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MANY-PROCESSORS & KLEENE’S MODEL 

Mihaela MALIŢA1, Gheorghe M. ŞTEFAN2 

Conform [1], [2] numim multi-processors sistemele cu mai mult de un 
processor, în timp ce termenul de many-processors este folosit pentru sistemele cu 
un număr foarte mare de procesoare. Fundamentarea teoretică pentru cele două 
tipuri de maşini este diferită şi semnificativă pentru înţelegerea evoluţiei ştiinţei 
calculului în era paralelismului emergent. În timp ce multi-processor-ul este o 
construcţie fundamentată pe modelul lui Turing, many-processor-ul cere un context 
conceptual diferit. Propunem drept cadru conceptual pentru many-processor 
modelul lui Kleene. Exemplificăm abordarea de tip many-processor prin arhitectura 
cipului BA1024 - un SoC complet programabil. 

According to [1], [2] more than one processor means multi-processors, 
while many-processors refers to big-n processors. The theoretical foundation for the 
two kinds of parallel machines is different and is meaningful for understanding the 
evolution of computer science in the emerging parallel computing era. While a 
multi-processor is a construct starting from Turing's model of computation, a many-
processor is better explained in a different conceptual environment. We propose 
Kleene's model as a theoretical framework for describing the many-processor 
paradigm. In order to exemplify the many-processor approach the architecture of 
the BA1024 chip, a fully programmable SoC, is presented. 

Keywords: computer architecture, parallel computation, many-processor, partial 
recursive functions, integral parallel architecture. 

1. Introduction 

Roughly speaking a multi-processor is a multi-threaded machine and a 
many-processor is a data-parallel machine. On the other hand, using Flynn's 
taxonomy, a multi-processor looks more as a MIMD machine, while a many-
processor looks like a SIMD machine [3]. Building a multi-processor by few 
mono-processors is an incremental process, which can be easy controlled in the 
same theoretical framework, while putting one thousand cells on a single chip 
results in a strange "beast". The theoretical framework for such a machine cannot 
be the same as for a multi-core processor. We provide a way to understand a 
computation with n actors, that is a many-processor architecture. The distinction 
between multi and many is exemplified using Intel Core 2, and Connex Core. 
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Intel Core 2 is a typical multi-processor where each CPU implements 
various forms of transparent parallelism, such as: super-scalar, pipeline and 
speculative executions. The two cores support multi-threaded executions. The 
multi-processor implemented as a multi-core machine controls the parallel 
execution at the program level. For this reason the computational model used to 
support mono-processors works very well for the multi-processor paradigm. 
 

 
 
 
 
 
 
 
 
 
 
 

                            
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The BA1024 chip  
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Connex Core is a typical many-processor. Fig.1 presents the block 
diagram of the BA1024 chip, a many-processor engine. Data intensive 
computations are done by the linear array called ConnexArrayTM (CA). One 
thousand execution units (EU), execute, according to their internal states, the 
instruction issued in each clock cycle by the Sequencer. Eight processing elements 
(PE) are devoted to accelerate pure sequential computations. The array, called 
StreamAccelerator (SA) is dynamically reconfigured by the interconnection 
network to solve problems like arithmetic coding. The Interfaces & Standard 
Controllers block contains general purpose interfaces (DDR, PCI, ...), specific 
interfaces (audio and video), and general purpose controllers (MIPS machines).  

The difference between "multi" and "many" is rather qualitative than 
quantitative. The multi-threaded execution takes few of almost independent 
processes, while the data-parallel or time-parallel computation refers to n 
interdependent ones. There are well established techniques to deal with the multi-
threaded approach, while we are in the infancy of the many-core approach - the 
programming techniques are far to be established. One main reason for this 
weakness is the theoretical framework which hosts the research in this domain. 

Another difference, evident in this early stage of the split between "multi" 
and "many" refers to intensity vs. complexity. Multi-processors deal with complex 
computations, while many-processors are comfortable with the intense ones. 
Thus, there are a lot of reasons to have a specific theoretical background for the 
many-processor paradigm, with an explicit reference to n. 

2. Two different computational models 

The architecture of the standard mono-processor computer derives from 
Turing's model [15]. The usual representation of Turing Machine (TM) is 
reformulated (see Fig. 2) in terms of real circuits [13], where the infinite tape is an 
infinite RAM, the access head is an up-down counter, and the control section is a 
finite automaton (FA). The Universal TM (UTM) is a special TM able to modify 
the content stored in a part of the tape, called data section, according to the 
interpretation of the binary content stored on the same tape, called program 
section. Optimizing the structure of the FA and the Up-Down Counter for a UTM 
we obtain the structure of a processor, used to process data stored in a finite 
RAM, according to the program stored in the same memory. Thus, the von 
Neumann style is supported directly by Turing's model. The model is expanded, 
using multi-threaded programming, to the multi-processor paradigm. 

Turing's model can be used indirectly to ground the many-processor 
paradigm, but, the "many" aspect is not derived directly from this model, rather it 
results as an artificial construct based on mono-machines. We need to start 
directly with a model which "naturally" fits with a machine of thousands cells.  
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Fig. 2. Turing Machine with circuit components. The infinite tape is an 
infinite memory, addressed by an infinite up-down counter, which performs in 
each cycle a read-modify-write operation under the control of a finite automaton 

2.1. Partial recursive functions 

In the same year Turing published his paper, Kleene published the partial 
recursive functions model [4]. It consists in defining computation involving three 
basic functions (zero, increment, projection), and three rules for using them (the 
composition rule, the primitive recursive rule, and the minimalization rule). 

 
 
 
 
 
 
 
 
 
 
Fig. 3. The structure associated with the composition rule. The composition 
of function g with the functions h0, … , hm-1 is performed by a two level system. 
On the first level many functions are computed in parallel, while on the second 
a reduction function is performed 

 
There are small, simple and fast circuits for the basic functions. An 

increment circuit has an optimal solution as circuit (polynomial size and poly-log 
time). For the projection function the multiplexor circuit is an optimal solution. 
The composition rule is actually the main rule. We show that all the other rules 
can be performed based on it. The physical structure associated with the general 
form of the composition is shown in Fig. 3. The first level performs synchronic 
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parallelism, while both levels are involved in diachronic parallelism. The 
composition contains all the features involved in performing the other two rules. 

3. From partial recursive functions to many-processors 

The general form of composition has particular, simpler forms able to 
express the other two rules. In Fig. 4, three particular forms are emphasized. 
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Fig. 4. The three basic forms of composition 
 
Data parallel composition (see Fig. 4a) computes in parallel n functions, 

each applied to a component of the input vector  x0, … xn-1, and generates the 
output vector h0(x0), … hn-1(xn-1). In this case g is the identity function. 

Serial composition (see Fig. 4b) is defined for multiple applications of the 
composition with n=1. Results a pipe of m functions, k0, … km-1, which computes 
f(x) = g(km-1(km-2( … k0(x)) …). If in each cycle a new value from the input stream, 
<x0, … xs-1>, is inserted, after a latency of m cycles results <f(x0), … f(xs-1)>. The 
circuit computes in s+m cycles m values for f. If s >> m, where s is the length of 
the input stream and m the number of functions composed in order to compute 
f(x), then this kind of parallel computation is very efficient. 

Reduction composition (see Fig. 4c) is when hi(xi) = xi for any i. The 
input vector x0, … xn-1 is reduced to a scalar. This function is usually performed in 
poly-log time and the structure has the linear size (the structure is a binary tree). 
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3.1. Implementing primitive recursion 

The primitive recursion rule computes f(x,y) using f(x,y) = g(x,y,f(x,y-1)), 
where f(x,0) = h(x). The circuit which computes f is presented in Fig. 5. It has an 
infinite pipe of circuits and a reduction network used to select the result. 

The function performed by H is H(x,y) = {x, y, f(x,0), (y == 0)}. It sends to 
the first input of the reduction network, r0 = {f(x,0), (y == 0)}, which is a pair 
{scalar, predicate}, and to the next level in pipe {x,y, f(x,0)}. The function 
performed by Gi is Gi(x,y,f(x,i-1)) = {x,y,f(x,i),(y==i)}. It sends to the 
corresponding input ri = {f(x,i), (y == i)} and to the next stage {x, y, f(x,i)}. 

 
 

                                      
 
 
 
 
 

Fig. 5. The primitive recursive circuit. An infinite pipe of machines, H, G1, 
G2, … ,Gi, … and an infinite reduction circuit, R, as forms of composition, are 
used to build the circuit for applying the primitive recursive rule 
 
The function R is defined on vectors of pairs {scalar, predicate}. R returns 

a scalar accompanied by a validating predicate, i.e., the output value, f(x,y), is 
valid only if the predicate validOut = 1.  

3.2. Implementing the minimalization rule 

The minimalization computes f(x) to the value of the minimal y for which 
g(x,y)=0. The associated circuit is composed by two forms of composition (Fig.4a 
and Fig. 4c). The reduction selects the result from the output of a data parallel 
circuit (see Fig.6). The function performed by Gi returns {scalar, predicate}: 
Gi(x)= {i, (g(x,i) == 0)} = ri. R selects from  

{r_{0}, … r_{i},…}={{0, p(0)}, {1, p(1)}, … {i, p(i)}, …} 
the scalar of the first pair with p(i)=1, if any (f(x) is partial) and sends it to the 
output accompanied by the predicate used to validate the result.  

The data parallel composition performs a speculative computation, 
computing g for x and "all" the values of y starting with 0. The reduction function 
selects the first result. Consequently, for partial functions a special feature must 
be provided: the function first, FRT(<B>) = <0, … 0, 1, 0, … 0>, where <B> is 
a n-bit binary stream. The function FRT indicates the position of the first 1, if 
any, in the input binary stream <B>.  
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Fig. 6. Minimalization circuit. Each circuit Gi computes the function g(x,i), and 
the reduction circuit selects the minimal i for which g(x,i)=0 

4. The many-processor architecture 

The model just introduced can be translated in a few ways into an actual 
universal machine. For many-processor architecture two data structures must be 
added to allow the description of the basic features: vectors, {X}={x0, x1, … xn-1}, 
and streams, <X>=< x0, x1, … xn-1>, where xi are scalars or Booleans. Data 
parallel composition means to receive input vectors, and to generate output 
vectors. Serial composition means inserting input streams and extracting output 
streams. Reduction composition receives vectors and outputs scalars or Booleans.  

Data parallel composition can be involved efficiently in vector operations, 
and speculative computation. Serial composition is imposed by the pure 
sequential algorithms. Sometimes, serial composition asks for speculative 
computation. Reduction composition is involved with both, data parallel and serial 
composition. Therefore, it seems to be useful to define a computing system having 
the possibility to combine in a very flexible way all kinds of compositions.  

4.1. Data parallel many-processor architecture 

There are application domains characterized by very intensive data parallel 
computation with very small weight of the inherent serial computations. In this 
case a minimal system is implemented by three parallel resources: (1) the data 
parallel array, (2) the loop closed over the data parallel array through a two-
directional FRT network, and (3) the reduction three. To each hi an EU is 
associated (containing ALU, registers, data memory). The reduction composition 
is a tree structure which performs simple functions (extract and add scalars or 
Booleans). Each vector is distributed along the EUs. Each EUi contains the 
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component xi in its data memory. Thus, all the components i of the vectors are 
processed in EUi or in a small neighborhood, usually in EUi-1, EUi+1. 

In order to link vector operations, in each hi module is added a local scalar 
memory. The execution model is: 

• in each clock cycle an instruction sequencer (IS) broadcasts one 
instruction to be executed by each EU (see Fig. 7) 

• each EU executes the received instruction according to its internal state 
(stated by the selected Boolean), for example: 
where (bool_vect_q == 1) 

vector_n = f(vector_m, vector_p); 
  elsewere 

vector_n = g(vector_m, vector_p); 
• the instruction operates on data stored in each EU and, sometimes, on 

some data stored in a small neighborhood (usually in EUi-1 and EUi+1) 
• the sequence of instructions evolves according to the IS internal state and 

according to the scalars or Booleans provided by the reduction tree. 
 
                                      
                                          FRT Network                                    
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7. Data parallel many-processor architecture. EUs are interconnected in 
a two-direction ring. The reduction tree R closes the loop back to the instruction 
sequencer (IS). The FRT network closes a loop over EUs 

 
The minimal structure of a data parallel architecture is in Fig. 7. The 

partial recursiveness asks for the loop closed over the entire n-EU array through 
the FRT network [7] [8]. It classifies the EUs in: (1) the first EU (FEU) with the 
selected Boolean on 1, (2) the EUs positioned before FEU, and (3) the EUs 
following FEU. The main function is:  

FEU(B) = PRXOR(B) XOR ( PRXOR(B) >> 1 ) 
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where: B = {b0, …bn-1}, with bi ∈{0,1}, and PRXOR(B) is the OR prefix function 
applied on B. Besides the function FEU(B), the function PRXOR(B) is used. 

For input-output functions IOPlane, where or from where a full vector is 
transferred in one cycle, is provided. Transparently to the main computation, this 
“plane” takes care of the communication with the external memory. 

4.2. Integral many-processor parallel architecture 

There are application domains with balanced data intensive and intensive 
sequential operations. More, the two types of operations are highly interleaved. 
Then, both, data parallel composition and serial composition must be supported 
by the same hardware [4] [14] [5]. The resulting structure is similar with the 
previous, with the difference that the EUs are substituted by PUs containing an 
additional program memory. An EU executes only the instruction received from 
IS, while PU executes also its own program stored in the local memory. 

 
 
 
 
 
 
 
 
 
 
 

        
Fig. 8. Data-Parallel PU. The left connection of each PU is selected, by the 3-
bit code si, from one of the previous 8 PUs 
 
Another important difference is made by the way PUs are interconnected. 

If conditioned pipeline executions are performed, then the interconnection 
neighborhood must be expanded to allow speculative evaluations. If no more than 
m conditions are involved at any stage in the pipeline execution, then each PUi 
must be able to select data from the previous 2m PUs. The Data-Parallel EU (see 
Fig. 8) is augmented with an Asymmetric Interconnection Fabric (AIF) which 
allows each PU to select as left input the data from the previous 8 PUs (m=3). The 
AIF's outputs are selected according to the following expression:  

ini൅1 ൌ Sሺsi, outi‐0, outi‐1, …ሻ = ݐݑ݋௜ି௦೔ 
The selection code, si represents the condition computed by PUi. The condition 
selects the result of the speculation performed by the previous PUs.  
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Programming the serial composition part is done by defining the concept 
of vector of functions, F = [f0, … fp-1], where fi represents the local program 
executed by PUi. If no conditional operation is performed, then fi receives its input 
data from PUi-1. If m-condition execution is performed, then PUi selects (reduces) 
its input from the output of PUi-2

m, … PUi-1 ad-hoc involved in a speculative data 
parallel array of 2m PUs.  

4.3. Segregated many-processor parallel architecture 

If the data intensive computations and the inherent sequential intensive 
computations are grouped in clearly distinct stages of the application, then they 
deserve specialized hardware units. Because the number of EUs and of PUs can 
be stated independently, advanced optimizations are allowed. The structure 
consists in two subsystems: (1) a Data Parallel Many-Processor Architecture 
(Fig.7), connected with (2) a Data-Parallel PU (Fig.8). 

5. Case study: the BA1024 SoC 

Using a segregated many-processor architecture, this section exemplifies the 
many-processor approach. The figures provided in this section allow us to 
understand the big differences between multi-processors and many-processors.  

The BA1024 is a SoC designed by BrightScale, Inc. to implement a 
platform for the HDTV market. The chip is implemented in 130nm standard 
process and works at 200MHz. It contains the audio and video interfaces for two 
HD channels, 4 MIPS processors, the DDR interface (3.2GB/sec), an 128-bit 
interconnection fabric, and the intensive parallel machine (Fig.1) containing: 

• Instruction Sequencer (IS): a 32-bit controller with stack architecture 
• Input-Output Controller (IOC): another 32-bit controller with a stack 

architecture which communicates with the previous by interrupts 
• ConnexArrayTM (CA) a linear data-parallel array of 1024 16-bit EUs, 

where each EU contains: 
o a 16-bit integer ALU  
o a Boolean machine working on 8 Boolean variables 
o a local data memory for 256 16-bit words 

and receives in each clock cycle an instruction, issued by the IS 
• a global loop, closed over CA, used mainly to identify the first EU with 

the selected predicate on 1 
• a reduction tree to extract data and some critical parameters  from CA 
• IOPlan a two-dimension array which transfers data between CA and the 

rest of the chip under the control of IOC; the process is transparent 
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• Stream Accelerator (SA), a serial composition engine of 8 16-bit PUs, 
each having its own program memory with m=4. 
One of the main design decisions was to keep the CA's interconnection 

network as simple as possible, while IOPlan was designed to perform in fly 
complex rearrangement of data. Another important design choice was to perform 
in each EU only simple functions (no multiplications, no floats). The level of 
simplicity was established (see also [10]) estimating the frequency of complex 
operations. Only the frequent operations must be performed by hardware in order 
to use the area very efficiently. 

• General performances of the core of BA1024: 
o 200 GOPS (OP means 16-bit simple operations, no multiply or FP) 
o 3.2GB/sec external bandwidth, 400GB/sec internal bandwidth 
o >60GOPS/W 
o >2GOPS/mm2 

• Some video specific performances of  BA1024: 
o DCT: 0.15 clockCycle/pixel (on 8 × 8 arrays) 
o SAD: 0.0025 clockCycle/pixel 

The previous figures resulted by running on BA1024 programs in CPL, a 
language developed by BrightScale for the architecture of ConnexArrayTM. 
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Fig. 9. User's image of CA's content. DPE contains 256 scalar vectors and 8 
Boolean vectors. Only the components of the three scalar vectors n, m, and p, 
which are selected by the Boolean vector q are involved in the execution 

 
Because the HDTV domain requests data intensive computations, CA is 

used in its full power. SA is needed to accelerate the pure sequential part of the 
codec (mainly for the H.264 standard). The architecture seen by the user of the 
CA is presented in Fig.9. It performs conditioned operations on 256 scalar vectors 
and 8 Boolean vectors. 
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6. Concluding Remarks 

Partial recursive functions are computed using only various forms of 
composition. Elementary composition (f(x) = g(h0(x), h1(x))) can be used to build 
any composition, and composing particular forms of composition the primitive 
recursive circuit and the minimalization circuit can be implemented. More, the 
elementary multiplexor (p = s' & i0 | s & i1 which is a sort of Boolean 
composition) is the only brick used to build the circuit associated with the basic 
functions (increment, selection). Thus, basic functions are built using an 
elementary Boolean composition (the elementary multiplexor) and the circuits 
associated to the rules are built using elementary scalar function compositions. 
 
The basic structures for building a many-processor are: 

Data-Parallel EU: is a linear array of Execution Units with the simplest 
interconnection network. It performs only data-parallel composition (see Fig. 4a). 
Conditioned vector operations are mainly executed. The conditions are applied 
according to a Boolean vector, computed on the same structure. The construct   

if - then - else 
of the Turing approach is substituted by the  

where - then - elsewhere 
construct derived from Kleene's model. 

Reduction network: is usually a tree network which receives a vector of 
scalars or Booleans and outputs a scalar or a Boolean. The most frequent 
functions are: selecting one scalar, adding scalars, OR-ing Boolean vectors. 

FRT Network: is a function mainly imposed by partial recursiveness. It is 
defined on Boolean vectors and returns a Boolean vector with maximum one 
component having the value 1. It is a global function, because each output 
component depends on many input components (one of them depends on all 
components of the input vector). 

Data-Parallel PU: is a "fat" linear array of Processing Units with an 
Asymmetric Interconnection Fabric. The interconnection network has a linear 
size, because it connects each PU with only a constant (usually small) number of 
previous PUs. The additional connectivity accelerates the pipeline execution when 
conditioned operations are performed. 

Instruction Sequencer: is a conventional controller used mainly to issue 
in each cycle an operation to be conditionally executed in each EU. Sometimes it 
receives a scalar or a Boolean through the reduction network, and uses it to make 
decisions or to make sequential computations. If a Data-Parallel PU system is 
involved it is used to select the function vector.  
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Multi-processing for complex computation and many-processing for intense 
computation: The use of the multi-threading programming on multi-processors 
represents an incremental optimization of the solution offered by running similar 
programs on mono-processors. 

The many-processor approach seems to be successful only if the 
complexity of the problem to be solved does not follow the intensity of the 
computation it involves. While the multi-processor solution remains to optimize 
complex applications, the many-processor solution applies where the intensity 
prevails complexity. 
 
Complex versus intensive by numbers: There is a significant difference between 
the performance measures of standard mono- or multi-processors and those of 
machines making use of many-processors, of which the Brightscale BA1024 is an 
example. Typical values for today's architectures involved in complex 
computations are  

• 4 GIPS + 4 GFLOPS 
• (0.08 GIPS + 0.08 GFLOPS)/Watt 
•  (0.02 GIPS + 0.02 GFLOPS)/mm2 

where an instruction is a 32-bit operation.  For the intensive many-processor 
architecture of BA1024 chip, however, the measures are: 

• 200 GOPS or 2 GFLOPS + 100 GOPS 
• 60 GOPS/Watt} or  (0.6 GFLOPS + 30 GOPS)/Watt 
• 2 GOPS/ mm2. 

The two classes of architectures are perfectly differentiated by the two 
orders of magnitude separating the performance/power evaluation. For sure the 
two kinds of architectures are fundamentally different and they ask for different 
theoretical justifications. Turing's model manages complexity, while Kleene's 
model supports intensity. 
 
Segregating the complex multi-processor architectures from the intensive 
many-processor architectures: The segregation between the two types of 
architectures is the best solution for optimizing, both price (area) versus 
performance and power versus performance. 

High Performance = mono/multi-processor + many-processor. 
Almost all demanding applications would benefit from the use of this new kind of 
segregated computing architecture. We claim that in the case of such architecture, 
the complex part must be strongly segregated from the intensive part in order 
to reach the target performance at a competitive price and with a minimum 
amount of dissipated energy. Maximizing the intensive part area is squeezed and 
power is saved. 
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