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KB-OPERATORS ON BANACH LATTICES AND THEIR

RELATIONSHIPS WITH DUNFORD-PETTIS AND ORDER WEAKLY

COMPACT OPERATORS

Akbar Bahramnezhad1, Kazem Haghnejad Azar2

Aqzzouz, Moussa and Hmichane proved that an operator T from a Banach
lattice E into a Banach space X is b-weakly compact if and only if {Txn}n is norm
convergent for every positive increasing sequence {xn}n of the closed unit ball BE of E.
In the present paper, we introduce and study new classes of operators that we call KB-
operators and WKB-operators. A continuous operator T from a Banach lattice E into
a Banach space X is said to be KB-operator (respectively, WKB-operator) if {Txn}n
has a norm (respectively, weak) convergent subsequence in X for every positive increas-
ing sequence {xn}n in the closed unit ball BE of E. We investigate the relationships
between KB-operators (respectively, WKB-operators) and some other operators on Ba-
nach lattices spacial their relationships with Dunford-Pettis and order weakly compact
operators.
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1. Introduction

Recall that a Riesz space E is an order vector space in which sup(x, y) (it is customary
to write sometimes x ∨ y instead of sup(x, y)) exists for every x, y ∈ E. Let E be a Riesz
space. For each x, y ∈ E with x ≤ y, the set [x, y] = {z ∈ E : x ≤ z ≤ y} is called an
order interval. A subset of E is said to be order bounded if it is included in some order
interval. An operator T : E → F between Riesz spaces is said to be order bounded if it
maps each order bounded subset of E into order bounded subset of F . The collection of
all order bounded operators from a Riesz space E into a Riesz space F will be denoted by
Lb(E,F ). The collection of all order bounded linear functionals on a Riesz space E will be
denoted by E∼, that is E∼ = Lb(E,R). A subset of a Riesz space E is b-order bounded if
it is order bounded in E∼∼ := (E∼)∼. A Banach lattice E is a Banach space (E, ∥.∥) such
that E is a Riesz space and its norm satisfies the following property: for each x, y ∈ E such
that |x| ≤ |y|, we have ∥x∥ ≤ ∥y∥. A sequence {xn}n in a Riesz space is said to be disjoint
whenever |xn| ∧ |xm| = 0 holds for n ̸= m. A Banach lattice E has order continuous norm
if ∥xα∥ → 0 for every decreasing net (xα)α with infα xα = 0. If E is a Banach lattice, its
topological dual E′, endowed with the dual norm and dual order is also a Banach lattice. A
Banach lattice E is is said to be an AM -space if for each x, y ∈ E such that |x| ∧ |y| = 0, we
have ∥x + y∥ = max{∥x∥, ∥y∥}. A Banach lattice E is an AL-space if its topological dual
E′ is an AM -space. A Banach lattice E is said to be KB-space whenever each increasing
norm bounded sequence of E+ is norm convergent. An operator T : E → F between two
Riesz spaces is positive if T (x) ≥ 0 in F whenever x ≥ 0 in E. Note that each positive linear
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mapping on a Banach lattice is continuous. An operator T from a Banach space X into
a Banach space Y is compact (resp. weakly compact) if T (BX) is compact (resp. weakly
compact) where BX is the closed unit ball of X. A sequence {xn}n in a normed space E
is weakly convergent to x ∈ E if for each x′ ∈ E′, x′(xn) → x′(x) in R. For terminology
concerning Banach lattice theory and positive operators, we refer the reader to the excellent
book of [1].
Alpay-Altin-Tonyali introduced the class of b-weakly compact operators for Riesz spaces
having separating order duals [2]. An operator T : E → X, mapping each b-order bounded
subset of E into a relatively weakly compact subset of X is called a b-weakly compact
operator. Any Banach lattice is a Riesz space having separating order dual. They proved
that a continuous operator T from a Banach lattice E into a Banach space X is b-weakly
compact if and only if {Txn}n is norm convergent for each b-order bounded increasing
sequence {xn}n in E+ if and only if {Txn}n is norm convergent to zero for each b-order
bounded disjoint sequence {xn}n in E+ [3]. In [6], authors proved that an operator T from
a Banach lattice E into a Banach space X is b-weakly compact if and only if {Txn}n is
norm convergent for every positive increasing sequence {xn}n of the closed unit ball BE of
E. The aim of this paper is to define new classes of operators on Banach lattices that we call
KB-operators and WKB-operators, and study some of their properties. Our definitions is
based on the notion of positive increasing norm bounded sequence.

Definition 1.1. A continuous operator T from a Banach lattice E into a Banach space X
is said to be KB-operator if {Txn}n has a norm convergent subsequence in X for every
positive increasing sequence {xn}n in the closed unit ball BE of E.

Definition 1.2. A continuous operator T from a Banach lattice E into a Banach space X
is said to be WKB-operator if {Txn}n has a weak convergent subsequence in X for every
positive increasing sequence {xn}n in the closed unit ball BE of E.

In [7], authors proved that if E and F are Banach lattices, then each b-weakly com-
pact operator T : E → F admits a b-weakly compact adjoint T ′ if and only if E′ or F ′ is a
KB-space. They established that if E and F are Banach lattices such that the norm of E is
order continuous, then each operator T : E → F is b-weakly compact whenever its adjoint T ′

is b-weakly compact if and only if E or F is a KB-space. As b-weakly compact operators [7],
the class of KB-operators and WKB-operators does not satisfy duality property. In fact the
identity operator of the Banach lattice ℓ1 is a KB-operator (respectively, WKB-operator);
but its adjoint which is the identity operator of the Banach lattice ℓ∞, is not a KB-operator
(respectively, WKB-operator). Conversely, the identity operator of the Banach lattice c0 is
not a KB-operator (respectively, not WKB-operator); but its adjoint, which is the identity
operator of the Banach lattice ℓ1, is a KB-operator (respectively, WKB-operator).

2. Main results

The collection of KB-operators and WKB-operators will be denoted by LKB(E,X)
andWKB(E,X). The collection of b-weakly compact operators will be denoted byWb(E,X)
and the collection of weakly compact and compact operators will be denoted by W (E,X)
and K (E,X). Clearly K (E,X) ⊂ W (E,X) ⊂ Wb(E,X) ⊂ LKB(E,X) ⊂ WKB(E,X). We
will prove that if E is a KB-space, then Wb(E,X) = LKB(E,X) for each Banach space X.

Proposition 2.1. Let E and F be Banach lattices and T : E → F be a positive operator.
Then the following statements are equivalent.

(1) T is b-weakly compact.
(2) T is KB-operator.
(3) T is WKB-operator.
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Proof. The implications (1) ⇒ (2) ⇒ (3) are obvious.
For (3) ⇒ (1) Let T : E → F be a positive WKB-operator and let {xn}n be a positive
increasing sequence in the closed unit ball BE of E. By our hypothesis there exists a

subsequence {Txnj}j which Txnj

w−→ x, where x is an element of X. Now, by [1, Theorem

3.52], we have Txnj

∥.∥−−→ x. Since {Txn}n is an increasing sequence, Txn
∥.∥−−→ x. Then T is

b-weakly compact and we are done. �

Example 2.2. In the statement of the following example, c denotes the usual Banach
lattice of convergent real sequences and c0 denotes the subspace of null sequences. If for
each x = (x1, x2, x3, ...) ∈ c we put x∞ = limxn then the operator T : c → c0 defined by
T (x) = (x∞, x1 − x∞, x2 − x∞, ...) is not a positive operator. Clearly the sequence {xm}m
defined by

xm(n) =

{
1
2 m ≤ n

1 m > n

is a positive increasing sequence in the closed unit ball of c. We claim that {Txm}m has
no weak convergent subsequence. Indeed, note first that Txm = ( 12 , ...,

1
2 , 0, 0, ...), where

the 1
2

,
s occupy the first n positions, is an increasing sequence which is a weak Cauchy

sequence but is not a norm Cauchy sequence in c0 (see [1, P.233]). If {Txm}m has a weak
convergent subsequence, then by [9, Proposition 1.4.1], {Txm}m is norm convergent which
is a contradiction. Hence T is not KB-operator.

Note that each weakly compact operator is a KB-operator but the converse may be
false in general. For example, the identity operator I : L1[0, 1] → L1[0, 1] is a KB-operator
but is not weakly compact.

Proposition 2.3. Let E and F be two Banach lattices such that the norm of E′ is order
continuous. Then each positive KB-operator T : E → F is weakly compact.

Proof. Let T : E → F be a positive KB-operator. By using Proposition 2.1, T is b-weakly
compact. Hence from [8, Theorem 2.3], T is weakly compact. �

Recall that a Banach space is said to have Schur property whenever every weak

convergent sequence is norm convergent, i.e., whenever xn
w−→ 0 implies ∥xn∥ → 0. Let E,

F be Banach lattices. If either E or F has the Schur property then L(E,F ) = Wb(E,F ) [3].

Proposition 2.4. Let E be a Banach lattice and X a Banach space with Schur property.
Then every WKB-operator T : E → X is a KB-operator.

Proof. Let {xn}n be a positive increasing sequence in BE . Since T is WKB-operator, there
exists subsequence {Txnj}j which is weakly convergent. Hence, by property Schur of X,
{Txnj}j is norm convergent. Then T is a KB-operator. �

Proposition 2.5. The collection of all KB-operators from a Banach lattice E into a Banach
space X is a norm closed subspace for the collection of all operators from E into X.

Proof. We only show that LKB(E,X) = LKB(E,X). Let S ∈ LKB(E,X). We have to
show that S is a KB-operator. For each ε > 0, there exists T ∈ LKB(E,X) such that
∥S − T∥ < ε. Let {xn}n be a positive increasing sequence in BE . Since T is KB-operator,

there exists subsequence {Txnj}j of {Txn}n such that Txnj

∥.∥−−→ x for an element x ∈ X.
Since

∥Sxnj − x∥ ≤ ∥Sxnj − Txnj∥+ ∥Txnj − x∥ ≤ ε(∥x∥+ 1),

Sxnj

∥.∥−−→ x. Then S is a KB-operator. �
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Proposition 2.6. Let E, F be Banach lattices and X a Banach space. Then we have the
following assertions:

(1) If T ∈ L(F,X) and S ∈ LKB(E,F ), then TS ∈ LKB(E,X). As a consequence,
LKB(E) is a left ideal of L(E).

(2) If T ∈ LKB(F,X) and S ∈ L(E,F )+, then TS ∈ LKB(E,F ). As a consequence,
LKB(E) is a right ideal of L(E)+.

Proof. (1) Let S be a KB-operator and {xn}n be a positive increasing sequence in BE .
Then there exists subsequence {Sxnj}j which is norm convergent to an element x ∈ F .
Since T is continuous, {TSxnj}j is norm convergent to Tx. Then TS is a KB-
operator.

(2) Let T be a KB-operator and {xn}n be a positive increasing sequence in BE . Since S
is positive, we may assume that {Sxn}n is a positive increasing sequence in BF . Then
{TSxn}n is a norm bounded and positive increasing sequence in F . Since T is KB-
operator, {TSxn}n has a norm convergent subsequence. Then TS is a KB-operator.
This completes the proof.

�

Corollary 2.7. Let E, F be Banach lattices, X a Banach space and S : E → F a positive
operator and T : F → X be a continuous operator. If either S or T is a KB-operator, then
TS is likewise a KB-operator.

Proof. Let E, F be Banach lattices, X a Banach space and S : E → F a positive operator
and T : F → X be a continuous operator. If S is a KB-operator then by part (1) of
Proposition 2.6, TS is a KB-operator and if T is a KB-operator, then by part (2) of
Proposition 2.6, TS is a KB-operator. �

We obtain the following result:

Corollary 2.8. The space LKB(E) forms a two sided norm closed ideal in L(E)+.

Proof. By Proposition 2.5, The space LKB(E) is norm closed. Let T ∈ LKB(E) and S ∈
L(E)+. By part (2) of Proposition 2.6, TS is a KB-operator, so, LKB(E) is a right ideal
of L(E)+ and by part (1) of Proposition 2.6, ST is a KB-operator. Therefore, LKB(E) is
a left ideal of L(E)+. This completes the proof. �

Recall from [2, Corollary 2.9] that if S, T : E → F are operators between Banach
lattices with 0 ≤ S ≤ T and T is a b-weakly compact operator, then S is also a b-weakly
compact operator. Now, we show that KB-operators satisfy domination property.

Proposition 2.9. Let E and F be Banach lattices and S, T : E → F are operators with
0 ≤ S ≤ T . If T is a KB-operator, then S is also a KB-operator.

Proof. Let E and F be Banach lattices and S, T : E → F are operators with 0 ≤ S ≤ T and
let T be a KB-operator. Since T is a positive KB-operator, by Proposition 2.1, T is b-weakly
compact. So, by above argument, S is b-weakly compact and so, is a KB-operator. �

Remark 2.10. Similarly the positive WKB-operators satisfy domination property.

Recall that a Banach lattice E is said to be KB-space whenever each increasing norm
bounded sequence of E+ is norm convergent. Now we obtain the following result which is
similar to [2, Proposition 2.10]:

Proposition 2.11. Let E be a Banach lattice. E is a KB-space if and only if I : E → E
is a KB-operator.
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Proof. Let E be a KB-space and {xn}n be a positive increasing sequence in BE . Then by
our hypothesis, {xn}n is norm convergent. So, {xn}n = {Ixn}n is norm convergent. Then
I is KB-operator.
Conversely, let I : E → E be a KB-operator and {xn}n be an increasing norm bounded
sequence in E+. We may assume that {xn}n is a positive increasing sequence in BE . As
I is KB-operator, {Ixn}n has a norm convergent subsequence. On the other hand, since
{xn}n = {Ixn}n is an increasing sequence, {xn}n is norm convergent. So, E is a KB-
space. �

As a consequence of preceding proposition, we have the following result:

Corollary 2.12. Let E be a Banach lattice. E is a KB-space if and only if I : E → E is
a WKB-operator.

Proposition 2.13. Let E be a Banach lattice. Then the following statements are equivalent:

(1) E is a KB-space.
(2) L(E,X) = LKB(E,X) for each Banach space X.

Proof. Let E be a KB-space, X be a Banach space and let T be a continuous operator from
E into X, and {xn}n be a positive increasing sequence in BE . Since E is a KB-space, {xn}n
is norm convergent. Since T is a continuous operator, {Txn}n is norm convergent. So, T is
a KB-operator. Then L(E,X) ⊂ LKB(E,X). On the other hand, LKB(E,X) ⊂ L(E,X).
Hence LKB(E,X) = L(E,X). Conversely, we assume that LKB(E,X) = L(E,X) for every
Banach spaceX. Then the identity operator I : E → E is aKB-operator. So by Proposition
2.11, E is a KB-space.

�

For the next two results we need the following lemmas which are just [5, Proposition
2.1] and [7, Corollary 2.3]:

Lemma 2.14. Let E be a Banach lattice. Then the following statements are equivalent:

(1) E is a KB-space.
(2) L(E,X) = Wb(E,X) for each Banach space X.

Lemma 2.15. Let F be a Banach lattice. Then the following statements are equivalent:

(1) For any Banach lattice E, each operator from E into F is b-weakly compact.
(2) Each operator from c0 into F is b-weakly compact (resp. compact).
(3) Each positive operator from c0 into F is b-weakly compact (resp. compact).
(4) F is a KB-space.

Corollary 2.16. Let E be a KB-space. Then Wb(E,X) = LKB(E,X) for each Banach
space X.

Proof. Let E be a KB-space. Then by Proposition 2.13 and Lemma 2.14, L(E,X) =
LKB(E,X) and Wb(E,X) = L(E,X). So, Wb(E,X) = LKB(E,X) for each Banach space
X. This ends the proof. �

Corollary 2.17. Let T : E → X be an operator from a Banach lattice E into a Banach
space X. If T factors through a KB-space, then T is a KB-operator.

Proof. Assume that T factors through a KB-space, i.e., there exist a KB-space F and two
operators Q : E → F , S : F → X such that T = S ◦Q. Let {xn}n be a positive increasing
sequence in BE . Since F is a KB-space, by Lemma 2.15, Q is a KB-operator. Hence
{Qxn}n has a norm convergent subsequence. Then {S ◦ Q(xn)}n has a norm convergent
subsequence. So, T = S ◦Q is also a KB-operator. �
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Let E be a Banach lattice, X a Banach space and T : E → X be a continuous
operator. Then T is b-weakly compact if and only if {Txn}n is norm convergent to zero
for every b-order bounded disjoint sequence {xn}n ⊂ E+ if and only if {Txn}n is norm
convergent in X for every positive increasing sequence {xn}n in the closed unit ball BE of
E [3, 6].

Proposition 2.18. ([4, Proposition 1]) Let E be a Banach lattice, X a Banach space and
T : E → X be a continuous operator. Then the following assertions are equivalent:
(1) T is b-weakly compact.
(2) {Txn}n is norm convergent for every b-order bounded increasing sequence {xn}n ⊂ E+.

Corollary 2.19. Let E, F be Banach lattices and T : E → F be a positive operator. Then
the following assertions are equivalent:
(1) T is a KB-operator.
(2) {Txn}n is norm convergent to zero for every b-order bounded disjoint sequence {xn}n ⊂
E+.
(3) {Txn}n is norm convergent for every b-order bounded increasing sequence {xn}n ⊂ E+.

An operator T : E → F between two Banach spaces is called a Dunford-Pettis

operator whenever xn
w−→ 0 implies Txn

∥.∥−−→ 0. We show that each Dunford-Pettis operator
is KB-operator. The converse is not always true. In fact, the identity operator of the
Banach lattice ℓ2 is KB-operator, but it is not Dunford-Pettis.
Recall that if E is a Banach lattice and if 0 6 x′′ ∈ E′′, then the principal ideal Ix′′ generated
by x′′ ∈ E′′ under the norm ∥.∥∞ defined by

∥y′′∥∞ = inf{λ > 0 : |y′′| ≤ λx′′}, y′′ ∈ Ix′′ ,

is an AM -space with unit x′′, whose closed unit ball is order interval [−x′′, x′′] [1, Theorem
4.21].

Lemma 2.20. Let E be a Banach lattice. Then every b-order bounded disjoint sequence in
E is weakly convergent to zero.

Proof. Let {xn}n be a disjoint sequence in E such that {xn}n ⊆ [−x′′, x′′] for some x′′ ∈ E′′.
Let Y = Ix′′ ∩ E and equip Y with the order unit norm ∥.∥∞ generated by x′′. The space
(Y, ∥.∥∞) is an AM -space. So, Y ′ is an AL-space and then its norm is order continuous.

Now, by Theorem 2.4.14 from [9], we see that xn
w−→ 0. �

Proposition 2.21. Every Dunford-Pettis operator from a Banach lattice E into a Banach
space X is a KB-operator.

Proof. Let T be a Dunford-Pettis operator from a Banach lattice E into a Banach space
X. It is enough to show that {Txn}n is norm convergent to zero for each b-order bounded
disjoint sequence {xn}n in E+. Let {xn}n be a b-order bounded disjoint sequence in E+.
As the canonical embedding of E into E′′ is a lattice homomorphism, {xn}n is an order
bounded disjoint sequence in E′′. By using preceding lemma, {xn}n is σ(E,E′) convergent
to zero in E. Since T is Dunford-Pettis, {Txn}n is norm convergent to zero. This completes
the proof. �

To give conditions under which a KB-operator is Dunford-Pettis, we will need the
following lemma [6, Lemma 2.8].

Lemma 2.22. Let E be a Banach lattice. Then every positive norm bounded net {xα}α of
E is b-order bounded, i.e., {xα}α is order bounded in the topological bidual E′′.

Theorem 2.23. Let F be a Banach lattice. Then each positive KB-operator from an AM -
space E into F is Dunford-Pettis.



KB-operators on Banach lattices 97

Proof. Let F be a Banach lattice, E an AM -space and T : E → F be a positive KB-
operator. Suppose that T is not Dunford-Pettis. Note that, for every x ∈ E, ρ(x) = ∥x∥ is
a continuous lattice seminorm on E. Since T is not Dunford-Pettis, there exists a sequence

{xn}n in E with xn
w−→ 0 and ∥Txn∥ ≥ 1. By Theorem 4.31 from [1], E has weakly

sequentially continuous lattice operations. So, we may assume that {xn} ⊂ E+. Now by
Corollary 2.3.5 of [9], for every 0 < c < 1, there exists a subsequence {kn}n ⊂ N and a
disjoint sequence {yn}n ⊂ E+ such that

yn 6 xkn , ∥Tyn∥ > c

for all n ∈ N. Since yn 6 xkn and xn
w−→ 0, the sequence {yn} is norm bounded. So,

the sequence un = Σn
i=1yi is an increasing norm bounded sequence. Hence, from Lemma

2.22, there exists x′′ ∈ E′′
+ such that 0 6 un 6 x′′. So, {un}n is a b-order bounded

increasing sequence in E+. Then by Corollary 2.19, {Tun}n is norm convergent. Since
yn = un − un−1, we have ∥Tyn∥ → 0, which is a contradiction. Hence T is Dunford-Pettis
and we are done. �

Recall that an operator T from a Banach lattice E into a Banach space X is called
o-weakly compact if for each order bounded subset A of E, T (A) is a relatively weakly
compact subset of X. The identity operator of the Banach lattice c0 is an o-weakly compact
operator, but is not a KB-operator (respectively, not a WKB-operator).

Proposition 2.24. Let E be a Banach lattice, X a Banach space and T : E → X be a
continuous operator. If T ′′ : E′′ → X ′′ is o-weakly compact, then T is WKB-operator.

Proof. Let {xn} be a positive increasing sequence of the closed unit ball BE of E. By Lemma
2.22, the set A = {xn : n ∈ N} is an order bounded subset of E′′. So, by our hypothesis,
T ′′(A) = T (A) is a relatively weakly compact subset of X. Hence {Txn}n has a weakly
convergent subsequence. Then T is WKB-operator. �

Recall that a continuous operator T : X → E from a Banach space into a Banach
lattice is semicompact if for each ε > 0 there exists some u ∈ E+ such that

T (U) ⊆ [−u, u] + εV

where U and V denote the closed unit balls of X and E, respectively. Note that the identity
operator of the Banach lattice ℓ∞ is semicompact but is not KB-operator and the identity
operator of the Banach lattice ℓ2 is a KB-operator which is not semicompact.
As a consequence of [3], we obtain:

Corollary 2.25. Let E, F be Banach lattices and T : E → F be a continuous operator. If
T ′ : F ′ → E′ is semicompact, then T is KB-operator.

Recall that an ordered vector space E is a Riesz space if and only if the absolute value
|x| = x ∨ (−x) exists for each vector x ∈ E ( see [1, P.7] ). If E and F are Riesz spaces
with F Dedekind complete, then the ordered vector space Lb(E,F ) is a Dedekind complete
Riesz space [1, Theorem 1.18].

Remark 2.26. We now show that LKB(E,F ) is not a Riesz space. For an operator T :
E → F between two Riesz spaces we shall say that its modulus |T | exists ( or that T
possesses a modulus) whenever |T | := T ∨ (−T ) exists-in the sense that |T | is the supremum
of the set {−T, T} in L(E,F ). This example due to Z.L. Chen and A.W. Wickstead in
[10] shows that the order bounded KB-operators from a Banach lattice into a Dedekind
complete Banach lattice do not form a lattice, i.e., a modulus of a KB-operator need not
be a KB-operator. Let E = C[0, 1], F = l∞(Fn) where Fn = (l∞, ∥.∥) and ∥(λk)∥ =
max{∥(λk)∥∞, nlimsup(|λk|)} for all (λk) ∈ l∞. Then for each n ∈ N, Fn is a Dedekind
complete AM -space, hence so is F . Define Tn : E → Fn by Tn(f) = (2n.

∫
In

f.rkdt)
∞
k=1 ∈ Fn

for all f ∈ E, where rn is the n,th Rademacher function on [0, 1] and In = (2−n, 2−n+1).
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Now define T : E → F by T (f) = ( 1nTn(f))
∞
n=1. Then T is a weakly compact operator, so

T is a KB-operator and its modulus |T | exists and |T | is not order weakly compact hence
not b-weakly compact and by Proposition 2.1, not KB-operator. So, LKB(E,F ) is not a
lattice.

Problem 2.27. Give an operator T from a Banach lattice E into a Banach space X which
is a KB-operator; but is not b-weakly compact.

Problem 2.28. Give an operator T from a Banach lattice E into a Banach space X which
is a WKB-operator; but is not KB-operator.
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