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CYCLIC VOLTAMMETRY SIMULATION USING 
ORTHOGONAL COLLOCATION: COMPARISON WITH 

EXPERIMENTAL DATA AND MEASURING THE 
ELECTROCHEMICAL RATE CONSTANT 

Dan DRAGU1, Mihai BUDA2, Teodor VIŞAN3 

Prezenta lucrare estimează constanta de viteză pentru cuplul redox 
Co(bpy)3

2+/3+ folosind metoda propusă de Nicholson. Valoarea acesteia a fost 
verificată prin simularea digitală a experimentelor de voltametrie ciclică. Metoda 
numerică utilizată în simulare se bazează pe metoda colocaţiei ortogonale şi include 
căderea ohmică necompensată din experimente. 

 
The electrochemical rate constant for the redox couple Co(bpy)3

2+/3+ was 
estimated using the Nicholson method. The value was checked by digital simulation 
of a cyclic voltammetry experiment. The simulation procedure is based on the 
orthogonal collocation method and includes the uncompensated ohmic drop during 
experiments.  

Keywords: electrochemical rate constant, digital simulation, cyclic voltammetry, 
ohmic drop. 

1. Introduction 

The measurement of electrochemical rate constants has never been an easy 
task. Thus, it was often necessary to combine high-precision equipment or rather 
elaborate and carefully executed experimental procedures with advanced calculus. 
The method proposed by Nicholson [1], though not considered generally a reliable 
method for electrochemical rate constant measurement, is nevertheless still widely 
employed, despite its shortcomings. The method will be used in this paper 
showing the advantages of numerical simulation of experimental work. Even if 
the digital simulation in electrochemistry has a long history [2], the practical use 
of these methods is not as widely implemented as one might expect.  

The simulation used in this study is based on orthogonal collocation: this 
procedure was intensively studied by Speiser [3 - 5] and also by other authors [6, 
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7]. We have already proposed a simple but efficient numerical simulation scheme: 
a detailed description of procedures associated with Jacobi polynomials is given 
in [8].  

An efficient method for describing the ohmic drop in the circuit was 
previously presented in [9] and was included in the numerical procedure in order 
to evaluate its influence. We have checked the simulated data against 
experimental ones, using Co(bpy)3

2+/3+-acetonitrile as a redox couple, since it 
offers several advantages: it is a simple, moderately fast, outer-sphere electrode 
reaction and experimental data for this couple are available in literature [10, 11]. 

 
2. Derivation of electrochemical rate constants using Fick’s laws: 
 
A typical cyclic voltammetry experiment is mathematically described by 

the following equations system, written for the following electrochemical process: 
 
O + e- → R 
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where cO, cR – concentrations of oxidized (O) and reduced (R), species, 
respectively, depending on both distance and time; x – distance from electrode 
surface; v – potential scan rate; t – time; DO, DR – diffusion coefficient for O and 
R, respectively; JO, JR – flux for O and R, respectively; k0 – standard 
electrochemical rate constant; k1,k2 – electrochemical rate constant for forward 
and backward reaction, respectively; α – charge transfer coefficient; F – Faraday 
constant; R – ideal gas constant; ne – number of electrons transferred; T – 
temperature; E – applied potential; E0’ – formal potential. 

In these conditions the Faradaic current, If, is given by (2) 
 

)( 21 ROf ckcknFAI ⋅−⋅= .     (2) 
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where A is surface area of electrode. 
To avoid the time dependence, a potential grid is employed instead, by 

dividing the whole potential scan domain in NP points, where NP has a convenient 
user-chosen value. The above system (1) thus becomes: 
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where Ei – is the initial potential, Δt is constant and represents the time interval in 
which the polarization potential is changing from i*ΔE  to (i+1)*ΔE.  

As previously proposed [8], the method chosen for solving system (3) is 
based on concentration functions by an orthogonal Jacobi polynomial. When the 
system simulated includes also the ohmic drop, the constants k1 and k2 become k’1 
and k’2  respectively (4) : 
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The flowing current will thus be calculated using the corrected rate 

constants:  
)( 21 ROf ckcknFAI ⋅′−⋅′= .     (5) 

 
The only unknown parameter is If . The above nonlinear equation is solved 

iteratively using the Newton-Raphson method at each potential step i, with the 
initial guess taken from the i-1 point [9]. 
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3. The orthogonal collocation method 
 
Approximating the concentration profile by an orthogonal polynomial was 

extensively used by Speiser [3], using Legendre polynomials, a particular case of 
more general Jacobi polynomials, defined in (6)  
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where α, β are constants, Pm and Pn are Jacobi polynomials with m and n degree, 
respectively, with n ≠ m. The roots of such polynomials are distributed in the [-
1;1] interval. 

Chapman [7] used a variant of Lagrange polynomials, but his method, 
perhaps because of its complexity, was not developed further. The method used in 
this paper was proposed in [8] and it has a better flexibility comparing with 
Speiser’s Legendre polynomials.  

The concentration function is approximated through the polynomial  
Pn+ 2(x): 
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Also, the first and second derivatives can be expressed as: 
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where xi are the roots of polynomial P(x). 
 

The first and second derivatives are then given by: 
 

)()(
ixcA

x
xc

ix
⋅=

∂
∂  ; )()(

2

2

ixcB
x

xc

ix

⋅=
∂

∂ ,   (11) 

 
with i=1,...,n. A and B are the matrixes which depend on both the type and order 
of the polynomial equation used.  

Their coefficients are calculated using the Lagrange interpolation method 
[12], with the roots of an orthogonal n-grade Jacobi polynomial as collocation 
points. Thus 
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circumstances the function c(x) can be written as: 
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In this case, the coefficients of A and B are explicitly calculated with: 
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where P’’’ is the third derivative of polynomial P. 

 
4. Nicholson’s method for kinetic rate constant calculation 

 
In his classical method [1] Nicholson associated the parameter ψ with 

ΔEpeak*n, where ψ is proportional with the rate constant k0 according to  
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For each ψ Nicholson associates a corresponding ΔEpeak* n value. Since 

Nicholson’s tabulated values are rather difficult to use, as one needs to interpolate 
its values, it was thought better to use a fitted function to Nicholson’s values. 
Several fitting functions have been employed and it was found that that the best 
results (correlation coefficient 0.99996 and maximum error of 0.6%.) were 
obtained using the function, with ΔEpeak expressed in mV: 
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where A1=432.91 mV, A2=59.55 mV, x0=0.0688 and p=0.9938. Thus:  
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5. Experimental  

 
The redox couple studied corresponds to the electrode process:   

 
 

The hydrated compound [Co(bpy)3](ClO4)3×3H2O was precipitated with 
LiClO4 from a solution of [Co(bpy)3]Cl3 in water, (which was synthesized 
according to literature procedures [13], [14] ) and recrystallized from water. 

Typical experiments were performed using a 4.85 mM [Co(bpy)3](ClO4)3 
solution in acetonitrile, and 0.2M KClO4 as supporting electrolyte. A Pt working 
electrode (0.82 cm2) and a large platinum mesh counter electrode were used; the 
reference electrode was a Ag/AgNO3 0.01M in 0.1 M KClO4 in acetonitrile. All 
measurements were performed at room temperature (25±20C) using an 
AUTOLAB PGSTAT 12, electrochemical workstation. 

The ohmic resistance in the cell was estimated using high-frequency        
(1 MHz - 100 kHz) impedance measurements; typical values were in the range of 
11±2 Ω. The cyclic voltammetry experiments were performed with scan rates 
between 0.025 and 5 V/s, with and without ohmic drop compensation. The data 
presented below are in all cases corrected for the charging current: a set of cyclic 

 [Co(bpy)3]3+ + e   Co(bpy)3]2+
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voltammograms were recorded in separate runs using only 0.2 M KClO4 in 
acetonitrile and the resulting curves were subtracted from the corresponding 
curves containing the redox species. 
 

6. Results and discussions 
 

Using Nicholson’s method an average value k0 = 0.0416 ± 0.0044 cm/s 
was calculated: Table 1 shows the results obtained (the last column contains the 
percent error from the average value). The k0 values for the 0.025 and 0.05 V/s 
were not used when calculating the average value, since for these scan rates the 
ΔEpeak values are too close to the theoretical reversible value and thus lead to large 
errors when calculating k0. 

Table 1 
k0 values for the electroreduction of [Co(bpy)3]3+ in acetonitrile calculated with  Nicholson’s 

method: 
No scan rate 

[mV/s] 
ΔEpeak  
[mV] 

ψ k0 [cm/s] k0 error[%] 

1 25 65.46 4.39569 0.02418 -
2 50 69.89 2.47273 0.01923 -
3 100 67.07 3.4338 0.03778 -9 
4 200 68.21 2.96964 0.04620 10 
5 300 74.15 1.72668 0.03290 -21 
6 400 73.85 1.76462 0.03883 -6 
7 500 75.97 1.5263 0.03755 -9 
8 600 75.07 1.61949 0.04364 4 
9 700 76.9 1.44018 0.04192 0 
10 800 77.82 1.36365 0.04243 1 
11 900 77.5 1.38938 0.04585 10 
12 1000 81.18 1.13962 0.03965 -4 
13 2000 90.79 0.765565 0.03766 -9 
14 3000 92.1 0.731733 0.04409 5 
15 4000 95.06 0.664509 0.04624 11 
16 5000 97.22 0.622143 0.04840 16 

 
Our experimental data were simulated using the following data available 

in literature [11], DO = DR = 9.9 .10-6 cm2/s, α = 0.5. In our simulation procedure, 
the formal potential was estimated as (Ea+Ec)/2 where Ea – peak potential for the 
anodic process, Ec – peak potential for the cathodic process.  
 Also, the rate constant used in the simulation was the above calculated 
value, i.e. k0 = 0.0416 cm/s. Further, the Nicholson’s method was again applied, 
but this time to the simulated data. The result is seen in Table 2. The errors in this 
case are calculated related to the average value k0 = 0.0416 cm/s from 
experimental data. 
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These results prove that the simulated data agree very well to the 
experimental ones, the errors in Table 2 being quite small (except, as noted above, 
for the lower scan rates, where the cyclic voltammogram curves are very close to 
the reversible case). 

Fig. 1 shows a comparison between distributions of k0 errors obtained 
from experimental and simulated data. 

Fig. 2 and Fig. 3 show also the good correlation between the simulated and 
experimental data, for both the uncorrected and ohmic drop corrected cyclic 
voltammograms. A small difference between corrected experimental and 
simulated data may however be noticed. This difference is virtually non-existent 
for scan rates up to 0.5 V/s, it is small for intermediate scan rates (up to 0.6V/s, 
Fig. 4) but it becomes quite obvious for higher scan rates, such as 5 V/s (Fig 5.). 

 
Table 2 

Rate constant k0 values using interpolation applied to simulation data: 
No scan rate 

[mV/s] 
ΔEpeak [mV] ψ k0 [cm/s] Error for k0 

[%] 
1 25 61.32 14.974 0.08237 97 
2 50 62.64 8.51067 0.06621 58 
3 100 64.8 4.96123 0.05458 31 
4 200 67.74 3.14529 0.04893 17 
5 300 69.96 2.45552 0.04679 12 
6 400 71.76 2.08091 0.04579 9 
7 500 73.32 1.83571 0.04516 8 
8 600 74.76 1.65415 0.04457 7 
9 700 76.08 1.5156 0.04411 5 
10 800 77.28 1.40761 0.04380 5 
11 900 78.48 1.31335 0.04334 4 
12 1000 79.56 1.23821 0.04308 3 
13 2000 87.96 0.849346 0.04179 0 
14 3000 94.08 0.685485 0.04130 0 
15 4000 99.12 0.588713 0.04096 -1 
16 5000 103.44 0.523512 0.04072 -2 

 
The main reason for this behaviour is most likely due to the residual ohmic 

drop which has not been compensated: indeed, due to technical difficulties, the 
ohmic drop cannot be totally compensated, but only about 80-90%. 
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Fig. 1. Error distribution for the calculated standard rate constants against k0=0.0416, the average 

value for experimental and simulated data 

 
Fig. 2. Experimental and simulated voltammograms for of 0.05, 0.2, 0.4, 0.6 and 1V/s scan rates 

with ohmic drop compensation 
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Fig. 3. Experimental and simulated voltammograms for 0.05, 0.2, 0.4, 0.6 and 1V/s scan rates 

without ohmic drop compensation 

 
Fig. 4. Comparison between the experimental and simulated voltammograms for 0.6 V/s with and 

without ohmic drop compensation 
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Fig. 5. Experimental and simulated voltammograms at 5 V/s for experiments with and without 

ohmic drop compensation 
On the other hand it is clear that the standard rate constant obtained using 

Nicholson’s method is significantly different when compared to other literature 
values for the same system k0 = 0.086 cm/s [11] and k0 = 0.198 cm/s [10]. While 
some small differences in experimental conditions exist between these sets of 
experiments, it is unlikely to account for such a rather large variation in k0. 
However, the value k0 = 0.198 cm/s is more credible because it was obtained by 
using an a.c. method, which is known to yield more reliable kinetic data than 
methods based on cyclic voltammetry [15] 

Since the value obtained in our experiments using Nicholson’s method is 
almost with one order of magnitude smaller than the accepted value of about 0.2 
cm/s, a special attention should be paid to the correction of the ohmic drop. It has 
long been known that the uncompensated resistance has the same effect on the 
cyclic voltammograms as a lower rate constant [1].  

Since it is impossible to correct entirely for the ohmic drop [15, page 243], 
and also because the measurement of rather low resistances (~10 Ω) usually 
involves errors of about 2-3%, new simulations were performed, using the 
accepted value for k0 (0.198 cm/s) in order to check whether a residual 
uncompensated resistance of about 1-2 ohms can have a significant impact on the 
measured value of k0.  
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This is indeed the case, as can be seen from figure 6: the simulated curve 
for 1 V/s using k0 = 0.198 cm/s and an uncompensated resistance of 14 Ω, which 
is well within the range of about 3% compared to the value we have used for 
correcting our cyclic voltammetry curves (11 Ω) agrees well with the 
experimental curve and it is virtually indistinguishable from the curve using  
k0 = 0.042 cm/s and R = 11 Ω.  

Thus it is indeed obvious that the residual uncompensated resistance can 
have dramatic effects on the measured rate constant when using Nicholson’s 
methods. The overall errors when comparing uncorrected experimental and 
simulated cyclic voltammograms do not exceed 1% for both pairs R=14 Ohm and 
k0=0.198 cm/s as well as R=13 Ohm and k0=0.086 cm/s (Fig. 7 and Fig. 8). The 
formula for error calculation is (18) : 

 

100
minexp,maxexp,

exp ⋅
−
−

=
II
II

error sim  %.    (18) 

 
It is thus worth noting that Nicholson’s method for measuring 

electrochemical rate constants is quite unreliable, the rate constant values 
calculated using this method are almost always smaller than the ones obtained by 
other methods (a. c. methods especially). 
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Fig. 6. Comparison between the simulated curve using k0 = 0.198 cm/s and R = 14 Ω and the 
experimental voltammogram at 1 V/s 

 
Fig. 7. Errors between experimental and simulated currents for different rate constants and ohmic 

resistances at 0.6 V/s 
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Fig. 8. Errors between experimental and simulated currents for different rate constants and ohmic 
drops at 1 V/s 

 
7. Conclusions: 

 
We have shown that the simulation of cyclic voltammetry data using 

orthogonal collocation is an efficient and accurate technique and the comparison 
with both corrected and uncorrected experimental data referring to ohmic drop 
compensation is excellent. The cyclic voltammetry simulation software developed 
so far may prove itself as an important tool in electrochemical investigations. 

Also, by using more reliable simulated voltammograms, we may conclude 
that Nicholson’s method for calculation the standard electrochemical rate constant 
is not well suited for fast and moderately-fast electrochemical reactions. The main 
reason for this inaccuracy is the presence of the residual uncompensated 
resistance. 
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