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AUTOMATIC HIP PROSTHESIS FIT ESTIMATION BY 
COOPERATIVE X-RAY IMAGE SEGMENTATION  

Laura FLOREA1, Constantin VERTAN2 

Protezarea totală a şoldului este astăzi o procedură uzuală, cu prognostic 
favorabil pe termen lung, asigurat prin controale regulate a potrivirii şi stării 
protezei realizate prin inspecţia vizuală a radiografiilor şoldului. În această lucrare 
se descriu două metode de analiză automată a acestor imagini. Prima dintre ele se 
concentrează pe segmentarea pe histogramă pentru identificarea părţilor 
componente ale imaginii, în timp ce a doua utilizează o segmentare pe contururi 
urmată de o modelare tri-dimensională a femurului. Eficienţa acestor metode de 
analiză este evaluată pe fondul estimării acurateţii construcţiei parametrilor 
medicali de interes, precum potrivirea protezei în canalul medular.  

Total hip replacement is a common procedure in today orthopedics, with 
high rate of long term success. Failure prevention is based on a regular follow-up 
aimed at checking the prosthesis fit and state by means of visual inspection of 
radiographic images. This paper describes two methods for automatic analysis of 
the radiographic images. One solution is based on histogram segmentation of the 
image components, while the second uses an edge oriented segmentation followed 
by a 3D modeling of the femoral bone. The analysis methods are further evaluated 
in the framework of constructing accurate values for parameters of medical interest, 
such as the prostheses fit inside the medullar channel. 
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1. Introduction 

The history of the total hip replacement started some 60 years ago, when 
the Burmese orthopedic surgeon, Dr. San Baw, pioneered the use of one-piece 
ivory hip prostheses to replace un-united fractures of the neck of femur (which are 
trivially known as hip bones). The replacement procedure known as total hip 
arthroplasty (THA) became a well-known and highly developed technique to 
reduce pain in arthrotic and arthritic hips. According to recent data [1], a number 
of 250.000 hip replacements are performed each year in the U.S. alone. One of the 
latest developments in total hip arthroplasty is the use of un-cemented prostheses 
with hydroxy apatite coating of the femoral stem.  
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In the majority of cases, the patient is able to fully recover, although at 
certain times complications may appear. On the short term, infection is a major 
concern; on the long term, many problems relate to osteolysis. Osteolysis is an 
active resorption or dissolution of the bone tissue; in the case of total hip 
replacement, osteolysis is produced by the particles worn off the gliding surface 
of the prostheses (wear debris). The consequence is that the bone grows away 
from the implant, causing it to loosen; the worst scenario implies bone fracture. 
Thus, the detection of the osteolysis in its early stages is of great importance. In 
order to achieve such goal, it is important to have tools for the estimation of the 
prosthesis stem fit within the femoral bone [2]. 

The most common mean for investigating the human bone system is the 
X-ray imaging. In case that the radiographies are not acquired with a digital 
machine there have been developed means of digitizing and enhancing the analog 
counterparts [3], [4]. Once the digital radiographies are available, analysis 
techniques to identify the three major parts of the hip area images (the background 
corresponding to the soft tissue, the bone and prostheses) have to be applied. One 
class of segmentation techniques is related to the image histogram. In such a case, 
the histogram modes that correspond to the objects of interest are identified. An 
alternate class of image segmentation refers to detecting edges. In our particular 
application, since only the prostheses - bone edge is strong enough to be reliably 
detected, we use a 3D modeling technique for the identification of the femoral 
bone.  

The remaining of the document is structured as follows: we shall start by 
briefly describing the theoretical background of histogram segmentation, and 
respectively the edge based segmentation, and we shall continue by presenting the 
3D modeling technique. Once the methods have been defined, we shall describe 
the construction of a quantitative medical score and evaluate the proposed 
technique in this framework. The paper ends with a summary of the achieved 
results and with a discussion about the potential of this work. 

2. Prosthesis-Bone Segmentation 

The goal of image segmentation is the extraction of distinct objects 
(regions) from the original image [5]. The objects are defined according to the 
specific field of application and are usually described by some uniformity 
criterion. In this particular application we are primarily interested in the 
segmentation of the hip prosthesis, and, more precisely, in the segmentation of its 
stem (femoral component). 
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2.1. Region Oriented Segmentation 

A typical prosthesed hip area radiographic image and its histogram are 
shown in figure 1. It can be seen that the upper histogram mode corresponds to the 
prosthesis (the foreground) and to some parts of the bone (from both the 
acetabulum and the femur), while the middle histogram mode relates to the bone 
mass. Thus, if the separation thresholds can be reliable and automatically 
detected, then three-class thresholding methods [6] could be effective for the 
segmentation of the prosthesis stem. 

 

  
Fig. 1. Typical X-ray of the hip with an un-cemented hip prosthesis and the associated histogram  

 
Automatically finding the optimal thresholding value that correctly 

extracts the foreground is a problem widely studied in the literature [7]. One of 
the histogram based segmentation techniques that leads to good results implies the 
use of the expectation maximization (EM) algorithm. The EM algorithm [8] is a 
classical method used in statistics to find the maximum likelihood estimates of a 
set of parameters that best fits the available data. In our case, as previously 
explained, we assumed that the image data is generated by a mixture of three 
classes (prosthesis, bone, soft tissue), with each class being characterized by a 
Gaussian probability density function with mean mi and variance σi, N(mi; σi) 
(with i = 1; 2; 3). Each class has its own weight wi, determined by the number of 
pixels in that class denominated by the total number of pixels, and the image 
probability density function is modeled by a mixture of Gaussians: 
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The EM algorithm will iterate until it finds the set of parameters that best 
fits the image histogram. Once the parameters are set, the class membership of 
each pixel is found by a simple maximum likelihood rule. An EM-segmented hip 
radiography is presented in figure 2 b). 

 

 
a) b) 

 
c) 

Fig. 2. a) Original image; b) EM segmented image; c) prosthesis edge extracted by the Canny 
algorithm from the original image 

2.2. Contour Oriented Segmentation 

Edge oriented image segmentation takes into account the spatial 
distribution of the pixels [9], looking for pixels related to spatial gray level 
discontinuity. Edge detection highlights local contrast, which seems more suitable 
for separation of the prostheses from the bone. Several techniques are at hand. 
Basic gradient operators, second-order derivative operators, phase congruency 
methods can be used for edge detection. But probably the Canny operator [10] is 
the most common and effective choice. We shall focus on it, since it seems to 
provide the best results.   
 A common choice [9] for the implementation of the Canny operator 
consists of the following steps: 

• Gaussian smoothing to reduce the noise (which may be implemented by 
convolution with a Gaussian kernel); 

• Sobel operator for edge detection; 
• Non-maxima suppression used for locating the highest magnitude points in 

an edge map while suppressing the other; 
• Threshold with hysteresis to connect edge points and therefore to provide 

continuous contours. 
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The Canny operator has been found very reliable in separating the 
prostheses stem from the bone. An example of Canny edge detection within a hip 
X-ray is presented in figure 2 c). As one can easily notice, the edges of the stem 
are well detected. 

3. Prosthesis-Bone Modeling 

As mentioned in the introduction, X-ray images are the most common way 
to investigate the human skeleton. The basic image formation process in radiology 
goes as following: an X-ray machine (X-ray tube) directs an electromagnetic 
radiation upon a specified region (as the hip area, in our application) of the body. 
This radiation is absorbed or scattered by dense materials (bones, acrylic 
prostheses), but tends to pass through less dense matter (air, fat, muscle) and 
exposes the X-ray film. Areas of film exposed to higher amounts of radiation will 
appear as black or dark grey on radiography, while areas exposed to less radiation 
will appear lighter grey or white. Thus, the reported intensity in the X-ray image 
is depending on the thickness and on the absorption coefficient of the material 
passed by the radiation. 

By the discussed means, two-dimensional radiographic images are 
constructed. Obviously, a three-dimensional perspective of the investigated area is 
more informative. Because of this demand, there were many approaches to build 
three-dimensional approximations of the imaged objects starting from the original 
planar radiography [11], [12], [13], [14]. In our case, the work of Jedrzejek et al 
[13], who constructed parametric models for the entire hip area and the work of 
Nikkhahe–Dehkordi et al [11], who used two radiographies taken from orthogonal 
directions to construct a 3D model of the femoral bone may be considered of 
interest. In contrast to the cited work, our goal focuses on modeling the lower part 
of the femoral bone (with and without prostheses) from a single input view. 

Since our purpose is to build a model of the data with one dimension more 
than the one provided by input data, we have to imply additional information 
which is given by a model. A summary of the models that may be used to 
approximate the actual situation may be followed in [14]. The most accurate 
model is the so-called “non-concentrically model” and its short presentation and 
its extension to the prosthesed part follow in this section. 

We shall begin our approximation by considering a section of the femoral 
bone, orthogonal to its main direction. Initially, for simplicity reasons, we shall 
focus on the part of the bone below the prosthesis stem (known as the 4th Gruen 
zone [2]), as one can see in figure 3a). An example of a scan-row through this area 
may be seen in figure 3b). 

The model assumes that each orthogonal section through the bone will 
contain two non-concentrically circles (as showed in figure 3c) ), one modeling 



8                                                    Laura Florea, Constantin Vertan 

the bone structure, with high absorption constant and the inner part, representing 
the medullar area, having lower absorption value. Furthermore, we shall consider 
that the X-ray source emitter will be placed in the upper part, while the receiver is 
found in the lower part, so that the projection will be on the horizontal axis. 

 

 
a) b) 

 
c) 

Fig. 3. a) A part of the image corresponding to the femoral bone without prostheses (4th Gruen 
area). b) A scan line through this part of the image c) The abstract model of the femoral bone  

 
 Formalizing,  we shall build the projection function,  g,  defined over the 

[-R;R] range (where R is the bone radius) that at an abscissa point x has the value 
equal to the sum projection on the mentioned axis. Ignoring the medullar part, the 
projection function is equal with the chord length in the “bone circle”: 

 

],[,2)( 22 RRxxRKxg R −∈−⋅=     (2) 
 

where KR is the absorption constant corresponding to the bone. If we extend the 
model to a part that include empty medullar area (concentrically to the bone), the 
projection function has the shape:  
 

],[,22)( 2222 rrxxrKxRKxg rR −∈−−−=          (3) 
 

where Kr is the absorption constant corresponding to the medullar part and r is the 
medullar channel radius.  

Moving one step further in modeling by adding the prostheses with its 
high absorption constant Kp, its radius Rp, the shift of the center of the medullar 
channel Δr, the shift of the prostheses center Δp and the background (soft tissue) 
residual absorption, Kb, the resulting projection function for a section row has the 
form: 
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In the equation (4), we implied the use of a set of nine parameters 

(R;r;Rp;KR;Kr;Kp;Kb;Δr;Δp) that approximate scan-rows from the prosthesed part 
of the femoral bone.  

However, before discussing about the goodness of the fit, it is necessary to 
detail the techniques used for the estimation of the actual values of the parameter 
set. One alternative is to consider the mean squared error between the projection 
function, g and the available scan-row f and to minimize the error with respect to 
each of the parameters. Unfortunately the resulting equations system has no 
analytical solution and a more practical solution is at hand. The inflexion points 
(abscissas or values) may be easily determined in both situations. To achieve this 
goal a simple segmentation method has been assumed [15]. 

 

This short segmentation uses as input the edges of the prostheses found by 
the previous segmentation (either Canny detector or EM method) and continues 

a) b) 
Fig. 4. a) A scan row and the method to determine the breaking points of the assumed model;  
b) the results on the original image (outer bone and medullar channel limits with white and 

prostheses limits with black) 
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by analyzing each scan-row (as the scan-row showed in figure 4) and detecting the 
edges of the bone and, respectively, of the medullar channel. The actual 
conditions are: 

• The bone outer limits (left hand and right hand) correspond to the first 
(last) pixel that has slope larger (smaller) than a threshold. These limits 
define a distance equal with 2R. The center of this distance is the 
origin of the plot. 

• The prostheses limits are the ones found by the previous segmentation. 
These define a distance equal with 2Rp. Their center, with respect to 
the center of the bone, gives Δp. 

• The medullar channel exists (it may be a case that the bone touches the 
prostheses) if there is a decrease followed by an increase of the 
intensity between the bone outer limit and the prostheses. 

• The medullar channel limits are given by the largest decrease and, 
respectively, increase in this area. By this mean we find the 2r distance 
and respectively Δr. 

• The average value outside the bone area determines the soft tissue 
absorption constant Kb. 

• The center of the distance between the mentioned maxima marks the 
center of the medullar area, Δr.  

•  The projection function value in (Δr - r) gives the bone absorption 
constant as: 
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In a similar manner one will determine the remainder of the values of the 

parameter set. Using the mentioned set of conditions to find the parameters, the 
projection function is fully determined. A set of examples of scan-rows and the 
associated projection functions are shown in figure 5. 

The estimation may be performed independently for each scan row, which 
is not an accurate approximation of the reality, or parameter continuity may be 
imposed. In this sense, we fix all the absorption constants for the entire image and 
we impose all the shifts and respectively radiuses to have an absolute variation 
below a fixed threshold. Therefore, the actual values are determined by median 
filtering of the independently estimated data. 
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4. Results 

One important issue that has to be analyzed is the comparative accuracy of 
the proposed segmentation methods. For an objective comparison, we built a 
database of 47 manually marked images (corresponding to 16 patients) and we 
computed the detection rate (the prosthesis, bone or medullar channel pixels 
correctly classified) and the percentage of false positives. The resulting values are 
presented in Table 1. The method that uses the Canny edge detector and 3D 
modeling gives the best results in segmenting the X-ray images. 

 
Table 1 

Segmentation performance measurements  
Segmentation 

Method 
Prosthesis Class Bone Class Medullar Channel 

Class 
Detection 

rate 
False 

positives 
Detection 

rate  
False 

positives 
Detection 

rate 
False 

positives 
EM 93.2% 6.7% 91% 16% - - 

EM + 3D Model 71.8% 2.6% 68.6% 4.3% 65.1% 21.9% 

Canny + 3D Model 99.1% 0.4% 96.9% 4.2% 94.5% 28.2% 

 
Moving further, using the edge based segmentation we proposed a method 

of estimating a projection function based a simple 3D model of the femoral bone 
with prostheses. The model proved to be valid and an argument to this affirmation 
is to be seen in figure 6, where we show a comparison between the typical image 
and an image generated from the 3D model.  

 
a) b) 

Fig. 5. Scan-rows and the corresponding projection function 
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Fig. 6. Initial image and 3D modeled generated image; the images are similar enough in order to 

confirm the model validity 
 
Using the estimated model, we can determine parameters of medical 

interest. Such a parameter is a score of the prostheses fit inside the medullar bone. 
In order to reach this abstract (from the image processing point of view) value, we 
take into account two preliminary parameters which are the angle between the 
prosthesis axis and the femoral axis and the percentage of the pixels found on the 
prostheses edge simultaneous with being on the medullar channel edge, with 
respect to the prostheses stem total edge.  

The angle between the prosthesis and the bone can be computed for any of 
the proposed segmentation techniques. Having the prosthesis borders, one can 
easily compute its central axis by fitting a first degree polynomial function on the 
points situated at the middle of the two borders. The bone axis is computed in the 
same way. Figure 7 shows an example of such an angle, over-imposed on the 
original radiography. If the angle has large values than it signals imminent danger, 
because this means that the extreme part of the prostheses would press on the 
bone up to the fracture point.  

 

 
a) b) 

Fig. 7. a) The prosthesis stem with the prosthesis and bone axis and the angle between them; 
b) points that are simultaneously on the prosthesis border and on the medullar channel border 
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The second measure of the prosthesis-bone fit is the percentage of pixels 
that are simultaneously on the prosthesis border and on the medullar channel 
border. A high percentage would correspond to a very good fit of the prostheses; a 
low percentage score signals a loose prostheses and the imminence of the 
osteolysis. This score cannot be calculated for the EM segmentation method since 
this method does not detect the medullar channel edge. 

The errors between the automatic computation (EM segmentation, EM + 
3D modeling and respectively edge + 3D modeling) and the ground truth (the 
manually marked images) are presented in Table 2. The normalization for the 
NMSE (Normalized Mean Square Error) is done with respect to the ideal value 
computed from the manual segmented images. As expected, taking into account 
the results of the segmentation, the method that uses Canny edge detector and 3D 
modeling gives the best results for those two scores. 

 
Table 2 

Error measurements for the prostheses - bone fit parameters 
 

Segmentation Method 
Prostheses / bone angle Prostheses / medullar channel joint 

edge pixels 
NMSE Mean error NMSE Mean error 

EM 10.77 1.45° - - 
EM + 3D Model 6.9 0.98° 0.35 120 pixels 

Canny + 3D Model 0.03 0.13° 0.31 108 pixels 
 

5. Conclusions and further work 

This work was dedicated to the automatic analysis of radiographic images 
of the hip area. The medical background is the total hip replacement and the aim 
of the study is to determine a valid measure of the prostheses fit inside the femoral 
bone. To achieve this goal, we had to determine the exact position of the 
composing parts, or in other words to segment the X-ray image. 

We described two methods used for extracting the objects from the X-ray 
images and presented the modeling of the femoral bone with a set of three non-
concentrically cylindrical shapes (the bone, the medullar channel and the 
prostheses). This model is not only complementary to the Canny segmentation in 
the scope of computing parameters of medical interest, but also it might be used in 
a simple, full-3D visualization of the femoral area. Its accuracy was proved with 
respect to manually marked data and experienced observers' opinion.  

The most important future goal is to extend the 3D visualization to the 
entire hip area, by modeling the semi-spherical prostheses acetabular component. 
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