
U.P.B. Sci. Bull., Series C, Vol. 71, Iss. 1, 2009                                                       ISSN 1454-234x 

SIMULATION MODELS VALIDATION USING THE OSSIM 
TOOL  

Elena ULEIA1 

Obiectul lucrãrii de faţã este prezentarea a doua metode de validare a 
modelelor de simulare, dezvoltate folosind pachetul de programe OSSim (Open 
Source Simulator). Pentru a adresa aceastã problemã, s-a utilizat un sistem de cozi. 
Ambele metode de validare folosesc entitãţi ‘observer’, care evalueazã anumite 
propietãţi ale sistemului de simulare, verificã corectitudinea datelor analizate si le 
raporteazã. Metodele prezentate valideazã în mod static modelul de simulare. 
Aceastã prezentare aratã suportul simulatorului OSSim pentru validarea 
modelelordezvoltate in acest mediu. 

The objective of this paper is to present two validation methods for 
simulation models developed using the OSSim (Open Source Simulator) tool. In 
order to address this matter, a simulation model of a queueing system has been 
used. Both validation methods make use of observer entities, which evaluate certain 
simulation system properties, check the correctness of the analyzed performance 
data, and report the results. The present methods are statically validating the 
simulation model. This proves the OSSim tool capability for validation purposes. 

Keywords: simulation, validation, queuing systems, hierarchical models, 
performance analysis, distributed computing 

1. Introduction 

The present paper introduces two validation methods based on observers. 
The validation is performed for a queueing system simulation model in order to 
check the model validity. Both methods used in this paper are statically validating 
the model. These can be extended to a dynamic validation by using a runtime 
check on the system properties.  

As discussed by [1], a set of 10 practical techniques for developing valid 
and credible models are described, including: quantitative techniques, performing 
sensitivity analyses to determine important model factors, or validating the output 
from the overall simulation model. 

It is usually too difficult, too expensive, or too time consuming to use all 
possible validation techniques for every model that is developed. The personal 
contribution relies on the OSSim tool design that best suits fast model building an 
                                                           
1 PhD student, Computer Science Faculty, University POLITEHNICA of Bucharest, Romania, 
elena.uleia@gmail.com  

mailto:elena.uleia@gmail.com


Elena Uleia 82

easy extension for validation support. OSSim tool supersedes other simulator 
tools of the same functionality levels by its fast runtime execution [2]. 

2. OSSim Tool  

OSSim [3] is a discrete event simulator package that allows for 
development of network simulation and analysis which makes use of technologies 
from the area of distributed computing, client-server architectures and object 
oriented programming. One of the key issues of the design is high performance of 
the overall system, making possible the modelling and the simulation of complex 
networks. 

OSSim is also suitable for simulation of any system with a hierarchical 
structure which admits a discrete time modelling. 

3. Simulation model description 

The system chosen for modelling, validation, and simulation, using the 
OSSim toolkit, is a queueing network. The system consists of a network with 
three uni-servers, each of these having different number of inputs and outputs 
itself, but only one queue per server (uni-server), two incoming external packets 
traffic lines, and two lines for outgoing traffic.  

The topology of the queueing network is drawn in fig. 1 below. 
 

λ2 

λ1 

 
 

O   1

 
 
 O2  
 
 

Fig. 1. Queueing Network System 
 

The queues of each uni-servers are sufficiently large (106 bits), i.e. no loss 
of packets is encountered in the system for the specified bit rate. The bit rate for 
all queues is assumed identical, of 33,600 bits/sec. The uni-server queue discipline 
is FIFO, first arrived packet is the first one served. 

The input traffic lines support packets of different length, following a 
uniform distribution, between 100 and 900 bits. The packets arrival rate (λ1, λ2) 
follows an exponential distribution with the mean value of 1 sec. The selection 



Simulation models validation using the OSSim tool 83

probability of the input traffic lines follows a Bernoulli distribution with 
probability 0.4. 

4. Simulation model validation 

The simulation model is viewed as a ‘black box’ which takes all input 
variable specifications and transform them into a set of output or response 
variables [4]. Figure 2 shows the input and output variables along with the ‘black 
box’ model, for our queueing simulation system. 

 
Fig.2. Model input-output transformation 

 
The output variables consist of all statistics of interest generated by the 

simulation with respect to the models’ behaviour. For example, one may be 
interested in the average delay in seconds of a customer (i.e. packet) from arrival 
to beginning of service, or the maximum length of queue size at pick times. 

The uncontrollable input variables are denoted by X, the decision variables 
by D, and the output variables by Y. from the ‘black box’ point of view, the model 
takes the inputs X and D and produces the outputs Y: 

f (X, D) = Y 
here, f denotes the transformation that is due to the structure of the model.   

For our example model, the exponentially distributed inter-arrival time 
generated in the model between packet n-1 and n is denoted by X1n. The normally 
distributed service time generated in the model for packet n is denoted by Y1n. 

Random 
variables 

Exponential arrivals 

rate = 1 packet/sec 

Service times  

(bit rate/packet length) 

Decision 
variables 

Uniservers 

D1 = 3 

Output lines 

D3 = 2 
“Black box” 

M 
O 
D 
E 
L 

Departure rates 

Y6, Y7, Y8 

Average delay 

Y4 

Input variables

Maximum queues length 

Y1, Y2, Y3 

Model Output variables 

X11, X12, .... 

X21, X22, .... 

Input lines 

D2 = 2 

Maximum delay 

Y5 



Elena Uleia 84

For validation of the input-output transformations of the queues model to 
be possible, real system data must be available, comparable to at least some of the 
model output Y. As our example is an ideal model for a network of queues, it is 
unlikely that such results could be produced. 

5.Validation techniques for conventional simulation models 

A taxonomy of more than 77 V&V (Validation & Verification) techniques 
for conventional simulation models is presented in Fig. 3. Most of these 
techniques come from the software engineering discipline and the remaining are 
specific to the modelling and simulation field. Details of these techniques can be 
found in [5]. The V&V techniques are classified into four primary categories: 
informal, static, dynamic, and formal. 

 

 

V&V Techniques for Simulation Models

Static Dynamic Formal 

Induction 
Inductive Assertions 
Inference 
Lambda Calculus 
Logical Deduction 
Predicate Calculus 
Predicate Transform. 
Proof of Correctness 

Acceptance Testing 
Assertion Checking 
Bottom-Up Testing 
Comparison Testing 
Compliance Testing 
   Authorization Testing 
   Performance Testing 
   Security Testing 
Debugging 
Execution Testing 
Fault/Failure Insertion  
Test 
Field Testing 
Functional (Black-
Box)Test 
Graphical Comparisons 
Interface Testing 
Bit-State Exploration

Cause-Effect Graphing 
Control Analysis 
   Calling Structure Analysis
   Concurrent Process 
Analysis 
   Control Flow Analysis 
   State Transition Analysis 
Data Analysis 
   Data Dependency Analysis
   Data Flow Analysis 
Fault/Failure Analysis 
Interface Analysis 
Semantic Analysis 
Structural Analysis 
Symbolic Evaluation 
Syntax Analysis 
Traceability Assessment 

Audit 
Desk Checking 
Documentation 
Checking 
Face Validation 
Inspections 
Reviews 
Turing Test 
Walkthroughs 

Informa

Fig. 3. Classification of Verification and Validation Techniques for Conventional Simulation 
Models 

 
Informal techniques are among the most commonly used. They are called 

informal because the tools and approaches used rely heavily on human reasoning 
and subjectivity without stringent mathematical formalism. These techniques are 



Simulation models validation using the OSSim tool 85

applied using well structured approaches under formal guidelines and they can be 
very effective if employed properly. 

Static techniques are concerned with accuracy assessment on the basis of 
characteristics of the static model design and source code. Static techniques do not 
require machine execution of the model, but mental execution can be used. The 
techniques are very popular and widely used, with many automated tools available 
to assist in the V&V process. These techniques can obtain a variety of information 
about the structure of the model, modelling techniques and practices employed.  

Dynamic techniques require model execution and are intended for 
evaluating the model based on its execution behaviour. Most dynamic V&V 
techniques require model instrumentation. Dynamic V&V techniques are usually 
applied using the following three steps. In Step 1, the executable model is 
instrumented. In Step 2, the instrumented model is executed and in Step 3, the 
model output is analyzed and dynamic model behaviour is evaluated. 

Formal techniques are based on mathematical proof of correctness. If 
attainable, proof of correctness is the most effective means of model V&V. 
Unfortunately, “if attainable” is the overriding point with regard to formal V&V 
techniques. Current state-of-the-art proof of correctness techniques are simply not 
capable of being applied to even a reasonably complex simulation model. 
However, formal techniques serve as the foundation for other V&V techniques. 

6. Validation by observers 

Discrete-event systems can be formalized by using finite automata over a 
set of observable events plus a set of unobservable events [6]. 

Any run is a sequence of states; a trace is a sequence of observations on a 
subset of the variables. These variables can represent input and output ports, while 
the internal variables would be hidden from an observer. An observer will see the 
input values at the same time as the output values, and will not be able to infer 
causality relations without additional information [7]. 

The validation process will be actually performed by introducing 
observers in the system, in order to collect model properties at the observer check 
point, and compare these with analytically derived model properties. 

In the remaining part of this paragraph are given two observers validation 
patterns. First one checks the queue departure rate, and the second one the 
cumulative queue arrival rates. 

6.1. Validation of departure rate 

The simplest validation property for a network of queues is the first 
property in [4], that states:' Provided no customers are created or destroyed in the 
queue, then the departure rate out of a queue is the same as the arrival rate into 



Elena Uleia 86

the queue, over the long run.' For this purpose a new observer block has been 
created (my_obs), with an attached observer process. The observed property, the 
departure rate, is checked statically for queue q32. All of the inter-departure times 
are collected and saved in a log file for post-processing after simulation is 
complete. The validation queues model is shown in fig. 4 below.   
 

 
Fig. 4. Model Validation Block Diagram 

 
All simulation runs here were performed with the same simulation 

parameters as the runs for the simulation model, i.e. without any observers 
attached. The results for the inter-departure times are reproduced in the table 1 
below, in us_queue_q32_out.  

Table 1 
Confidence Intervals for 90%, 95% and 99% confidence levels 

CI (Confidence 
Intervals) 

90% 95% 99% 

us_queue_q12 1.187003-1.203262 1.185302-1.204963 1.181725-1.208540 
us_queue_q22 0.928135-0.941438 0.926743-0.942830 0.923816-0.945757 
us_queue_q32 1.057704-1.071656 1.056244-1.073116 1.053174-1.076185 

us_queue_q32_out 1.057697-1.071663 1.056236-1.073124 1.053163-1.076196 
The confidence intervals for both queue q32 input and output parameters 

are following closely together, with a minor variance of 10-4 %. 
The queue q32 inter-arrival times mean converges to a stable state, after 

initial transitory state, at about 1500th sample. The q32 inter-departure times mean 
(red line in the figure 3 graph) converges at the same sample point.  



Simulation models validation using the OSSim tool 87

The queue observed output parameter following closely the input 
parameter is proved both graphically (fig. 5), and analytically by means of the 
confidence intervals results (table 2). 
 

 
Fig. 5 Model Validation – Output/Inputs Rates for q32 

6.2. Validation of network queues convergence 

This involves validation of the stability (convergence) system property.  
The property that is validated here involves the property that states: ‘If customers 
arrive to queue i at rate λi, and a fraction 0 < pij < 1 of them are routed to queue 
j upon departure, then the arrival rate from queue i to queue j is λi * pij over the 
long run' [4]. Additionally, there has to be check that all packets that enter the 
network queues system are leaving the queueing system, i.e. no packets loss. 

In order to prove the stability of the whole system, the following 
convergence equation should hold for each queue in the system: inter-arrival 
mean time value at queue i, multiplied by the ratio of the number of packets 
received at current queue i ports and total number of the generated packets should 
equal the mean value of the generated packets in the system. 

L
Li iλλ =                                                                    (1) 

where, λ – is the mean arrival time of the generated packets; 
λi – inter-arrival mean time at queue i ; 
L – total number of generated packets injected in the system during 

simulated time T; 
Li – number of packets arriving at queue i input ports, during simulated 

time T. 



Elena Uleia 88

For this purpose, two observer blocks have been added to the system 
(obs1, obs2), with an attached observer process each. The observed property, is 
checked statically for each queue. All of the inter-arrival times are collected and 
saved in a log file for post-processing after simulation is complete. 

The validation queues model is shown in fig. 6 below.   

 
Fig. 6. Model Validation Block Diagram 

 
All simulation runs have been performed with the same simulation 

parameters as the runs for the simulation model, i.e. without any observers 
attached. The results for the inter-arrival and inter-departure times are reproduced 
in the table 2 below, in us_queue_obs1, and us_queue_obs2 respectively.  

Table 2 
Confidence Intervals for 90%, 95% and 99% confidence levels 

CI (Confidence Intervals) 90% 95% 99% 
us_queue_q12 1.197926-1.202556 1.197441-1.203041 1.196422-1.204059 
us_queue_q22 0.935417-0.939205 0.935021-0.939602 0.934187-0.940435 
us_queue_q32 1.070029-1.075934 1.069411-1.076552 1.068112-1.077851 
us_queue_obs1 0.998092-1.001339 0.997752-1.001679 0.997037-1.002394 
us_queue_obs2 0.998070-1.001361 0.997726-1.001705 0.997002-1.002429 

 
The queue obs1 (input to the system) and obs2 (output from the system) 

inter-arrival times mean (green and red lines in the fig. 7 graph) converge to a 
stable state, after initial transitory state.  



Simulation models validation using the OSSim tool 89

 
Fig. 7. Model Validation – Output/Inputs Rates for q12, q22, q32, obs1, and obs2 
The queues inter-arrival mean times parameters are proved both 

graphically (figure 6), and analytically by means of the equation (1) calculations, 
in table 3 below. 

Table 3 
Mean inter-arrival times - computed and experimental values 

Convergence 
results 

No of samples of 
queue i 

[Ni] 

Mean of interarrival time 
of queue i 

[λi]- computed 

Mean of interarrival 
time of queue i 

[λi]- experimental 
us_queue_q12 833155 1.200590 1.200241 
us_queue_q22 1066881 0.937572 0.937311 
us_queue_q32 931978 1.0732849 1.0729815 
us_queue_obs1 1000278 1 0.9997155 
us_queue_obs2 1000278 1 0.9997155 

 
From the above table, the q12 received packets are 833155+1, the total 

generated packets number is 1000278+1, and the generated packets distribution 
mean value is 1. By applying equation (1), the queues inter-arrival mean time is: 

L
Li iλλ =       =>  

L

L
i

i

λλ =                                           (2) 

1
1

L
Lλλ = = 1 * 1000279 / 833156 = 1.200590 

2
2

L
Lλλ = = 1 * 1000279 / 1066882 = 0.937572 

3
3

L
Lλλ = = 1 * 1000279 / 931979 = 1.073284 



Elena Uleia 90

The experimental results are very close to the computed results, which 
prove the convergence of the system. For the current simulation time, that is 106, 
the convergence deviation is about 2.8 10-4 for all computed inter-arrival mean 
times. A null convergence deviation is to be obtained for very long simulation 
time. For example, a simulation run of 108-109 is considered sufficient for the 
current queueing system. 

7. Conclusions 

Model validation is a mandatory requirement in all simulation models 
design. The validation methods presented in this paper are making use of the 
observers concept that is applied in validating a queueing simulation model 
developed using the OSSim network simulation environment. 

The OSSim tool is capable of simulating, on usual hardware, 1.2E10 
events within one hour, based on several implementation optimisations [8]. 

Other experiments are planned to be performed, with the same simulation 
model, but having the system property checked dynamically, instead. The 
correctness requirement check will be done at runtime, and any failure reported by 
a corresponding error message. This method is checking the validity of the model 
faster than the static one, improving the tool validation performances.  

R E F E R E N C E S 

[1]. Robert G. Sargent, ‘Verification and Validation of Simulation Models’, Proceedings of the 
2005 Winter Simulation Conference (December 2005, Orlando, FL, USA), pp.130-143, 
2005. 

[2]. Elena Uleia, ‘Performance evaluation for Discrete event Simulators: OSsim versus 
OMNeT++’, U.P.B., Scientific Bulletin, No.3, 2008 

[3]. Elena Uleia, O. Fratu, & Simona Halunga, Discrete Event Simulator for Communication 
Networks’, 15th Telecommunications forum TELFOR 2007, Serbia, Belgrade, Nov. 20-22, 
2007. 

[4]. J. Banks, J.S.Carson II, B.L. Nelson, Discrete-Event System Simulation, Prentice Hall, 1999  
[5]. O. Balci, ‘Verification, Validation and Accreditation of Simulation Models’, Proceedings of 

the 1997 Winter Simulation Conference, pp 135-141. 
[6]. A.M. Law, ‘How to Build Valid and Credible Simulation Models’, Proceedings of the 2005 

Winter Simulation Conference, M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. 
Joines, eds., December 2005, Orlando, FL, USA), pp 24-31, 2005. 

[7]. J.C.P. Kleijnen, ‘Validation of Models: Statistical Techniques and Data Availability’, 
Proceedings of the 1999 Winter Simulation Conference, pp 647-653. 

[8]. Elena Uleia, Simona Halunga, Implementation techniques for communications protocols, 
International Symposium on Signals, Circuits and Systems, 2005, ISSCS 2005, Vol. 2, 14-
15 July 2005 Page(s):529 - 532  


