U.P.B. Sci. Bull., Series C, Vol. 71, Iss. 1, 2009 ISSN 1454-234x

SIMULATION MODELS VALIDATION USING THE OSSIM
TOOL

Elena ULEIA'

Obiectul lucrarii de fata este prezentarea a doua metode de validare a
modelelor de simulare, dezvoltate folosind pachetul de programe OSSim (Open
Source Simulator). Pentru a adresa aceastd problemd, s-a utilizat un sistem de cozi.
Ambele metode de validare folosesc entitati ‘observer’, care evalueazd anumite
propietdti ale sistemului de simulare, verificd corectitudinea datelor analizate si le
raporteazd. Metodele prezentate valideazd in mod static modelul de simulare.
Aceastd prezentare aratd suportul simulatorului OSSim pentru validarea
modelelordezvoltate in acest mediu.

The objective of this paper is to present two validation methods for
simulation models developed using the OSSim (Open Source Simulator) tool. In
order to address this matter, a simulation model of a queueing system has been
used. Both validation methods make use of observer entities, which evaluate certain
simulation system properties, check the correctness of the analyzed performance
data, and report the results. The present methods are statically validating the
simulation model. This proves the OSSim tool capability for validation purposes.

Keywords: simulation, validation, queuing systems, hierarchical models,
performance analysis, distributed computing

1. Introduction

The present paper introduces two validation methods based on observers.
The validation is performed for a queueing system simulation model in order to
check the model validity. Both methods used in this paper are statically validating
the model. These can be extended to a dynamic validation by using a runtime
check on the system properties.

As discussed by [1], a set of 10 practical techniques for developing valid
and credible models are described, including: quantitative techniques, performing
sensitivity analyses to determine important model factors, or validating the output
from the overall simulation model.

It is usually too difficult, too expensive, or too time consuming to use all
possible validation techniques for every model that is developed. The personal
contribution relies on the OSSim tool design that best suits fast model building an

' PhD student, Computer Science Faculty, University POLITEHNICA of Bucharest, Romania,
elena.uleia@gmail.com

mailto:elena.uleia@gmail.com

82 Elena Uleia

easy extension for validation support. OSSim tool supersedes other simulator
tools of the same functionality levels by its fast runtime execution [2].

2. OSSim Tool

OSSim [3] is a discrete event simulator package that allows for
development of network simulation and analysis which makes use of technologies
from the area of distributed computing, client-server architectures and object
oriented programming. One of the key issues of the design is high performance of
the overall system, making possible the modelling and the simulation of complex
networks.

OSSim is also suitable for simulation of any system with a hierarchical
structure which admits a discrete time modelling.

3. Simulation model description

The system chosen for modelling, validation, and simulation, using the
OSSim toolkit, is a queueing network. The system consists of a network with
three uni-servers, each of these having different number of inputs and outputs
itself, but only one queue per server (uni-server), two incoming external packets
traffic lines, and two lines for outgoing traffic.

The topology of the queueing network is drawn in fig. 1 below.

I _
a——[|]| = |11
—>

LT

—
————

>0

=OQ

Fig. 1. Queueing Network System

The queues of each uni-servers are sufficiently large (10° bits), i.e. no loss
of packets is encountered in the system for the specified bit rate. The bit rate for
all queues is assumed identical, of 33,600 bits/sec. The uni-server queue discipline
is FIFO, first arrived packet is the first one served.

The input traffic lines support packets of different length, following a
uniform distribution, between 100 and 900 bits. The packets arrival rate (1, 1,)
follows an exponential distribution with the mean value of 1 sec. The selection

Simulation models validation using the OSSim tool 83

probability of the input traffic lines follows a Bernoulli distribution with
probability 0.4.

4. Simulation model validation

The simulation model is viewed as a ‘black box’ which takes all input
variable specifications and transform them into a set of output or response
variables [4]. Figure 2 shows the input and output variables along with the ‘black
box’ model, for our queueing simulation system.

—
Exponential arrivals i X Maximum queues length
— 11, 12, «eee L
rate = 1 packet/sec Yi, Y2, Y3
Random
variables
Service times Average delay -
- = X51, X2, Vi
(bit rate/packet length) M
© Maxi del
~ aximum dela
Uniservers D - -
- Y:
D=3 E °
L
Decision Input lines Departure rates -
variables Do=2 o Yo, Y7, Ys
Output lines
- “Black box”
D;=2
~
Input variables = Model — Output variables

Fig.2. Model input-output transformation

The output variables consist of all statistics of interest generated by the
simulation with respect to the models’ behaviour. For example, one may be
interested in the average delay in seconds of a customer (i.e. packet) from arrival
to beginning of service, or the maximum length of queue size at pick times.

The uncontrollable input variables are denoted by X, the decision variables
by D, and the output variables by Y. from the ‘black box’ point of view, the model
takes the inputs X and D and produces the outputs Y-

f(X,D)=Y
here, f'denotes the transformation that is due to the structure of the model.

For our example model, the exponentially distributed inter-arrival time
generated in the model between packet n-/ and » is denoted by X;,,. The normally
distributed service time generated in the model for packet # is denoted by Y,

84 Elena Uleia

For validation of the input-output transformations of the queues model to
be possible, real system data must be available, comparable to at least some of the
model output Y. As our example is an ideal model for a network of queues, it is
unlikely that such results could be produced.

5.Validation techniques for conventional simulation models

A taxonomy of more than 77 V&V (Validation & Verification) techniques
for conventional simulation models is presented in Fig. 3. Most of these
techniques come from the software engineering discipline and the remaining are
specific to the modelling and simulation field. Details of these techniques can be
found in [5]. The V&V techniques are classified into four primary categories:
informal, static, dynamic, and formal.

V&YV Techniaues for Simulation Models
|

Inf0r|ma Static Dvnamic Formal

I | |
Audit Cause-Effect Graphing Acceptance Testing Induction .
Desk Checking Control Analysis Assertion Checking Inductive Assertions
Documentation Calling Structure Analysis Bottom-Up Testing Inference
Checking Concurrent Process Comparison Testing Lambda Calculus
Face Validation ~ Analysis Compliance Testing Logical Deduction
Inspections Control Flow Analysis Authorization Testing P red%cate Calculus
Reviews State Transition Analysis ~ Performance Testing Predicate Transform.
Turing Test Data Analysis Security Testing Proof of Correctness
Walkthroughs Data Dependency AnalysisDebugging

Data Flow Analysis Execution Testing

Fault/Failure Analysis Fault/Failure Insertion

Interface Analysis Test

Semantic Analysis Field Testing

Structural Analysis Functional (Black-

Symbolic Evaluation Box)Test

Syntax Analysis Graphical Comparisons

Traceability Assessment ~ Interface Testing
Rit-State Exnloration

Fig. 3. Classification of Verification and Validation Techniques for Conventional Simulation
Models

Informal techniques are among the most commonly used. They are called
informal because the tools and approaches used rely heavily on human reasoning
and subjectivity without stringent mathematical formalism. These techniques are

Simulation models validation using the OSSim tool 85

applied using well structured approaches under formal guidelines and they can be
very effective if employed properly.

Static techniques are concerned with accuracy assessment on the basis of
characteristics of the static model design and source code. Static techniques do not
require machine execution of the model, but mental execution can be used. The
techniques are very popular and widely used, with many automated tools available
to assist in the V&V process. These techniques can obtain a variety of information
about the structure of the model, modelling techniques and practices employed.

Dynamic techniques require model execution and are intended for
evaluating the model based on its execution behaviour. Most dynamic V&V
techniques require model instrumentation. Dynamic V&V techniques are usually
applied using the following three steps. In Step 1, the executable model is
instrumented. In Step 2, the instrumented model is executed and in Step 3, the
model output is analyzed and dynamic model behaviour is evaluated.

Formal techniques are based on mathematical proof of correctness. If
attainable, proof of correctness is the most effective means of model V&V.
Unfortunately, “if attainable” is the overriding point with regard to formal V&V
techniques. Current state-of-the-art proof of correctness techniques are simply not
capable of being applied to even a reasonably complex simulation model.
However, formal techniques serve as the foundation for other V&V techniques.

6. Validation by observers

Discrete-event systems can be formalized by using finite automata over a
set of observable events plus a set of unobservable events [6].

Any run is a sequence of states; a trace is a sequence of observations on a
subset of the variables. These variables can represent input and output ports, while
the internal variables would be hidden from an observer. An observer will see the
input values at the same time as the output values, and will not be able to infer
causality relations without additional information [7].

The wvalidation process will be actually performed by introducing
observers in the system, in order to collect model properties at the observer check
point, and compare these with analytically derived model properties.

In the remaining part of this paragraph are given two observers validation
patterns. First one checks the queue departure rate, and the second one the
cumulative queue arrival rates.

6.1. Validation of departure rate

The simplest validation property for a network of queues is the first
property in [4], that states:’ Provided no customers are created or destroyed in the
queue, then the departure rate out of a queue is the same as the arrival rate into

86 Elena Uleia

the queue, over the long run.' For this purpose a new observer block has been
created (my_obs), with an attached observer process. The observed property, the
departure rate, is checked statically for queue q32. All of the inter-departure times
are collected and saved in a log file for post-processing after simulation is
complete. The validation queues model is shown in fig. 4 below.

-

(= =0 T
Control Edit Help |
= |
SAVE
sink1:
e [*] real_ch SINK.
GEN_2
1 :
2’4
<
O T
CHAHHEL b 0
Pociiir R rhy_obs: |
%Egg GBSERVER_:
TRAHSFER
sys=
T0 K
QL
COHPILE)
© —>
sink2: s
SINK
. |
i~ | =
Left : | Nothing Center : | Nothing Right : Nothing |

Fig. 4. Model Validation Block Diagram

All simulation runs here were performed with the same simulation
parameters as the runs for the simulation model, i.e. without any observers
attached. The results for the inter-departure times are reproduced in the table 1
below, in us_queue g32 out.

Table 1
Confidence Intervals for 90%, 95% and 99% confidence levels

CI (Confidence
Intervals)

90%

95%

99%

us queue ql2

1.187003-1.203262

1.185302-1.204963

1.181725-1.208540

us_queue 22

0.928135-0.941438

0.926743-0.942830

0.923816-0.945757

us_queue 32

1.057704-1.071656

1.056244-1.073116

1.053174-1.076185

us_queue q32 out

1.057697-1.071663

1.056236-1.073124

1.053163-1.076196

The confidence intervals for both queue q32 input and output parameters
are following closely together, with a minor variance of 10 %.
The queue q32 inter-arrival times mean converges to a stable state, after
initial transitory state, at about 1500™ sample. The q32 inter-departure times mean
(red line in the figure 3 graph) converges at the same sample point.

Simulation models validation using the OSSim tool 87

The queue observed output parameter following closely the input
parameter is proved both graphically (fig. 5), and analytically by means of the
confidence intervals results (table 2).

"= Grnuplot
1.2
int_time_log mean of interrarival_time(sim_time) ——
int_time_q32 mean of interracival_time({sim_times)
1.15 B T
S g
et 5
1.1 “.‘___:
. & .
T, T W
% i
1.05 b=
1 B>
0.95 k& =
‘3!
34
0.9 L=
Q SO0 1000 1500 2000
| 2019.25, 1.20555)

Fig. 5 Model Validation — Output/Inputs Rates for q32
6.2. Validation of network queues convergence

This involves validation of the stability (convergence) system property.
The property that is validated here involves the property that states: “If customers
arrive to queue i at rate i, and a fraction 0 < pij < I of them are routed to queue
J upon departure, then the arrival rate from queue i to queue j is Ai * pij over the
long run' [4]. Additionally, there has to be check that all packets that enter the
network queues system are leaving the queueing system, i.e. no packets loss.

In order to prove the stability of the whole system, the following
convergence equation should hold for each queue in the system: inter-arrival
mean time value at queue 7, multiplied by the ratio of the number of packets
received at current queue i ports and total number of the generated packets should
equal the mean value of the generated packets in the system.

A= ﬂiﬁ (1)
L

where, A— is the mean arrival time of the generated packets;

Ai— inter-arrival mean time at queue i ;

L — total number of generated packets injected in the system during
simulated time T;

L; — number of packets arriving at queue i input ports, during simulated
time T.

88 Elena Uleia

For this purpose, two observer blocks have been added to the system
(obsl, obs2), with an attached observer process each. The observed property, is
checked statically for each queue. All of the inter-arrival times are collected and
saved in a log file for post-processing after simulation is complete.

The validation queues model is shown in fig. 6 below.

- NSk e e e = e
Control Edit Help
BY

L B 1| my_obs2:
DELETE (bBSEHVEH_I_%I,:l
TRAHSFER & -
70 Brock
e _obs1:
COMPILE $PBSERVER_(=
L= <
sink2: b |
SINK &
o <0
/
K D D ! e
Left : Nothing Center : | Nothing Right : | Nothing |

Fig. 6. Model Validation Block Diagram

All simulation runs have been performed with the same simulation
parameters as the runs for the simulation model, i.e. without any observers
attached. The results for the inter-arrival and inter-departure times are reproduced
in the table 2 below, in us_queue obsl, and us_queue obs2 respectively.

Table 2
Confidence Intervals for 90%0, 95% and 99% confidence levels
CI (Confidence Intervals) 90% 95% 99%
us_queue ql2 1.197926-1.202556 1.197441-1.203041 1.196422-1.204059
us_queue (22 0.935417-0.939205 0.935021-0.939602 0.934187-0.940435
us_queue 32 1.070029-1.075934 1.069411-1.076552 1.068112-1.077851
us_queue obsl 0.998092-1.001339 0.997752-1.001679 0.997037-1.002394
us_queue obs2 0.998070-1.001361 0.997726-1.001705 0.997002-1.002429

The queue obs! (input to the system) and obs2 (output from the system)
inter-arrival times mean (green and red lines in the fig. 7 graph) converge to a
stable state, after initial transitory state.

Simulation models validation using the OSSim tool 89

= Ehupiot ==
2.4 T r T T r T T r T
int_time_obsl mean of interrarival_time(sim_time) -
int_time_obs2 mean of interrarival_time(sim_time)
int_time_ql2 mean of interrarival_time{sim_time) =
2.2 int_time_q22 mean of interrarival_time(sim_time) =
int_time_q32 mean of interrarival_tims(sim_time)
2 F
1.8
1.6 %
1.4
1.2
1
0.8
0.6
] 100000 200000 300000 400000 S00000 E00000 FOO000 BO0000 FOO000 1le+06

990474, 2.18073

Fig. 7. Model Validation — Output/Inputs Rates for g12, 22, g32, obs1, and obs2

The queues inter-arrival mean times parameters are proved both
graphically (figure 6), and analytically by means of the equation (1) calculations,
in table 3 below.

Table 3
Mean inter-arrival times - computed and experimental values
Convergence No of samples of | Mean of interarrival time| Mean of interarrival
results queue i of queue i time of queue i
[Ni] [A;]- computed [A;]- experimental

us queue ql2 833155 1.200590 1.200241

us_queue_q22 1066881 0.937572 0.937311

us_queue q32 931978 1.0732849 1.0729815
us_queue obsl 1000278 1 0.9997155
us_queue obs2 1000278 1 0.9997155

From the above table, the q12 received packets are 833155+1, the total
generated packets number is 1000278+1, and the generated packets distribution
mean value is 1. By applying equation (1), the queues inter-arrival mean time is:

L L
A=A+t = Al =A— 2)
L L;

Al = /ILAZ 1 *1000279 / 833156 = 1.200590
1

A2 = /1L£= 1 * 1000279 / 1066882 = 0.937572
2

A3 = /ILLZ 1 *1000279 /931979 = 1.073284
3

90 Elena Uleia

The experimental results are very close to the computed results, which
prove the convergence of the system. For the current simulation time, that is 10°,
the convergence deviation is about 2.8 10 for all computed inter-arrival mean
times. A null convergence deviation is to be obtained for very long simulation
time. For example, a simulation run of 10%-10° is considered sufficient for the
current queueing system.

7. Conclusions

Model validation is a mandatory requirement in all simulation models
design. The validation methods presented in this paper are making use of the
observers concept that is applied in validating a queueing simulation model
developed using the OSSim network simulation environment.

The OSSim tool is capable of simulating, on usual hardware, 1.2E10
events within one hour, based on several implementation optimisations [8].

Other experiments are planned to be performed, with the same simulation
model, but having the system property checked dynamically, instead. The
correctness requirement check will be done at runtime, and any failure reported by
a corresponding error message. This method is checking the validity of the model
faster than the static one, improving the tool validation performances.

REFERENCES

[1]. Robert G. Sargent, ‘Verification and Validation of Simulation Models’, Proceedings of the
2005 Winter Simulation Conference (December 2005, Orlando, FL, USA), pp.130-143,
2005.

[2]. Elena Uleia, ‘Performance evaluation for Discrete event Simulators: OSsim versus
OMNeT++’, U.P.B., Scientific Bulletin, No.3, 2008

[3]. Elena Uleia, O. Fratu, & Simona Halunga, Discrete Event Simulator for Communication
Networks’, 15th Telecommunications forum TELFOR 2007, Serbia, Belgrade, Nov. 20-22,
2007.

[4]. J. Banks, J.S.Carson II, B.L. Nelson, Discrete-Event System Simulation, Prentice Hall, 1999

[5]. O. Balci, “Verification, Validation and Accreditation of Simulation Models’, Proceedings of
the 1997 Winter Simulation Conference, pp 135-141.

[6]. A.M. Law, ‘How to Build Valid and Credible Simulation Models’, Proceedings of the 2005
Winter Simulation Conference, M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A.
Joines, eds., December 2005, Orlando, FL, USA), pp 24-31, 2005.

[7]. J.C.P. Kleijnen, ‘Validation of Models: Statistical Techniques and Data Availability’,
Proceedings of the 1999 Winter Simulation Conference, pp 647-653.

[8]. Elena Uleia, Simona Halunga, Implementation techniques for communications protocols,
International Symposium on Signals, Circuits and Systems, 2005, ISSCS 2005, Vol. 2, 14-
15 July 2005 Page(s):529 - 532

