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AN APPROXIMATE EVALUATION OF THE
PHENOMENOLOGICAL AND STATE COEFFICIENTS FOR
VISCO-ANELASTIC MEDIA WITH MEMORY

Armando CIANCIO*

In a previous paper we have studied some properties of the
phenomenological and state coefficients for a viscoanelastic medium of order one
with memory. In that case we have used sometimes numerical approximation. In this
paper we study the same coefficients by mean of approximate dynamic moduli
expression for low and high frequency and we obtain some properties for viscous
coefficients which are connected only on the choice of maximum value of the region
of low frequency. In particular we show that the frequency corresponding to
minimum value of the viscous coefficient is function of the maximum frequency value
in the region of low frequency. Analogous studies have been performed in the region
of high frequency. It is shown that the physical implications of the results are in
agreement with experiments.
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1. Introduction

In the last 20 years of the last century a thermodynamic theory of non-
equilibrium was proposed and developed through the introduction of tensorial
internal variables characterizing the entropy production.

Various irreversible phenomena (viscoanelasticty and plasticity) have been
analyzed and rheological equations (stress-strain relations) are obtained in
different materials in order to establish differential equations whih describe the
mechanical properties of continua under investigations [12]-[21].

Recently [1]-[11], the thermomechanical model, proposed in that theory,
has been analyzed by the applications of the linear response theory in which a
harmonic shear deformation is assumed as cause and the relative stress as effect
and, in particular, numerical values of the phenomenological coefficients which
are involved in the production of entropy are obtained and the results are
compared with experimental data.

In this paper we consider shear phenomena in viscoanelasticity media and
using the linear response theory the coefficients, which occur in the rheological
equation of the theory, are calculated as functions of the frequency.

The trend of these coefficients is described both for the high that for the
low frequency and the conformity of the results with the related experimental data
obtained in the case of a polymeric material (poly-isobutilene) confirm the
validity of the mathematical model.
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2. Thermodynamical model for viscoanelastic media with memory
| several papers [17]-[21] it was shown that, by introducing the internal
variables which caratacterize theentropy producition and using the general method
of non-equilibrium thermodynamics, the total strain &, (i,k=12,3) can be
splitted in two parts:
i = 5i(kel) +gi(kin) 1)
where gi(ke') can be considered as the elastic strain tensor and gi(ki”) is the sum of an

arbitrary number, say n, of partial inelastic tensors.

In [20],[21] viscoanelastic media of order one (n = 1) were considered and
by introducing the assumption that the specific entropy s is a functio of the
specific energy u, the tensor of the total strain &, and the partial inelastic strain

gi(kl), i.e.
S(u'gik'gi(kl)) ) (2
the following Gibbs relation is obtained *
pTds=pdu—7{¥dg, +7Vdsl) | (3)
where
1_0 0
T _as(u’gik’gik ) , 4)
() __ 7 0 )
Gy =—pT oz, S(u’gik'gik ) , ()
and
w_ 79 )
G = pT Py S(u’gik’gik ) : (6)

ik
In (4)-(6) T is the temperature, ri(keq) is the equilibrium-stress tensor (which is of a
thermoelastic nature) and ri(kl) is the affinity stress tensor conjugated to gi(kl) :
The viscous stress tensor ri(k“) is defined by
Ti(kVi) = Tik _Ti(kl) , (7)
where 7, is the mechanical stress tensor which occurs in the first law of

thermodynamics:
du - de
— =—div j¥ + 7, —k , 8
p dt J le dt ( )

2 we use the Einstein’s convection for the indices.
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where j@ is the heat flux.
By utilizing this last equation and the Gibbs relation (3), the entropy
production o can be written in the following form:

de (1)
o =T (—Tl @ - gradT + " dd%u ) —djtk J . ©)

Neglecting cross effects among viscous and anelastic flows in [20]-[21] it
was shown that the deviator of the viscous stress tensor, fi(kv'), satisfies the
following phenomenological equation:

2:(vi) _ 77(0,0) dé‘ik . (10)

ik T s dt
In equation (10) ns(o'o)is the shear viscosity and &, is the deviator of the
total strain.
From (9) and applying the general method of non-equilibrium

thermodynamic, the following rheological equation for viscoanelastic media of
order one is determined:

dz 3 + R d’ Ei

k Rz, =RYg, + 11

dt x+ R dt 2 dt? (1)
where
R()_ 02,0
( 00)) (1)
(12)

R() 200 4 g(10,, (09,01
RY) ="

in which a®®and a*¥ are state coefficients related to the elastic and anelastic
properties of the medium, while 77(“) is the coefficient related to irreversible

anelastic shear phenomena. In [20]-[21], from stability considerations, it was
shown that the following inequalities hold:

a® >a" and 7°9>0, p">0 . (13)
In the following sections it will be seen that these inequalities are verified from
experimental data.
3. Linear response theory

In this section we consider the case in which only one component of the
deviator of stress is different from zero. Let be T this component and € the
corrispondent component of the deviator of the strain, so from (11) we have
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dr de d’e
— +RIr=RWe+RE LR =2
dt ° o €1 R, dt * dt?

In the theory of linear response [10] one assume that in a generic
continuum medium subjected (at constant temperature) to an harmonic shear

deformation (causa), i.e.

(14)

gzg(o)sin(a)t) (15)
with amplitude &% = constant and angular frequency @, the effect is a stress with
the same frequency but different amplitude 7% and phase lag ¢ which depend on
w,l.e.

T(a)):r(o)(a))sin(a)t+(o(a))) (16)
From (15) and (16) we have
(@) =G, ()&% sin(wt)+G, (@) cos(wt) 17)
where

(0
G, (@) =— (a))cos((p(a))) (storage modulus),

(18)

(0)
G, ()= 4 (g)w)sin (¢(®))  (loss modulus).
&

The quantities G, (@) and G, (@) are, respectively, connected to non dissipative
and dissipative phenomena and their experimental curves are plotted in Fig.1 .

| !?,f— -
[ & "‘Ez(m) '
= "
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— ® = T

Dy © kgf(Het) By
Fig. 1. Generic storage and loss moduli.
We considere two ranges: o, <@ <@, (low frequency) and o, <@ < ¢, (high
frequency) in which we have:
GlR :Gl(a)R)’ GZR :GZ(wR)’ GlH :Gl(a)H)’ GZH :GZ(wH) (19)
and we put [9]-[11]:
o low frequency: o <w< @,

log (6,8,4mi ")
Linssr ragion
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G, (@) =G (1.001) _
1(@) = Gus )r where r=2632"%% (20
G, (@) =G,;(1.001) W — Wy
 high frequency: o, <o < @,
G, (@) =Gy, (1.001)° _
1() =Gy (1.001) . where s=357 O~ O (21)
G, (@) =G, (1.001) Wy — oy
From (20) and (21) we obtain:
o low frequency: o <w< @,
{GIL zel(wL)=1'3GlR ’ (22)
G, =G,(m )=13G,, ,
« high frequency: o, <w < @,
Gy =G, (a,)=143G,, or {Gm =0.7G,, 23)
Gy =G, (@, )=0.7G,, G,, =1.43G,,
In ref. [1] it was discussed that the following relations hold:
>0 = Gr (low frequency) ,
“ (24)

% _S (high frequency) .
w
In (24) G,; and G, represent the minimum values of G,, respectively, in
the range of low and high frequencies. Finally, from (14) it can observe that is
Rff) the inverse of relaxation time for the stress and by using (12); we put:

Ry =a™ ) = i | )

S

where o is the relaxation time.
4. Rheological coefficients

By virtue of (15) and (25), from (14) we obtain:
%-{-éTZOCSin(a)t)-FﬁCOS(COt), (26)
where

a=¢g" (Rff) - a)zR(;))

(27)
p= % Rgg)
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The solution of (26) is
0'(05+,26’0'2a))sin(a)t)+ O'(ﬂ—flo;a))
l+o0°w l+0°w
t

with ¢, an arbitrary constant. Neglecting the term of e @ ( o is very small, for
instance o =10" s. for polyisobutilene) compared (17) and (28) one has:

r(t)zcle_é + cos(wt),  (28)

20 - O'(a+ﬂ0'a))
1+ 0’0’ (29)
0~ _O(B-aoco)
&G, =——5.
l+0w
from which we obtain:
_ 0 Gl —G2 ow
G g (30)
_ 0Lt o0
=g ——.
IB O
By virtue of (12)4, (27) and (30) we have
00)
Rgg)z GlJra)O'(iyS 1) Gz) |
o (31)
R(g)_ Gla)a+G2
1 - .
o w
Finally, from (12), (23), (24),(25) and (31) one has
209 — G ow +G,-G,py
o ’
2
0 (G, =G,y +G o ®)
a - 2 2\’
O'C()(GZ—GZR/U)(].-i-O' 1) ) (32)
(0.0) _ G, riy
775 - '
@
) a)(G2 -G, )(l+ o’ a)z)
= .
(G, =Gy +G00)

where G,,, means G, forlow frequency and G, for high frequency.

5. The coefficient of state g .

By virtue of (19)-(22), the relation (32); becomes:
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1) low frequency:
Gyr| (1.001) -1

T

A% -G, (LOOL) + C(0sr<263), (@)

263
2) high frequency:
Gy [1.43-(1.001) " -1
U{S(ags_?% o }
For polyisobutilene we have [15] the following characteristic values:

a® =0.7 G, (L001)’ + [(0<5<357), (34)

o=10"sec., 0N =10°Hz, o, =1.3Hz, o, =6-10"Hz,
o =3.2.10“Hz, Gk = 2.5-10°Pa, G, = 2.4-10°Pa, (35)
G,r=G,, = 2.75-10*Pa.

and so the graphics in Fig.2

&9 (Poly—isobulilene) &P (Poly—isobutilene)
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Fig. 2. The theoretical curves of coefficient a®? for low (left) and high (right) frequencies.
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The experimental curves (see [15] ) for a® )are plotted in Fig.3.
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Fig. 3. Poly-isobutilene: the experimental curves of coefficient a® for low (left) and high (right)
frequencies (M.w. = 10° g/mol; To = 273 K ).
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5. The coefficient of state a®" .

By virtue of (19)-(22), the relation (32); becomes:
2) low frequency:

2
" (Gen [ (1.002) ~1]+ Gy (1.001) o o)
a’ =

o wG,q [(1.001)r —1} (1+0% 0?) (36)

where w=M+wR, (0<r<263).
263

2) high frequency:
2
(G [143(2.001) " ~1]+0.76,, (1.001)" o o)

) _
a - l
cwG,, [1.43(1.001)’5 —1} (1+0% 0?) (37)
where a):MﬂoH , (0<r<263)
357

By using the characteristic value (35) we have the fig.4
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10 8x mr: /
3w 1010 6x10 :
2% lolo 4x 'll)’ :
1x101@ 2x107:
o 150 2% 56 200 350

Fig. 4. The theoretical curves of coefficient a®* for low (left) and high (right) frequencies.
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Fig. 5. Poly-isobutilene: the experimental curves of coefficient a* for low (left) and high (right)
frequencies (M.w. = 10°g/mol; To = 273 K ).



An approximate evaluation of the phenomenological [...] visco-anelastic media with memory 11

6. The phenomenological coefficient 7% .

S

By virtue of (23) and (24), one has:
1. low frequency:

P00 = 203Gk gorooeg), (38)
R (263—r)+a)Lr
2. high frequency:
nio,o) _ 357Gy, , (O <s< 357) , (39)

@, (357-5)+ay S
By putting in (40) and (41) the values (35) we have the fig. 6
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Fig. 6. The theoretical curves of coefficients 773(0’0) for low (left) and high (right) frequencies.
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Fig. 7. Poly-isoButilene: the experimental curves of coefficient 778(0‘0) for low (left)
and high (right) frequencies (M.w. = 10° g/mol; T, = 273 K ).

7. The phenomenological coefficient 7% .
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By virtue of (23) and (24), one has:
1. low frequency:

L) 0G,e [(1.001)r —q (1+O_2 a)z)
T (GZR [(1.002) ~1]+ Gy, (1.002) aw)z , o

r(o, - a)R)
263

where w= +,, (0<r<263).

2. high frequency:
Gy, [143(1.001) " -1|(1+ 0% o)

(1)

s =

(qu [1.43(1.001)‘5 —1} +0.7G,, (1.002)° aa))z | (41)

S —_
where @ = (a);57w“)+am , (0<s5<357).
By putting in (40) and (41) the characteristic values (35) one obtains the fig. 8
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Fig. 8. The theoretical curves of coefficient 775(1'1) for low (left) and high (right) frequencies.
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Fig. 9. Poly-isobutilene: the experimental curves of coefficient 775(1'1) for low (left) and high (right)
frequencies (M.w. = 10° g/mol; T, = 273 K).
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8. Conclusions

The phenomenological coefficients which occur in the rheological
equation obtained under a thermodynamic theory for viscoanelastic media are
determined as functions of the dynamic moduli of linear response theory. It is
shown that the theoretical results [see figures 6,4,6,8] are in agreement with
experimental data in the case of polymeric material (Poly-isobutilene) [see figures
3,5,7,9]. This comparison confirms the validity of the model in the range of
frequencies performed.
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