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MANY-PROCESSORS & KLEENE’S MODEL

Mihaela MALITA', Gheorghe M. STEFAN?

Conform [1], [2] numim multi-processors sistemele cu mai mult de un
processor, in timp ce termenul de many-processors este folosit pentru sistemele cu
un numdr foarte mare de procesoare. Fundamentarea teoretica pentru cele doud
tipuri de masini este diferita §i semnificativa pentru intelegerea evolutiei stiintei
calculului in era paralelismului emergent. In timp ce multi-processor-ul este o
constructie fundamentata pe modelul lui Turing, many-processor-ul cere un context
conceptual diferit. Propunem drept cadru conceptual pentru many-processor
modelul lui Kleene. Exemplificam abordarea de tip many-processor prin arhitectura
cipului BA1024 - un SoC complet programabil.

According to [1], [2] more than one processor means multi-processors,
while many-processors refers to big-n processors. The theoretical foundation for the
two kinds of parallel machines is different and is meaningful for understanding the
evolution of computer science in the emerging parallel computing era. While a
multi-processor is a construct starting from Turing's model of computation, a many-
processor is better explained in a different conceptual environment. We propose
Kleene's model as a theoretical framework for describing the many-processor
paradigm. In order to exemplify the many-processor approach the architecture of
the BA1024 chip, a fully programmable SoC, is presented.

Keywords: computer architecture, parallel computation, many-processor, partial
recursive functions, integral parallel architecture.

1. Introduction

Roughly speaking a multi-processor is a multi-threaded machine and a
many-processor is a data-parallel machine. On the other hand, using Flynn's
taxonomy, a multi-processor looks more as a MIMD machine, while a many-
processor looks like a SIMD machine [3]. Building a multi-processor by few
mono-processors is an incremental process, which can be easy controlled in the
same theoretical framework, while putting one thousand cells on a single chip
results in a strange "beast". The theoretical framework for such a machine cannot
be the same as for a multi-core processor. We provide a way to understand a
computation with » actors, that is a many-processor architecture. The distinction
between multi and many is exemplified using Intel Core 2, and Connex Core.
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Intel Core 2 is a typical multi-processor where each CPU implements
various forms of transparent parallelism, such as: super-scalar, pipeline and
speculative executions. The two cores support multi-threaded executions. The
multi-processor implemented as a multi-core machine controls the parallel
execution at the program level. For this reason the computational model used to
support mono-processors works very well for the multi-processor paradigm.
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Fig. 1. The BA1024 chip
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Connex Core is a typical many-processor. Fig.l presents the block
diagram of the BA1024 chip, a many-processor engine. Data intensive
computations are done by the linear array called Connexdrray™ (CA). One
thousand execution units (EU), execute, according to their internal states, the
instruction issued in each clock cycle by the Sequencer. Eight processing elements
(PE) are devoted to accelerate pure sequential computations. The array, called
StreamAccelerator (SA) is dynamically reconfigured by the interconnection
network to solve problems like arithmetic coding. The Interfaces & Standard
Controllers block contains general purpose interfaces (DDR, PCI, ...), specific
interfaces (audio and video), and general purpose controllers (MIPS machines).

The difference between "multi" and "many" is rather qualitative than
quantitative. The multi-threaded execution takes few of almost independent
processes, while the data-parallel or time-parallel computation refers to n
interdependent ones. There are well established techniques to deal with the multi-
threaded approach, while we are in the infancy of the many-core approach - the
programming techniques are far to be established. One main reason for this
weakness is the theoretical framework which hosts the research in this domain.

Another difference, evident in this early stage of the split between "multi"
and "many" refers to intensity vs. complexity. Multi-processors deal with complex
computations, while many-processors are comfortable with the intense ones.
Thus, there are a lot of reasons to have a specific theoretical background for the
many-processor paradigm, with an explicit reference to .

2. Two different computational models

The architecture of the standard mono-processor computer derives from
Turing's model [15]. The usual representation of Turing Machine (TM) is
reformulated (see Fig. 2) in terms of real circuits [13], where the infinite tape is an
infinite RAM, the access head is an up-down counter, and the control section is a
finite automaton (FA). The Universal TM (UTM) is a special TM able to modify
the content stored in a part of the tape, called data section, according to the
interpretation of the binary content stored on the same tape, called program
section. Optimizing the structure of the FA and the Up-Down Counter for a UTM
we obtain the structure of a processor, used to process data stored in a finite
RAM, according to the program stored in the same memory. Thus, the von
Neumann style is supported directly by Turing's model. The model is expanded,
using multi-threaded programming, to the multi-processor paradigm.

Turing's model can be used indirectly to ground the many-processor
paradigm, but, the "many" aspect is not derived directly from this model, rather it
results as an artificial construct based on mono-machines. We need to start
directly with a model which "naturally" fits with a machine of thousands cells.
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Fig. 2. Turing Machine with circuit components. The infinite tape is an
infinite memory, addressed by an infinite up-down counter, which performs in
each cycle a read-modify-write operation under the control of a finite automaton

2.1. Partial recursive functions

In the same year Turing published his paper, Kleene published the partial
recursive functions model [4]. It consists in defining computation involving three
basic functions (zero, increment, projection), and three rules for using them (the
composition rule, the primitive recursive rule, and the minimalization rule).

! i
i o X0, X1 -+ Xn-1 i
! v ¥ i
i data i
i h h hy,. i
; 0 ! " | parallel :
i v v v computation
i i
[ - reduction i
| v !
: (X0, X1, -++ Xn-1) :

Fig. 3. The structure associated with the composition rule. The composition
of function g with the functions 4, ..., A,.; is performed by a two level system.
On the first level many functions are computed in parallel, while on the second
a reduction function is performed

There are small, simple and fast circuits for the basic functions. An
increment circuit has an optimal solution as circuit (polynomial size and poly-log
time). For the projection function the multiplexor circuit is an optimal solution.
The composition rule is actually the main rule. We show that all the other rules
can be performed based on it. The physical structure associated with the general
form of the composition is shown in Fig. 3. The first level performs synchronic
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parallelism, while both levels are involved in diachronic parallelism. The
composition contains all the features involved in performing the other two rules.

3. From partial recursive functions to many-processors

The general form of composition has particular, simpler forms able to
express the other two rules. In Fig. 4, three particular forms are emphasized.
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Fig. 4. The three basic forms of composition

Data parallel composition (see Fig. 4a) computes in parallel n functions,
each applied to a component of the input vector x, ... x,;, and generates the
output vector Ag(xy), ... hu-1(xn-1). In this case g is the identity function.

Serial composition (see Fig. 4b) is defined for multiple applications of the
composition with n=1. Results a pipe of m functions, ky, ... k,_;, which computes
fx) = glkm 1(km2( ... ko(x)) ...). If in each cycle a new value from the input stream,
<xp, ... Xs.;>, 1s inserted, after a latency of m cycles results <f{xy), ... f{xs.;)>. The
circuit computes in s+m cycles m values for f. If s >> m, where s is the length of
the input stream and m the number of functions composed in order to compute
f{x), then this kind of parallel computation is very efficient.

Reduction composition (see Fig. 4c) is when h;(x;) = x; for any i. The
input vector xy, ... x,; is reduced to a scalar. This function is usually performed in
poly-log time and the structure has the linear size (the structure is a binary tree).
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3.1. Implementing primitive recursion

The primitive recursion rule computes f(x,y) using f{x,y) = g(xy.f(x,y-1)),
where f(x,0) = h(x). The circuit which computes f'is presented in Fig. 5. It has an
infinite pipe of circuits and a reduction network used to select the result.

The function performed by H is H(x,y) = {x, y, f(x,0), (¥ == 0)}. It sends to
the first input of the reduction network, ry = {f{x,0), (y == 0)}, which is a pair
{scalar, predicate}, and to the next level in pipe {x,y, f{x,0)}. The function
performed by Gi is Gixy,f(xi-1)) = {xyf(xi),(yv==i)}. It sends to the
corresponding input 7; = {f{x,i), (v == i)} and to the next stage {x, y, f(x,i)}.
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Fig. 5. The primitive recursive circuit. An infinite pipe of machines, H, G,
G,, ... ,G, ... and an infinite reduction circuit, R, as forms of composition, are

used to build the circuit for applying the primitive recursive rule

The function R is defined on vectors of pairs {scalar, predicate}. R returns
a scalar accompanied by a validating predicate, i.e., the output value, f(x,y), is
valid only if the predicate validOut = 1.

3.2. Implementing the minimalization rule

The minimalization computes f{x) to the value of the minimal y for which
2(x,y)=0. The associated circuit is composed by two forms of composition (Fig.4a
and Fig. 4c). The reduction selects the result from the output of a data parallel
circuit (see Fig.6). The function performed by Gj returns {scalar, predicate):
Gi(x)= {1, (g(x,1) == 0)} =r1;. R selects from

{r {0} ... v {i},.}={{0, p(0)}, {1 p(D}, ... {i, p(i)}, ..}
the scalar of the first pair with p(i)=1, if any (f(x) is partial) and sends it to the
output accompanied by the predicate used to validate the result.

The data parallel composition performs a speculative computation,
computing g for x and "all" the values of y starting with 0. The reduction function
selects the first result. Consequently, for partial functions a special feature must
be provided: the function first, FRT(<B>) = <0, ... 0, 1, 0, ... 0>, where <B> is
a n-bit binary stream. The function FRT indicates the position of the first 1, if
any, in the input binary stream <B>.
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Fig. 6. Minimalization circuit. Each circuit G; computes the function g(x,i), and
the reduction circuit selects the minimal i for which g(x,i7)=0

4. The many-processor architecture

The model just introduced can be translated in a few ways into an actual
universal machine. For many-processor architecture two data structures must be
added to allow the description of the basic features: vectors, {X}={xg, xj, ... X1},
and streams, <X>=< xy x;, ... X,.;>, where x; are scalars or Booleans. Data
parallel composition means to receive input vectors, and to generate output
vectors. Serial composition means inserting input streams and extracting output
streams. Reduction composition receives vectors and outputs scalars or Booleans.

Data parallel composition can be involved efficiently in vector operations,
and speculative computation. Serial composition is imposed by the pure
sequential algorithms. Sometimes, serial composition asks for speculative
computation. Reduction composition is involved with both, data parallel and serial
composition. Therefore, it seems to be useful to define a computing system having
the possibility to combine in a very flexible way all kinds of compositions.

4.1. Data parallel many-processor architecture

There are application domains characterized by very intensive data parallel
computation with very small weight of the inherent serial computations. In this
case a minimal system is implemented by three parallel resources: (1) the data
parallel array, (2) the loop closed over the data parallel array through a two-
directional FRT network, and (3) the reduction three. To each 4; an EU is
associated (containing ALU, registers, data memory). The reduction composition
is a tree structure which performs simple functions (extract and add scalars or
Booleans). Each vector is distributed along the EUs. Each EU; contains the
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component x; in its data memory. Thus, all the components i of the vectors are
processed in EU; or in a small neighborhood, usually in EU; ;, EU,4;.

In order to link vector operations, in each 4; module is added a local scalar

memory. The execution model is:

in each clock cycle an instruction sequencer (IS) broadcasts one
instruction to be executed by each EU (see Fig. 7)
each EU executes the received instruction according to its internal state
(stated by the selected Boolean), for example:
where (bool _vect g == 1)

vector_n = f(vector_m, vector_p);

elsewere

vector_n = g(vector_m, vector_p);
the instruction operates on data stored in each EU and, sometimes, on
some data stored in a small neighborhood (usually in EU; ; and EU;+ /)
the sequence of instructions evolves according to the IS internal state and
according to the scalars or Booleans provided by the reduction tree.
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|
|

<+ IS

Fig. 7. Data parallel many-processor architecture. EUs are interconnected in
a two-direction ring. The reduction tree R closes the loop back to the instruction
sequencer (IS). The FRT network closes a loop over EUs

The minimal structure of a data parallel architecture is in Fig. 7. The

partial recursiveness asks for the loop closed over the entire n-EU array through
the FRT network [7] [8]. It classifies the EUs in: (1) the first EU (FEU) with the
selected Boolean on 1, (2) the EUs positioned before FEU, and (3) the EUs
following FEU. The main function is:

FEU(B) = PRXor(B) XOR ( PRXor(B) >> 1)
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where: B = {by, ...b,.;}, with b; € {0,1}, and PRXor(B) is the OR prefix function
applied on B. Besides the function FEU(B), the function PRXor(B) is used.

For input-output functions 10Plane, where or from where a full vector is
transferred in one cycle, is provided. Transparently to the main computation, this
“plane” takes care of the communication with the external memory.

4.2. Integral many-processor parallel architecture

There are application domains with balanced data intensive and intensive
sequential operations. More, the two types of operations are highly interleaved.
Then, both, data parallel composition and serial composition must be supported
by the same hardware [4] [14] [5]. The resulting structure is similar with the
previous, with the difference that the EUs are substituted by PUs containing an
additional program memory. An EU executes only the instruction received from
IS, while PU executes also its own program stored in the local memory.

— PEO < PE] ¢+— -------- <+ PEn-l J

— in, outy —l |—> in; out; in,; out,;

So S Sh-1
Asymmetric Interconnection Fabric

Fig. 8. Data-Parallel PU. The left connection of each PU is selected, by the 3-
bit code s;, from one of the previous 8 PUs

Another important difference is made by the way PUs are interconnected.
If conditioned pipeline executions are performed, then the interconnection
neighborhood must be expanded to allow speculative evaluations. If no more than
m conditions are involved at any stage in the pipeline execution, then each PU;
must be able to select data from the previous 2" PUs. The Data-Parallel EU (see
Fig. 8) is augmented with an Asymmetric Interconnection Fabric (AIF) which
allows each PU to select as left input the data from the previous 8 PUs (m=3). The
AlF's outputs are selected according to the following expression:

njz1 = S(s; outi.g, outiy, ...) = out;_g,

The selection code, s; represents the condition computed by PU;. The condition
selects the result of the speculation performed by the previous PUs.
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Programming the serial composition part is done by defining the concept
of vector of functions, F = [fj, ... f,.;/, where f; represents the local program
executed by PU.. If no conditional operation is performed, then f; receives its input
data from PU; ;. If m-condition execution is performed, then PU; selects (reduces)
its input from the output of PU,.,", ... PU.; ad-hoc involved in a speculative data
parallel array of 2" PUs.

4.3. Segregated many-processor parallel architecture

If the data intensive computations and the inherent sequential intensive
computations are grouped in clearly distinct stages of the application, then they
deserve specialized hardware units. Because the number of EUs and of PUs can
be stated independently, advanced optimizations are allowed. The structure
consists in two subsystems: (1) a Data Parallel Many-Processor Architecture
(Fig.7), connected with (2) a Data-Parallel PU (Fig.8).

5. Case study: the BA1024 SoC

Using a segregated many-processor architecture, this section exemplifies the
many-processor approach. The figures provided in this section allow us to
understand the big differences between multi-processors and many-processors.
The BA1024 is a SoC designed by BrightScale, Inc. to implement a
platform for the HDTV market. The chip is implemented in /30nm standard
process and works at 200MHz. It contains the audio and video interfaces for two
HD channels, 4 MIPS processors, the DDR interface (3.2GB/sec), an 128-bit
interconnection fabric, and the intensive parallel machine (Fig.1) containing:
e Instruction Sequencer (IS): a 32-bit controller with stack architecture
e Input-Output Controller (I0C): another 32-bit controller with a stack
architecture which communicates with the previous by interrupts
e ConnexArray™ (CA) a linear data-parallel array of 1024 16-bit EUs,
where each EU contains:
O a 16-bit integer ALU
0 a Boolean machine working on 8 Boolean variables
0 alocal data memory for 256 16-bit words
and receives in each clock cycle an instruction, issued by the IS
e a global loop, closed over CA, used mainly to identify the first EU with
the selected predicate on 1
e areduction tree to extract data and some critical parameters from CA
e IOPlan a two-dimension array which transfers data between CA and the
rest of the chip under the control of IOC; the process is transparent
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e Stream Accelerator (SA), a serial composition engine of 8 16-bit PUs,
each having its own program memory with m=4.

One of the main design decisions was to keep the CA's interconnection
network as simple as possible, while IOPlan was designed to perform in fly
complex rearrangement of data. Another important design choice was to perform
in each EU only simple functions (no multiplications, no floats). The level of
simplicity was established (see also [10]) estimating the frequency of complex
operations. Only the frequent operations must be performed by hardware in order
to use the area very efficiently.

e General performances of the core of BA1024:
0 200 GOPS (OP means 16-bit simple operations, no multiply or FP)
0 3.2GB/sec external bandwidth, 400GB/sec internal bandwidth
o >60GOPS/W
o >2GOPS/mm’
e Some video specific performances of BA1024:
0 DCT: 0.15 clockCycle/pixel (on 8 x 8 arrays)
0 SAD: 0.0025 clockCycle/pixel

The previous figures resulted by running on BA1024 programs in CPL, a

language developed by BrightScale for the architecture of ConnexArray™.

0 1 2 3 k 1022 1023
0
1
N—a.
vector p
boolVect q 1 0 0 1 1 1 0
255+8

Fig. 9. User's image of CA's content. DPE contains 256 scalar vectors and 8
Boolean vectors. Only the components of the three scalar vectors n, m, and p,
which are selected by the Boolean vector ¢ are involved in the execution

Because the HDTV domain requests data intensive computations, CA is
used in its full power. SA is needed to accelerate the pure sequential part of the
codec (mainly for the H.264 standard). The architecture seen by the user of the
CA is presented in Fig.9. It performs conditioned operations on 256 scalar vectors
and 8 Boolean vectors.
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6. Concluding Remarks

Partial recursive functions are computed using only various forms of
composition. Elementary composition (f(x) = g(ho(x), h;(x))) can be used to build
any composition, and composing particular forms of composition the primitive
recursive circuit and the minimalization circuit can be implemented. More, the
elementary multiplexor (p = s' & ip | s & i; which is a sort of Boolean
composition) is the only brick used to build the circuit associated with the basic
functions (increment, selection). Thus, basic functions are built using an
elementary Boolean composition (the elementary multiplexor) and the circuits
associated to the rules are built using elementary scalar function compositions.

The basic structures for building a many-processor are:

Data-Parallel EU: is a linear array of Execution Units with the simplest
interconnection network. It performs only data-parallel composition (see Fig. 4a).
Conditioned vector operations are mainly executed. The conditions are applied
according to a Boolean vector, computed on the same structure. The construct

if - then - else
of the Turing approach is substituted by the
where - then - elsewhere
construct derived from Kleene's model.

Reduction network: is usually a tree network which receives a vector of
scalars or Booleans and outputs a scalar or a Boolean. The most frequent
functions are: selecting one scalar, adding scalars, OR-ing Boolean vectors.

FRT Network: is a function mainly imposed by partial recursiveness. It is
defined on Boolean vectors and returns a Boolean vector with maximum one
component having the value 1. It is a global function, because each output
component depends on many input components (one of them depends on all
components of the input vector).

Data-Parallel PU: is a "fat" linear array of Processing Units with an
Asymmetric Interconnection Fabric. The interconnection network has a linear
size, because it connects each PU with only a constant (usually small) number of
previous PUs. The additional connectivity accelerates the pipeline execution when
conditioned operations are performed.

Instruction Sequencer: is a conventional controller used mainly to issue
in each cycle an operation to be conditionally executed in each EU. Sometimes it
receives a scalar or a Boolean through the reduction network, and uses it to make
decisions or to make sequential computations. If a Data-Parallel PU system is
involved it is used to select the function vector.
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Multi-processing for complex computation and many-processing for intense
computation: The use of the multi-threading programming on multi-processors
represents an incremental optimization of the solution offered by running similar
programs on mono-processors.

The many-processor approach seems to be successful only if the
complexity of the problem to be solved does not follow the intensity of the
computation it involves. While the multi-processor solution remains to optimize
complex applications, the many-processor solution applies where the intensity
prevails complexity.

Complex versus intensive by numbers: There is a significant difference between
the performance measures of standard mono- or multi-processors and those of
machines making use of many-processors, of which the Brightscale BA1024 is an
example. Typical values for today's architectures involved in complex
computations are

e 4 GIPS +4 GFLOPS

e (0.08 GIPS + 0.08 GFLOPS)/Watt

e (0.02 GIPS + 0.02 GFLOPS)/mm’
where an instruction is a 32-bit operation. For the intensive many-processor
architecture of BA1024 chip, however, the measures are:

e 200 GOPSor 2 GFLOPS + 100 GOPS

e 60 GOPS/Watt} or (0.6 GFLOPS + 30 GOPS)/Watt

o 2 GOPS/mn’.

The two classes of architectures are perfectly differentiated by the two
orders of magnitude separating the performance/power evaluation. For sure the
two kinds of architectures are fundamentally different and they ask for different
theoretical justifications. Turing's model manages complexity, while Kleene's
model supports intensity.

Segregating the complex multi-processor architectures from the intensive
many-processor architectures: The segregation between the two types of
architectures is the best solution for optimizing, both price (area) versus
performance and power versus performance.
High Performance = mono/multi-processor + many-processor.

Almost all demanding applications would benefit from the use of this new kind of
segregated computing architecture. We claim that in the case of such architecture,
the complex part must be strongly segregated from the intensive part in order
to reach the target performance at a competitive price and with a minimum
amount of dissipated energy. Maximizing the intensive part area is squeezed and
power is saved.
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