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GRAVITATIONAL BREMSSTRAHLUNG IN HORAVA GRAVITY

A. Jahan1

The energy loss formula of the Horava gravity is used to derive the
gravitational energy emitted during the classical collision between the charged par-
ticles in small-angle scattering approximation. The result is engaged to obtain
the gravitational luminosity of a hot Hydrogen plasma. It is found that, like the
Einstein gravity, the thermal luminosity has a temperature dependence of the form
T 3/2.
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1. Introduction

The recently proposed Horava gravity is essentially a non-relativistic (Lorentz
violating) model of gravity because of a preferred time-foliation of space-time man-
ifold supposed by the model [1]. At the large distances (low energies), the model is
accompanied by a massless scalar field called ”Khronon” which interacts with the
matter. The presence of Khronon modifies the predictions of the Einstein gravity
at cosmological scale [2, 3]. Also, the well-known quadrupole energy loss formula
alterers because of the presence of scalar field [4]. By engaging the modified energy
loss formula and comparing the results with the observed energy loss of the binary
pulsars, constraints on the Horava gravity are obtained [4].
In this work, we consider the classical collision between the charged particles and
use the energy loss formula of the Horava gravity to calculate the amount of gravita-
tional energy emitted by the charge particles during the Coulomb scattering (gravi-
tational bremsstrahlung radiation). The classical and quantum mechanical problem
of gravitational bremsstrahlung and thermal gravitational luminosity of a plasma
are studied within the context of the Einstein gravity in [5-10]. Here, we assume the
small angle scattering approximation, taking the particles trajectory as a straight-
line. Therefore, our calculations differ from [5-7] where the particle’s trajectory
considered to be a parabola as determined by the exact equation of motion. Then,
we consider a hot plasma and obtain its gravitation luminosity by evaluating the
ensemble average of the emitted energy taking place in a two-body collision.
In next section, we briefly discuss the quadrupole radiation in Horava gravity. In
Sec. 3, the quadrupole tensor is calculated in small-angle approximation in terms
of a general central potential. In Sec. 4, we obtain the emitted gravitational energy
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in a typical two-body collision. Finally, the problem of thermal luminosity of a hot
Hydrogen plasma is calculated and discussed in Sec. 5.

2. Quadrupole Radiation in Horava Gravity

At the low energy, the action of Horava gravity is given by [4]

SHor = −M2

2

∫
d4x

√
−g

(
R+Kµν

σρ∇µu
σ∇νu

ρ
)
, (1)

with
Kµν

σρ = βδµρ δ
ν
σ + λδµσδ

ν
ρ + αuµuνgρσ. (2)

where ∇µ stands for the covariant derivative and gαβ is metric tensor. The unite
time-like vector is defined in terms of the Khronon field ϕ as

uµ =
∂µϕ√
∂νϕ∂νϕ

. (3)

The modified version of the energy loss formula, based on the action (1) has the
form [4]
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Here M is a mass parameter and A, B are some dimensionless constants depending
on another three parameters α, β and λ, which appear in the action (1). By applying
the above formula for the case of binary systems and comparing the result with the
Hulse-Taylor binary, a bound on the parameters is found as [4]

α ∼ β ∼ λ . 10−2. (5)

The Newton constant is related to α via

GN =
1

4πM2(2− α)
. (6)

The formula (4) reduces to the quadrupole formula of Einstein gravity, on setting
A = 1 and B = 0.

3. quadrupole Tensor in Small-Angle Approximation

The quadrupole tensor Qij of a single particle is related to the mass moment
Iij = mxixj via

Qij = Iij −
1

3
Ikk δij , (i, j = 1, ...3). (7)

The time derivatives of the mass moment and quadrupole tensor are
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from which we get [5, 6]
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Let us consider the classical two-body problem where the particles are subjected
to the central potential U(r). The particles have masses m1 and m2. To achieve
the explicit form of the terms

...
x and

....
x , appeared in (10) and (11) in terms of the

potential, one starts form the classical equation of motion

µẍ = −∂U

∂r
êr, êr =

x

r
. (12)

where r = |x|. The relative distance between the particles is x = x1 − x2 and µ is
the reduced mass. From (12) one immediately finds

µ
...
x = −∂2U

∂r2
ṙêr −

∂U

∂r
ϕ̇êϕ. (13)

where we have used ˙̂er = ϕ̇êϕ. Assuming that the collision takes place on the X−Y
plane and using the polar coordinate for the position and velocity of the particles
as x = rêr and ẋ = ṙêr + rϕ̇êϕ, one obtains for the several terms appearing in (10)
and (11)
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µ2ẍ · ẍ =
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which on inserting in (10) and (11) yield
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Now, suppose m1 ≪ m2. If the velocity v of the particle ”1” is so large, its deviation
from the straight-line motion becomes negligible and on can assume a constant
velocity for scattered particle [11, 12]. So, for the particle ”1” moving along the
X-axis, with the particle ”2” located at the origin, we have

x = vtêx + bêy, (23)

r2 = v2t2 + b2, (24)
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where b denotes the impact parameter. From (23) and (24) for a particle moving on
a straight-line, we have

ϕ = tan−1
( b

vt

)
, (25)

yielding
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r2
, (26)
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r
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which modifies (21) and (22) to
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4. Energy Loss in Coulomb Scattering

Now, we assume U(r) to be the Coulomb potential, i.e. U = e1e2
r . With the

help of (4), (28) and (29), one easily finds

ĖHor = − 1

8πM
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2
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Therefore, the emitted energy during the collision becomes
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where we have used ∫ ∞

−∞
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and exploited (6) to write the final result in terms of the Newton constant. We
find that, the result for the Einstein gravity is recovered by assuming A = 1 and
B = α = 0, for which the emitted energy becomes

|∆EEin| =
37

15

πve21e
2
2GN

b3
. (34)

We compare this result with a similar expression for the gravitational scattering, i.e.
U = −GN

m1m2
r in small-angle approximation [13]

|∆EEin| =
37

15

πvm2
1m

2
2G

3
N

b3
. (35)



GRAVITATIONAL BREMSSTRAHLUNG IN HORAVA GRAVITY 311

which coincides with (34) on replacing m2
1m

2
2G

2
N → e21e

2
2. So, according to (31),

beside a numerical factor, the bremsstrahlung energy in Horava gravity has the
same form of the Einstein gravity

∆EHor ∼
ve21e

2
2GN

b3
. (36)

5. Gravitational Luminosity of a Hot Plasma

Let us consider a hot electrically neutral plasma with the ion and electron
density ni and ne respectively. To obtain the gravitational luminosity of the plasma
with the gravitational bremsstrahlung as a mechanism for the loss of its energy,
we multiply (31) with the electron flux vne, the ion density, and integrate over the
impact parameter b [11, 12]. So, we obtain the energy loss per volume V as

dEHor

dV
= 2πninev

∫ ∞

bmin

db |∆EHor(b)|b. (37)

The semiclassical cut-off on the impact parameter is bmin = ~
mv , which is imposed

by the Heisenberg uncertainty relation [11, 12]. For the Hydrogen plasma, we have
ne = ni and e1 = −e2 = e. Hence, from (31) and (37) the luminosity becomes

dEHor

dV
= 2π2me4n2
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~c5
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2
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)
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We have restored the speed of light, c in (38) for the sake of dimensional consis-
tency. Taking the thermal average of this expression, yields the thermal luminosity
of the plasma. In a hot plasma, where the ratio of Coulomb energy to thermal
energy is negligible, it behaves like an ideal gas [11, 12]. So, averaging the electron
speed in (38) over a thermal distribution of speeds, gives rise to the gravitational
luminosity. At temperature T , the thermal average of an ensemble obeying the
Maxwell-Boltzman statistic is

⟨f(v)⟩ =
(
mβ

2π

) 3
2
∫

d3ve−
β
2
mv2f(v), β =

1

kT
. (39)

where k denotes the Boltzman constant and f(v) is a function of particle’s velocity.
For f(v) = v3 we have

⟨v3⟩ = 2

π2

(
2π

βm

) 3
2

. (40)

Thus, from (38) and (40) we obtain the thermal luminosity in Horava gravity⟨dEHor

dV

⟩
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We compare (41) to the plasma luminosity in Einstein gravity, first derived by
Weinberg using the quantum field theoretic methods [7-9]⟨dEEin

dV

⟩
∼ me4n2

eGN

~c5

(
kT

m

) 3
2

. (42)

Thus, as (41) and (42) imply, in both theories the dependence of thermal luminosity
on the physical parameters is same. In particular, dependence on the temperature is

of the form T
3
2 , in contrast to well-known Stephan-Boltzamnn law in electromagnetic
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radiation. One must note that the T
3
2 dependence of (42) is a consequence of the

semiclassical cut-off. Utilizing the classical cut-off of the form bmin = e2

mev2
yields a

temperature dependence of the form T 2. See [5-9].
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