxiliary function, called the Lyapunov
function which usually is not straightforward.

Theorem 3.2. The worm-epidemic equilibrium EQwe of system (1) is globally
asymptotically stable if R0 > 1.

Proof. System (1) can be written in the form E ′ = fEV − (α + ψ2)E,
I ′ = αE − (γ + θ)I,
S ′ = (µ+ ψ1)N + (ψ2 − ψ1)E + (γ − ψ1)I − (ϕ+ ψ1)S.

(5)

For positive constants m,n and c, consider the function

W = W (V,E, I) = m

(
E − E∗ − E∗ ln

E

E∗

)
+
n

2
(I − I∗)2 +

c

2
(S − S∗)2,

thus we have

W ′ = m
E ′

E
(E − E∗) + nI ′(I − I∗) + cS ′(S − S∗)

= m[fV − (α + ψ2)](E − E∗) + n[αE − (γ + θ)I](I − I∗)
+ c[(µ+ ψ1)N + (ψ2 − ψ1)E + (γ − ψ1)I − (ϕ+ ψ1)S](S − S∗)

At EQwe we have from (5)

α + ψ2 = fV ∗,
αE∗ − (γ + θ)I∗ = 0,
(µ+ ψ1)N = (ψ1 − ψ2)E

∗ + (ψ1 − γ)I∗ + (ϕ+ ψ1)S
∗.

(6)

Hence we get

W ′ = m[f(V − V ∗)](E − E∗) + n[α(E − E∗)− (γ + θ)(I − I∗)](I − I∗)
+ c[(ψ2 − ψ1)(E − E∗) + (γ − ψ1)(I − I∗)− (ϕ+ ψ1)(S − S∗)](S − S∗).

We see

(V − V ∗)(E − E∗) = −(E − E∗)2 − (I − I∗)(E − E∗)− (S − S∗)(E − E∗),
then we have

W ′ = −mf(E − E∗)2 − n(γ + θ)(I − I∗)2 − c(ϕ+ ψ1)(S − S∗)2

+ [−mf + nα](E − E∗)(I − I∗)
+ [−mf + c(ψ2 − ψ1)](E − E∗)(S − S∗)
− c(ψ1 − γ)(I − I∗)(S − S∗)

= −UMU>, (7)
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where U = (E − E∗, I − I∗, S − S∗) and

M =

 mf mf−nα
2

mf+c(ψ1−ψ2)
2

mf−nα
2

n(γ + θ) c(ψ1−γ)
2

mf+c(ψ1−ψ2)
2

c(ψ1−γ)
2

c(ϕ+ ψ1)

 .

We claim that there exists m,n and c such that matrix M is negative definite
for suitably chosen parameters and then EQwe is globally asymptotically sta-
ble. For instance, choosing

m = 1, n =
β

N
, and c =

αβ

N(ψ2 − ψ1)
,

we can easily seen that for ψ1 = γ, the matrix M is negative definite.

4. Simulations and numerical examples

In this section the numerical solutions of the model are given and theo-
retical results obtained in previous sections are studied via some examples.

Example 4.1. Assume that the units of time and host size suggest one hour
and one thousand hosts, respectively. Let the value of the parameters in model
(5) are β = 15, α = 0.15, θ = 0, ψ1 = 0.02, ψ2 = 0.8, γ = 0.5, ϕ = 0.005. Also
suppose that the initial number of hosts are E(0) = 0.01, I(0) = 0.001 and
S(0) = 0 with a total number N = 1500 of hosts. Then the basic reproduc-
tion number R0 = 0.474 is less than one and thus the worm-free equilibrium
EQwf = (300, 0, 0)> is globally stable. The solution of system (2) until the
end time T = 500 is shown in Figure 1 together with the equilibrium EQwf

as exact solution. The error value of the approximated numerical solution is
evaluated as norm two of difference between the numerical solution and the
theoretical solution of worm-free equilibrium:

error =‖ XT=1000 − EQwf ‖2= 2.576× 10−4

Example 4.2. Assume that the units of time and host size, and initial values
of hosts are as Example 4.1. Choose parameters in the model as β = 45,
α = 0.3, θ = 0, ψ1 = 0.003, ψ2 = 0.8, γ = 0.5, ϕ = 0.005. With these values
R0 = 7.671 is greater than one and therefore the worm-epidemic equilibrium
EQwe = (122.222, 5.887, 3.5312)> is globally stable. The system (1) has been
solved with these parameter values until time T = 1000. Figure 2 shows
trajectories of V and S components while Figure 3 displays this for E and
I. Also, The corresponding component of the worm-epidemic equilibrium as
the exact solution has been shown in each figure. The error value of the
approximation for these parameter values is obtained as error = 7.7616×10−5.
Moreover the phase portraits of the numerical solution are given in Figure 4
to illustrate the behavior of the model.
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Figure 1. Solutions of the model for values in Example 4.1 together
with their exact solution.

Figure 2. Solutions for components V and S until time T = 1000 for
values in Example 4.2 together with their exact solution.

5. Conclusions

In this paper a VEISV propagation model for network worm attack was
discussed. After a glance on basic properties of the model including, the basic
reproduction number and the equilibria of the model, we turned on the stability
of these states. It was proved that the worm-free state is locally as well as
globally asymptotically stable when R0 < 1. Furthermore, the second additive
compound matrix approach was used to establish the local asymptotic stability
of worm-epidemic state when R0 > 1. In this case, the global stability of the
state was also concluded by the aid of a Lyapunov function. Finally, numerical
simulations confirm the theoretical results discussed in the paper.
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Figure 3. Solutions for components E and I until time T = 1000 for
values in Example 4.2 together with their exact solution.

Figure 4. Phase portrait for solution of model (1) in three dimensions
(left) and two dimension (right) for values in Example 4.2
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