U.P.B. Sci. Bull., Series C, Vol. 71, Iss. 3, 2009 ISSN 1454-234x

A FRAMEWORK FOR PERFORMANCE PREDICTION IN
DISTRIBUTED SYSTEMS

Corina STRATAN', Valentin CRISTEA?

In sistemele distribuite de dimensiuni mari, parametrii de performantd ce
caracterizeaza diversele componente variaza frecvent, facand dificild gestiunea
resurselor. In aceastd lucrare prezentim o platformd pentru predictia
performantelor, ce poate fi utilizata pentru a imbundtafi eficienta sistemelor de
gestiune a resurselor. Platforma este integrata in sistemul de monitorizare
MonALISA si este flexibila, permitind selecarea unuia dintre algorimtii de predictie
disponibili sau adaugarea unor algoritmi noi. Am testat platforma in cadrul retelei
USLHCNet, pentru predictia traficului in retea.

In large scale distributed systems, the performance parameters of the various
components change frequently, making resource management a challenging task. In
this paper we present a performance prediction platform that can be used to
improve the efficiency of resource management systems. The framework is
integrated in the MonALISA monitoring system and is flexible, allowing the user to
select among the available prediction algorithms or to add new ones. We have tested
the framework by forecasting network traffic in the USLHCNet network.

Keywords: prediction, distributed systems, performance, monitoring
1. Introduction

One of the major challenges in developing applications for large scale
distributed systems is their dynamism. Due to the complexity of the systems and
to the large number of users, it is highly probable for some of their characteristics
to change even in a short time period. Changes may occur at various levels
(hardware, OS, application etc.), and there are different strategies that can be used
to handle them. We shall focus here on the changes that occur in the workload of
the distributed resources (CPUs, network links, memory etc.).

Besides the fact that the utilization of the distributed resources varies
frequently, another problem is that existing resources may fail or new ones may
join the system. These problems have been identifed as soon as large scale
distributed systems became a viable alternative to supercomputers; one of the first

! Prof., Faculty of Automatic Control and Computers, University POLITEHNICA of Bucharest,
Romania, corina.stratan@cs.pub.ro

2 Assist., Faculty of Automatic Control and Computers, University POLITEHNICA of Bucharest,
Romania




150 Corina Stratan, Valentin Cristea

strategies to tackle it (introduced in several works, like [1]) was dynamic resource
management. Unlike the static approach, in the dynamic one the resource
allocation is adjusted "on the fly", as a consequence to the variations in the
system's workload and also in in the users' demands.

Dynamic resource management often relies on prediction mechanisms in
order to get an estimation of what the resources utilization will be in the near
future, or of how many resources are likely to fail. For this reason, a prediction
mechanism constitutes an important component of any resource management
system. In this paper we present a framework for performance prediction
integrated in the MonALISA monitoring platform [2]. The framework is flexible,
allowing the users to select among several available prediction algorithms and
also to add new algorithms.

In the folowing paragraphs we make a short overview of the most
significant projects related to performance prediction in distributed systems.

One of the most well-known performance prediction frameworks for
distributed systems, the Network Weather Service [3], has been used in several
scheduling projects to improve the mechanisms of assigning tasks to
computational resources. The Network Weather Service has a distributed
architecture, comprising sensor elements that gather monitoring information,
memory elements that store the data as time series, and nameservers that facilitate
the discovery and the communication among elements.

One of the scheduling projects that uses the Network Weather Service is
AppLeS (Application Level Scheduler) [4]. AppLeS uses monitoring and
benchmarking to obtain information about the current performance of Grid
resources in a dynamic way; the results are further used in meta-scheduling. The
jobs are submitted with the aid of a broker (or navigator), together with their
hardware and software requirements; the broker then consults the GridScape,
which is a description of the Grid resources and of their current state. The
GridScape is updated with the results obtained by running periodically the NAS
Grid Benchmarks [5], and also with information provided by various monitoring
tools among which is the Network Weather Service.

[6] presents another approach for using prediction when making
scheduling decisions. The approach is based on a real-time scheduling advisor
(RTSA), which performs a statistical time series analysis in order to recommend
execution hosts for the tasks and also to predict their running time.

Another area of use for prediction is related to resource availability; one of
the most recent works in this direction is [7], which introduces a system for
resource availability monitoring, analysis, and prediction, named GriS-Prophet.
Knowing the probability for certain resources to be available in the near future can
significantly improve scheduling decisions; GriS-Prophet addresses this need by



A framework for performance prediction in distributed systems 151

providing resource availability prediction. The project also introduces a
classification of Grid resources on the base of their availability characteristics.

Regarding the prediction methods, among the most widely used are the
moving average techniques (that use a set of past parameter values from a time
series in order to predict the next value, by calculating the average of the past
values or by applying a more complex formula). The Network Weather Service
[3] uses several moving average methods, and automatically chooses from them
the method that is likely to be the most accurate at a given time step. Neural
networks are also frequently used for prediction, especially regarding network
measurements; a study of neural network predictors is done in [8]. [7] applies
methods from pattern recognition and classification, like Bayesian Inference and
Nearest Neighbor Predictor.

In the following sections we introduce our approach for performance
prediction, by presenting the general architecture of the prediction framework, the
prediction methods that we have used and some experimental results.

2. The Architecture of the Prediction Framework

Among the main design goals of the prediction framework we have
developed were the scalability, the flexibility and the ease-of-use. These goals
motivated the way we have structured the framework, by separating it into a front-
end that is integrated in the MonALISA repository and has the role of interacting
directly with the user, and a back-end that executes the actual prediction
algorithms. The MonALISA repositories are databases that store monitoring
information for long periods of time, and also provide a web interface based on
Java servlets, which allows the visualization of the stored data.

We shall briefly introduce as follows the components of the prediction
framework, that are presented in Fig. 1.

The web interface, based on Java servlets, is integrated with MonALISA
repository's interface and allows the user to:

e conFig. prediction parameters (the prediction method, the learning
interval and other specific parameters)

o visualize the prediction results, together with the real values

We have augmented the MonALISA repository's database so that it stores
predicted values, together with the actual parameter values collected from the
monitored sites. For a better flexibility, the predicted values are introduced in
separate tables and can be stored on a long term; this allows a further analysis of
these values and of their accuracy. The predicted values are inserted into the



152 Corina Stratan, Valentin Cristea

database with the aid of the prediction connector, which acts as an interface to the
prediction back-end. The prediction connector periodically sends parameter values
to the prediction engine; after applying a prediction method, the engine sends
back predicted values to the prediction connector, which inserts them into the
database. The prediction connector also transmits the settings chosen by the user
(prediction algorithm, learning interval etc.) to the back-end.

] ML Repository w f/l;redictian hack-end\\

DB

(Postgres)
Prediction Prediction
Connector Engine
Prediction

\ Algorithms /

I Service ./
oy, b

Fig. 1. The architecture of the MonALISA prediction framework.

The prediction back-end is separated from the repository for scalability
reasons; thus, it will be able to perform complex prediction algorithms without
introducing an additional load on the repository's machine (which is heavily
loaded most of the time with client requests). Also, the prediction algorithms are
developed separately from the prediction engine, so that we have the possibility to
introduce new algorithms with a minimal effort. So far we have implemented
three prediction methods that we present in the next section: moving average,
weighted moving average and exponential smoothing.

3. Prediction Methods

We have implemented in the framework three prediction methods of the
"moving average" type, that we shall present in this section; the methods are
presented in more detail in [9].



A framework for performance prediction in distributed systems 153

The prediction methods take as input a set of k parameter values from a
time series, denoted as: X, Xt1, ..., Xek+1. Lhese are values obtained from
monitoring the parameter, which can be any parameter from a distributed system
that has a numerical representation. The methods aim to obtain a forecast for the
value of the parameter at the next time step, x¢+1. We shall denote the forecasted
value with xpredqr;. As a simplification, we denoted the time steps with
consecutive natural numbers; in reality, the measurements are done at fixed time
intervals that have a length greater than 1, but the simplification does not affect
the prediction algorithm.

Moving Average

The moving average method calculates a "simple" average of the last k
observations and assigns this value to the parameter forecast:

X, T X, T+ X g
k

(M

xpred,,, =

This method has the advantage of being extremely simple to perform,
consuming minimal computational resources. On the other hand, the produced
values might be less accurate, as all the past values have an equal importance
when calculating the forecast. If the parameter varies rapidly and k is large, the
method gives too much importance to values obtained a long time before and
produces an inaccurate forecast (the curve for the forecasted values will be much
smoother than the one for the real values). Another disadvantage of this method is
that it can be applied only after at least £ measurements have been taken.

Weighted Moving Average

This method derives from the moving average method, but aims to
improve it by providing the possibility to assign different weights to the values
observed in the past. In this way we can give a greater importance to the most
recent values, by assigning them larger weights (and this is the most common
practice for using this method).

The forecasted value is calculated with the following formula:

WX X, + Wy XX, + ot W, XX,

k

xpredHl =

2

We have implemented this method by assigning to the most recent three
values a double weight compared with the other values. As we shall show in the



154 Corina Stratan, Valentin Cristea

next section, we have obtained better results than with the simple moving average
method.

Exponential Smoothing

The exponential smoothing method is similar with the weighted average,
assigning greater weights to the most recent observation and smaller weights to
the older ones. Specifically, the forecasted values are calculated as follows:

d =
xpred, = x, 3)

xpred,,, =axx,+(1—-a)x xpred,_,

where is the smoothing factor, and is a real number in the (0, 1) interval.

By repeatedly substituting the values of xpred into this equation, we obtain
a sum in which the weights for the past observations of x are in geometrical
progression: 1, (1-a), (1-0)?, (1-0)°, ... Small values of o give more importance to
the older observation, and have a strong smoothing effect, while larger (close to 1)
values give more importance to the recent observations.

4. Experimental Results

In order to test the prediction framework, we have conFig.d a MonALISA
repository to collect and store monitoring information from the US LHCNet
network [10]. LHCNet provides high-performance transatlantic connections
between several Tier 0 and Tier 1 computing centers from the LHC experiment.
With 10 Gbps bandwidth in its links, the network has been successfully used for a
wide variety of tasks, especially large file transfers.

The parameter for which we have tested the prediction methods was the
network traffic between two computing centers, one placed at CERN and the
other one placed in Chicago. More specifically, we used two parameters, one
representing the traffic from CERN to Chicago and the other one representing the
traffic from Chicago to CERN.

We have applied the following prediction methods for time intervals of 12
hours each:
moving average
weighted average
exponential smoothing with 10% smoothing factor
exponential smoothing with 20% smoothing factor



A framework for performance prediction in distributed systems 155

WAN Traffic

1.5 Ghps
1000 Mbps

Trafic IN

500 Mbps
0 bps — = -— - e
8.5 Ghps
8 Chps
7.5 Chps
7 Gbps
65 Gbps
7 Ghps
5.5 Ghps
5 Ghps
4.5 Ghps
& Ghps
35 Ghps
3 Ghbps
2.5 Gbps
2 Chps | \
1.5 Ghps | / ™ f \
1000 Mbps{ | N / ‘\\ [ N f \ b

Traffic OUT

. / S —-
500 Mbpr o W P o a Y,

oooooooooooooooooooooooooooo
8 8 3 8 &8 3§ 8 A& 2 &8 @A = 58 A 3 & & % 8 8 = e mmw S5 mo= o

123, 06

o

CMT tifme

l GVA-CHIIN — GVA-CHI_IN_predicted — GVA-CHI_OUT — GVA-CHI_OUT :r‘-ﬂ--:'-ecl]

Fig. 2. Prediction results for the exponential smoothing method

Fig. 2 shows the prediction results for the exponential smoothing method
with a 20% smoothing factor. The upper plot represents the traffic from Chicago
to CERN, and the one below it represents the traffic from CERN to Chicago. Both
plots represent the measured traffic values (in yellow) and the predicted values (in
blue and green). As we can see, the predictions are less accurate when the
parameter values vary rapidly (which happens in the lower chart).

Fig. 3 presents the prediction results for the moving average method; by
comparing it with Fig. 2 it is clear that the exponential smoothing method has a
better accuracy.

In order to compare quantitatively the accuracy of the prediction methods,
we have computed for all of them the mean squared error and the average error.
The mean squared error (MSE) represents the average of the square of the error
for a prediction method (the error being the difference between the measured
value and the predicted value); it is calculated as follows:

MSE = 1 X Z(xpredl. -x,)’ “4)
n

i=1



156 Corina Stratan, Valentin Cristea

WAN Traffic
1008 Mp:
= 750 Mo
& 500 Mbp:
¥ 250 Mbp:
Obps
Gbps
Gbps
3 Lbps
= :
gl
% 1.75 Gbps £
= -
1.5 Ghps
125Ghps 4/
1000 Mbps
750 Mbps ul
500 Mbps ] O S AN ~J =T
250 Mbps
e e st S B s i A S A A L T S A e e
8 % 2 2E 8% ¥ 8% 3$8 83 8 8 3B RS R 288 33 R 23R L3R E R S
S EE s R RSN e S e e Rt g e el e O el sy
5 3 6 6 6 6 5 66 600640 606G 6066060606060 006 6606 6 o
GMT tims
[ GvA-CHLIN — GVA-CHLIN predicted — GVA-CHLOUT — GVA-CHIOUT predicted|

Fig. 3. Prediction results for the moving average method

We have also computed the average error, which we denote by AVGERR,
as the average deviation of the predicted values from the real values:

AVGERRleZMpredi—xi | Q)
n

i=1

The values are presented in Table 1, and were obtained from
measurements of the network traffic from Chicago to CERN. The table also
shows the following metrics:

e Avg measured value (in Mbps): the average of the measured values
in the time interval for which we applied the prediction method

e Std deviation: the standard deviation for the measured parameter

e Err percent: the percentage of the average measured value that is
represented by the error

As the table shows, the predictions were not very accurate (the error
percentage was around 20-30%), which can be explained both by the high
variability of the data and by the simplicity of the prediction methods. We can
also see from the results that the exponential smoothing method generated more
accurate predictions.



A framework for performance prediction in distributed systems 157

Table 1
Accuracy estimations for the prediction methods
Method Avg. measured | Std. MSE AVGERR Err.
value (Mbps) deviation percent

Moving avg. 232.35 135.28 126.22 75.04 32.29
Weighted avg. 56.65 28.91 27.09 17.81 31.44
Exp. smooth 10% 117.26 75.25 45.63 35.08 29.91
Exp. smooth 20% 276.12 145.04 125.16 55.94 20.26

5. Conclusions

Dynamic adaptation is an essential aspect in distributed systems, as in such
systems changes occur frequently and at various levels. The type of changes that
we have approached is the variation of the distributed resources' workload; one
solution for adapting to this type of changes is to use a prediction mechanism in
order to estimate the availability of the resources in the near future.

We have developed a flexible prediction framework integrated with the
MonALISA monitoring system, and have used it to forecast the available
bandwidth for links from the USLHCNet network. Within the framework we have
implemented three moving average prediction algorithms, and in the future we
intend to develop more complex methods that could provide better forecasts for
longer periods of time (specifically, we plan to investigate methods based on
neural networks and on pattern detection).

REFERENCES

[1] J.E. Moreira, V.K. Nai, “Dynamic resource management on distributed systems using
reconfigurable applications”, IBM Journal of Research and Development, vol. 41, 1997, pp.
303-330

[2] Legrand, I, Grigoras, C., Muraru, A., Musat, L., Toarta, M. and Voicu, R., “Information
gathering and management in MonaALISA framework”, in Proceedings of the 15"
International Conference on Control Systems and Computer Science (CSCS15), Bucharest,
Romania, 2005

[3] D.M. Swany, R. Wolski, “Multivariate resource performance forecasting in the network weather
service”, in Proceedings of SC02, Baltimore, MD Nov. 2002, pp. 1-10

[4] M. Frumkin, R. Hood, “Using grid benchmarks for dynamic scheduling of grid applications”,
NAS Technical Report, 2003

[5] M.A. Frumkin, der Wijngaart, R.F.V. (2002), “NAS grid benchmarks: A tool for grid space
exploration”, in Cluster Computing no. 5, 2002, pp. 247-255

[6] P.A. Dinda, “A prediction-based real-time scheduling advisor”, in IPDPS, IEEE Computer
Society, 2002, pp. 35

[7] F. Nadeem, R. Prodan, T. Fahringer, A. losup, “A framework for resource availability
characterization and on-line prediction in large scale computational grids”, Tech. Rep. TR-




158 Corina Stratan, Valentin Cristea

0130, Institute on Resource, Management and Scheduling, CoreGRID - Network of
Excellence, 2008

[8] R.J. Frank, N. Davey, S.P. Hunt, “Input window size and neural network predictors”, in
Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks
(IJICNN'00), vol. 2, 2000, pp. 237-242

[9] *** “NIST/SEMATECH e-Handbook of Statistical Methods” [Online] Available:
http://www.itL.nist.gov/div898/handbook/

[10] *** US LHCNet web page. [Online] Available: http://Ihcnet.caltech.edu/



