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SYMBOLIC COMPUTATION TUNING METHOD FOR THE
EVALUATION OF ALGORITHMS IN SMALL SIGNAL
PARAMETERS EXTRACTION

Cristian ZORIO', Mircea BODEA?, loan RUSU?

Problema matematica asociata problemei de extractie a parametrilor unui
circuit se reduce la determinarea minimului global al unei functii obiectiv obtinuta
prin metoda celor mai mici patrate. In cazul analizei de semnal mic a unui circuit
(cdnd se utilizeaza un model liniar), functia asociatd circuitului este o functie
rationald, §i in consecintd si functia obiectiv are aceeasi formd. Aceasta permite a
se lua in considerare rezolvarea sistemului de ecuatii format cu derivatele partiale
ale functiei obiectiv pentru determinarea, in final, a minimului global, metoda care,
spre deosebire de metoda pur numericda, nu mai necesita valori “de start” ale
parametrilor de extras §i in plus garanteaza faptul ca rezultatul obtinut corespunde
minimului global. Aceasta abordare conduce la problema matematica a rezolvarii
unui sistem de ecuatii format cu functii rationale, care poate fi transformat intr-un
sistem polinomial echivalent. In lucrare se determind modul in care numdrul de
valori masurate ale unei functii de semnal mic (asociatd unui circuit liniar), care se
iau in considerare, influenteaza gradul acestui sistem initial de ecuatii polinomiale.
Se arata faptul ca timpul de calcul total, (care depinde de gradul sistemului initial
de ecuatii polinomiale si, de asemenea, de algoritmul de reducere a sistemului
polinomial la un sistem echivalent quasi triangular, rezolvabil prin metode
numerice) poate fi controlat prin ajustarea acestui numar. Utilizand aceastd
proprietate/dependentd, care permite generarea de probleme matematice (sisteme
de ecuatii polinomiale initiale) de complexitati diferite, pentru aceeasi problema de
extractie, se analizeaza in cazul unui circuit particular, posibilitatea obtinerii unui
rezultat intr-un timp rezonabil, cu algoritmii inclusi in douad sisteme CAD pentru
matematica. Concluziile identifica oportunitatea utilizarii fiecaruia dintre aceste
instrumente matematice, pentru implementarea unui program de extractie nu
neaparat bazat pe un sistem CAD.

The math problem associated to the problem of parameter extraction of a
circuit can be reduced to the problem of finding the global minimum of an error
function obtained with the least squares method. In the case of the small signal
analysis of a circuit (when a linear model is considered), the circuit’s associated
function is a rational function and as a consequence the error function is of the
same form too. This makes possible to take into account solving the resulting
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equation system, formed with the partial derivatives of the error function, in order to
find, in the end, the global minimum of the error function. The method, unlike any
pure numeric method, no longer requires "start” values for the parameters being
extracted and also guarantees that the final result corresponds to the global
minimum. This approach leads to the mathematical problem of finding the solutions
of an equation system formed with rational functions, which can be transformed in
an equivalent polynomial system. The paper highlights the dependency of the degree
of this initial polynomial equation system, with the number of measured values of a
linear circuit small signal function which is considered in a particular extraction
problem. It is shown that the total execution time (which depends on the degree of
the initial polynomial system and also on the algorithm for reducing the system to an
equivalent quasi-triangular, numerically solvable form) can be “tuned” by adjusting
this number. Using this property/dependency which makes possible to generate
several mathematical problems (initial polynomial equation systems) having
different complexities, for the same extraction problem, we analyze, using a
particular circuit, the possibility of getting a solution in a reasonable amount of
time, with the algorithms implemented in two different Math-CAD systems. The
conclusions identify which of the mathematical instruments used, could be used to
implement a standalone program for extraction, which should not necessarily be
based on a CAD system.

Keywords: symbolic analysis, modified nodal analysis, small signal analysis,
parameter extraction, SPICE input format

1. Introduction

Extraction of the parameters of a circuit generally leads to the
mathematical problem of finding the global minimum of an error function which
is determined by the mathematical model of the circuit and the measured values of
some circuit signals.

A classical approach for solving the parameter extraction problem (finding
the input values of the error function, corresponding to the function’s global
minimum) is by using a numerical method for generating a convergent descendent
sequence of error function values. This method is based on an algorithm which
evaluates the function and selects for the current input values those that reduce the
gap between calculated and evaluated values, leading to a minimum of the error
function. The algorithm stops when all possible modifications of the parameters
representing input values for the error function could not further reduce the value
of the error function.

This approach is basically a numeric “refinement” process and although it
always leads to some minimum of the error function, it can not guarantee that the
sequence of errors converge to the global minimum of the function (and not to
some different local minimum). The result of the convergence process depends on
an initial set of parameter values (the “start values™) representing the iteration
starting point. The appropriate “guess method” for obtaining these values is by
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using the engineer’s intuition based on practical experience and/or by using an
alternative simplified, easy to compute, model of the circuit to estimate somehow
the (approximate) values of the parameters to be extracted. However, any user
applying this method, could not invoke conclusive rigorous arguments which
might prove that any of the “guessed starting points” will lead through the process
of “refinement” to the global minimum of the error function, and not to any of its
local minimums.

A different approach, not based on numerical pure algorithms using
convergence of a sequence of error values, is a symbolic computation method that
could potentially find all the minimums of the error function. In theory, this is
always possible by computing all the partial derivatives of the error function and
solving the resulting equation system. Two minimal conditions are required for
this approach:

- a symbolic formula of the error function must exist (not only a
procedure/algorithm for numerical evaluation)

- the equation system formed with partial derivatives has to be solvable
using numerical and/or symbolic computation method.

An example of parameter extraction in the case of a linear circuit, that use
Maple [1] Math-CAD system to perform symbolic calculation of all the
minimums of an error function combined with numeric procedures for finding real
roots of polynomials of one variable, was already presented in [4].

2. Mathematical model of the “extraction problem”

The generalization of the following example will help us to eliminate the
task of giving formal definitions for all the elements of the mathematical model
associated with the “parameter extraction problem”. Assume a given circuit
having a well determined schema for which some of the values of the circuit
elements (discrete devices) are unknown and have to be determined by indirect
measurements. Also assume that we dispose of the real circuit which can be
subject of different measurements at its input and output gates.

3. Example of a circuit and measurements

The circuit of Fig. / which has already been subject of symbolic parameter
extraction, [4], (when the resultant method for variable elimination was used) will
be used again, in the next sections for generating an example of polynomial
equation system to be solved with different algorithms.

» Example:
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Fig. 1 - Circuit Example — The Giacoletto equivalent circuit of a bipolar transistor

Solving the “parameter extraction problem” for the circuit of Fig. / when
knowing the values of a subset of its elements (see Table 1) means finding the
values of the unknown components, , and g,, by comparing calculated and
measured values of some small signal input/transfer/output functions of the
circuit.

Circuit’s Input/Transfer/Output function

Since the circuit’s schema is well determined any small signal
input/transfer/output function can be computed as a symbolical expression which
contains the schema elements. Considering, for instance, the input impedance
Z11=211(8m, b, ¥z, i Yes Vo 5 Te 5 Cr, Cyf) Of the circuit (which was computed with
the nodal method [5] and using a specialized script [3]) leads to (1):

l; R(rblrzr’r;z’re’ro’gm’czr’cy’f)

Z, =— =z, (1, 1,V V¥ 80 CrsC s ) =
Vl- - in T prte’ o m’ = S(”hyr,p’”,pre,’”o,gmyc,,,cﬂ,f)
with:
R(rb’ gmaf):

STplole ~Fpladc Fplute ~Tolalo ~Yilulo ~Folely ~Yplule ~Tokele ~Faloly ~Falely -
jznfcﬁl’ﬁl’ol’gl’c _jznfCﬁrﬂrer,urc Vol a'e -T'al'el'c ~8ml' ol el'c ~&ml' "ol el Vbl z8ml ol e =
'V ' c8ml o +4n2f‘2CﬂrﬂrareC/tr/trc +4n2fZCﬂrbrﬂr/troC,urc “Falol'c +4ﬂ7
Zcﬂrbrﬂrﬂcﬂrore Tl ole -V alyle Vel yle (1)
+j('2nfCﬂrﬂrorer/t '2ch VYol'e Cul'ulc '27# Enl ol eCul ul'c '2nﬁﬂre Cul'ule 'an )
cul'ule -27TanFbVﬂVyVe 21 bl A ole -2chC7l‘rbrﬂr/er 'Zﬂfc;zrb”;zry”o 'Zﬂf’”b”,ﬂ”o

cul'e -27‘cfrbr,, cal'ole 'anc,urbr/trore 'anC/trbrﬂr/Agmrore '2nnyrbrﬂrpre -
anC,urbrﬂr/trc '2nnyrbrﬂryro -2nﬁbrﬂrLgmr/lr()C,U)
N (rb’ &m> f):

2,2
'r/zrc'r/tro'rﬂre'rﬂra'rer/z'rﬂrc'rurc'rore'gmrﬂrare'rﬂrc‘gmra+4ch ' uloCul e
2,2
+4th Cul 2 uCalole
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+j('2nfrﬂrac,ury 'anrlzrcgmro Culu -27'Cf7"ei"# cA'n '2chC7tr/zr,urc 'anrore Cul'u -
2nfCﬂrﬂr,uro 'angmrﬂrare Cul'u '2chCﬂrﬂrarc '2chC/tr/trorc -27'Cfc,z1”ﬂ]’07”e -27'Cf7"ﬂ]’e
Cul'u 2T Ve cul'y)

The values for the known elements are given in Table I (see the “Initial
notation” row):

Table 1

Initial notation n T T Fu Yo T Fe Cr Cy

Initial notation - numeric U r . . . p p c B

indexes 1 T2 3 4 5 6 7 1 2

Notation using vector elements x; X, X3 Xy X5 X X7 Xg X9
1y 2x107!

Values - = 5x10° 2x10* 2 1x10° 50 2x 107" “7 5

Units Q! Q F

The known values for v, 7, re, 7o, 7c , €z, Cu, can be substituted in the
symbolic formula, resulting an expression (2) which depends only on the
unknown values 7, and g,, , “to be extracted” and the frequency f.

R(ryr, f) _ A(n,re, ) +JiB(r,1 f)
SCryren /) C(ryry, f)+ jD( 11, f)

Zin (rb’rn’ f) =

with:
R (rb» gmsf) =4 (rb» gmsf) + jB (rb7 gm»f) =

=0.6500000000x10"'g,,,+0.5000001250x10'3g,—0.2052877716x 10 %1, + )
+0.5001166326x10"7,—0.3947841762x102f+0.2501520825%10'3+
+(31739961.09r,f + 16336281.80g,,1r,f + 31415926.54g,,/ + 78558807.28)

S (rba &Ems f): C(rln gmaf) + JD (rln gmaf) =
= 0.6500000000x10"'g,—0.2052877716x10 *+0.5001166326x 10"+
7 (16336281.80g,,/+ 31739961.09/)

R and S are polynomials having complex (pure real or pure imaginary)
coefficients and 4, B, C, D, are polynomials having real coefficients (to be
approximated by rational number).

4. Error function formula
Without loosing in generality, using the example of the particular circuit of

Fig. I and including also the data of Table 1, an extraction model can defined. In
order to illustrate the result’s complexity and size, the huge particular symbolic
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formula of this circuit’s Error function was already computed, [4], and will not be
reproduced here again.

The circuit’s function - general case

Table 1 also provides a method of renaming the circuit’s elements, which
can be easily generalized to any circuit. The elements having unknown values,
which must be determined by “extraction”) are in the first columns of the table so
that, when using the “x;...,xpy” notation, substituting symbolic names with
numerical values should always replace the last xy,...,xy , £>1, symbols with their
corresponding values having the effect of reducing N.

The general “x;..,x5” notation, will be wused next, for an
input/transfer/output function associated to any circuit so that the left part of the

expressions (1) or (2) can be rewritten as:
V=Y (8 Ty oo T Ty €16 /) =Y (X Xy, f) (3)

with N=8 when rewriting (1) or N=2 when rewriting (2).

When dealing with linear circuits, expression (1) or (2) can be regarded as
rational functions, as a particular form of a general expression (3). Also, in the
linear case, the numeric values replacing symbolic elements x;, are embedded in
the coefficients of the resulting rational functions (see §0). The following general
definitions for “distance” and “global error function” do not necessarily restrict
w=y(xy,..., Xy, f), the function associated to a linear circuit, to be a rational
function.

Distance formula

Since we dispose of measurements results for the values of the circuit’s
associated function, and since we can also compute such values by evaluating its
formula for different values of the parameters (the schema elements with
undetermined values), it make sense to define a “distance” d=d (Wcu, Wn),
between “measured” values, y,,, and “calculated” values y¢, (4):

dm =d( Y oncar !//m) =\/{R€ v (xlﬂ"'ﬂxNafm)]_Rel//m}z +{Im l//(xl see Xy 9fm)]_1ml//m}2 (4)

Note that each “distance” d,=d (Wuca, W.) depends of the frequency
values f,, chosen for each measurement of y,, (“the good complex value” for y).

Error function formula (global distance)
The general method for parameter extraction uses an error function that
estimates a “global” distance” (5), (6):

B )= A, =D A fi) ] (5
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E(x) e Xy ) = 2 {[Re Y (x5 Xy, f,) = Re(y,)]” + ©)

+ [ y (% ey Xy, f,) = Im(y )17}

The values x,,, ... ,x,v Which put the error function in its global minimum,
represent the values which give an optimal fit of the circuit’s calculated values
(using ‘s formula) with the measured values, and represent ‘“extracted
parameters”.

This approach leads to the mathematical problem of finding the global
minimum of a function, having a more or less complex formula.

The case of a linear circuit

In the case of a small signal linear circuit the input/transfer/output function
w=y(xy, ..., Xy, f), which represents the behavior of the circuit, has of the form of a
rational function, [5]:

R(x,...x,, ) B A(xy,.ox,, )+ jB(x,...x,, ) 7
S(Xpn X, /) C(XpyonX,, )+ jD( X, X, f) (7)

Y =y(x,..x, f)=

where R and S are polynomials with real or pure imaginary coefficients,

and 4, B, C, D are polynomials with real coefficients such as:
R(xy.ox,, f)=A(x,...x,, [ )+ jB(x,...x,, f )and S( x,,...x,, f) =
=C( X0 X, )+ JD( X%, f) (8)

This was the case of expressions (1) and (2) for z;,=z;/(gm, 7z, Fu, ¥Yes Yo » Te 5 Crxs

cuf).

As a consequence the error function will be a rational function with real
coefficients, (9):

— S R(xl ..... Xn,fm) B : R(Xl ’’’’’ xn’fm) B 2
_;{[RG(S(M ----- xn,fm)) Re("/“)} {Im(sm ..... x,,,fm)j Im('//m)H )

which can be rewritten as (10) , if taking into account the notations (8):
E(x ., xy)=

:i {A(xl ..... X i YC( Xy Xos f ) = BCXyroi Xy [ YD ( Xy X, S )_FT+
[C(xx, ) +[DCxpex,, £ "

(10)

|:A('xl""’xn’fm )D(xl """ xn’fm )_B(xl """ xn’fm )C(‘xl""’xn’fm ) :|2
+ > > -x,
[C(xynx,, £, O] +[DCxpex,, £1)]
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where:
ran=Re(y,) , x= x,=Im(y,,) (11)
Notice that in the case of a linear circuit, a symbolic formula of the error
function can always be determined and the process of calculating a function value
with the formula for known input values means evaluation of this formula.

5. Analysis of intermediate symbolic expressions complexity when
computing a polynomial system from a system of rational functions

Initial system of polynomial equations

A straight forward method for determining a global minimum of the error
function E=E(x,, ..., xy), 1s to choose the smallest point of extremis of E, after
determining all the point of extremis. We will assume that £ has a finite set of
points of extremis, as a consequence of physical interpretation of the significance
of global Error function E. Interpretation of the algebra theory concerning “the
dimension of an affine variety” [7] should lead to the same conclusion.

Since we dispose of the symbolic expression, (9), (10), of the Error

function E=E(x, ... ,xy), a first step in this direction is calculating the symbolic
expressions of its partial derivatives, and constructing the system :

OE(xy,...X,)

=0 = LN (12)

This is a system of rational functions which can be transformed into a
system of polynomial equations and solved with modern algebra theory [7].

Solving polynomial equation systems using common algebraic methods, is
always possible if considering infinite computing resources and/or an infinite
computing time [7], but when taking into account the possibility of obtaining
practical results, the complexity of the initial equation system and of the solving
algorithms must be considered too. This introduces the necessity of a more precise
definition for the notion of “complexity” of the input data of these algorithms i.e.
the “complexity” of some given initial polynomial equation system which is to be
solved.

The quantifiable properties of any specific initial polynomial equation
system, used to measure its complexity, s, n, d, h, are variables on which the
formulae used to calculate the complexity of a solving algorithms depends on, [9]:
s is the number of equations, n is the number of variables (in our case s=n), d is
total degree (associated with a given monomial ordering [7] and referred next as
“total degree”), and / (height) representing the number of bits needed to store
denominator/numerator of each rational numbers representing polynomial
coefficients.
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Since A affects “numeric precision” which at least at this stage, can be
considered, a refinement feature, and any analysis concerning s or n, the number
of equations/variables, is obvious and straightforward, the next paragraphs will
focus on the order of magnitude of the “total degree” n of the equation system of
rational functions (12) and simplifying it’s symbolic formula.

Symbolic transformations and influence of the applying order

The left part of each of the equations of system (12) can be regarded as a
symbolic formula, (15) which has to be transformed in a sum of rational functions
having each the same denominator, which could be then eliminated, so that only
the numerators of each sum/equation should form a polynomial equation system.
The set of solutions of this polynomial system will always include the solutions of
the initial system (12).

Main computations for transforming symbolic formulae into
equivalent formulae

The main symbolic computations (operators) used to modify symbolic
formulae, for the above mentioned purpose, into equivalent expressions are:

e Real and Imaginary part calculus/separation

e Adding/subtracting measured values to/from rational
expression

e (alculating squares in each term (13)

e Partial derivative symbolic calculus

e Calculating a common denominator for all terms and
summing

The result of any of these symbolic transformations is always a rational
function and each possible transformation have as input (see (15), (16) ) symbolic
formulae of the type of a rational function or a sum of rational functions including
complex constants (measured) values.

The input selected operand of each “main computation” depends on the
selected order for applying the operands (like exemplified next for the derivation
operator in section §0).

The total effect of these operations on the degree of intermediate
polynomials (presented in section §0, after selecting an order of applying these
main transformations too) will give the complexity (i.e. degree) of the final
polynomial system.

Simplifying symbolic computations
The symbolic formulae (rational functions) representing partial results of
the main transformation process of symbolic formulae may be the subject
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simplifying operations before making further (main) transformations by the rest of
the above main transforming operations(13), in order to keep numerators and
denominators of rational functions as simple as possible. Possible simplification
operations are:
0 Elimination of common factors between numerator
and denominator of each term
0 Factorizing numerators after derivation
0 Finding a greatest common multiple between all
denominators for the simplest common denominator (14)
before summing
0 Choosing a set f;, ...,fy for factorizing [C (xy, ..., xn,
Sl +
[D (X1, ..., xn, f)]°
The simplification operations (14) that can be used after each main
operation (13) are presented in section §0.

Influence of the order of symbolic computations

A selection for the order in which main operations are applied can be
considered to be well defined after stating one of the equivalent forms of the math
formula (15) (i.e. like formula (16)) representing the left term of equations (12).

The computing power of modern Math-CAD like Maple, [1], or Singular,
[2], makes possible to find a final formula of each derivativeoE/ox,

independently of the order of applying the main operators (13). However,
choosing the best order simplifies insight on partial results and can evidence the
fact that some intermediate symbolic formula of the error function could have
simpler intermediate expression. An appropriate selection of the order of applying
the main operators (13) permits an earlier use of any of the appropriate
simplifying operations (14), providing smaller intermediate formulae representing
simpler operands for the next main operator (13).

As an example, take into account computing the symbolic derivates of
E=E(x,, ..., xy), starting from expression (6) where we substitute =y (x;, ... ,xy,
fm) with its rational expression (7).

Partial derivation can be done after applying all other transformations (15):
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or, the derivation operator can be “distributed” the derivation operator to each
term of the sum:
OE(x,,....xy)
a

i

2| 0 ([R5, f, )j ’ rr(R( XX, f, )j ’
— _ R nJm _R I nJm _I
Z{ax K (S v | o i Sl e
In both (15) and (16) cases, the function to which the derivation operator
applies is a rational function and the consequence of derivation to degrees of the

numerator and denominator could be the same in terms of final degree, as
presented next, in section §0, so it seems that the “moment” of using §/ax, does

(16)

not matter. On the other hand applying the derivation operator on each term of the
sum, like in (16) i.e. before considering multiplying the denominator and
numerator of each term of the sum (15) by some polynomials (in order to
generate a common denominator for each term) could lead to numerators of terms
which have a common factor. This factor could be separated as a common
multiplier of each term before doing the symbolic calculus of the sum. As a
consequence, formula (16) gives a better order selection for the derivation
calculation than (15).

Effect of symbolic computations on total degree

Degrees of the denominator and numerator polynomials after each
transformation are always substantially bigger than the ones of the rational
function that represented the (whole or partial) input of the symbolic
transformation operator. This section analyzes the effect on the degree of
intermediate formulae of the main, (13) and simplifying, (14), operations, and also
defines the selected order for the main operations (which must be applied from the
“inside” to the “outside” of relation (16) ).

e Real and Imaginary part calculus/separation

Separation of the Real and Imaginary parts of the circuit function which is
included in each term, results in (17):

R(x,,..x,.fn) A, +jB, (4,+ B, NC, - /D)

S(xy, /) C,+jD, (C,+jD,NC, ~iD,)

4,C,-B,D, . A4,D,-B,C, 7
€.)+@.) ),y

where A,=Ax;, ... , XN, fm), Bn=B(x1, ... ,.xn, fm) respectively C,=C(x;, ... ,Xn, fu),
D,=Dx;, ... ,xn, fm) are polynomials with real coefficients representing the real
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and imaginary parts of R,=R(x;,...,Xn,fn), the numerator respectively
Sn=S(x;, ... .xn, fm) the denominator of the circuit’s function evaluated at f£,, ,(18):
Re[R(x,,....x,. [, ) |24, = A(x,,...x,. £, )= 4,(X,,...x,),
Im[R( x,,...x,, £, ) |= B, = B( X, X,, f )= B, (X0 X, ),

Re[S(x,,...%,, f,)]=C, =C(x,,..0%,, £, )= C, (X0,
m[S(x,,...x,, £, ) |=D, =D(x,,...x,, f)=D, ( x,,..X,)

Relations (17) and (18) show that, before derivation, the final degree of the
two denominators of each term in the sum (15) become the double of the
maximum degree of the denominator’s and numerator’s real and imaginary
part,(19):

(18)

deg((C,)*+( D,)*)= 2+ max{ deg(C,), deg[D,)} (19)
For the numerator of the real and imaginary parts, the new degrees are,
(20):
deg(A,, C,,+ B, D,,) = max{ deg(4,)+ deg(C,) , deg(B,)+ deg(D,) } (20)
and respectively (21) for the imaginary part:
deg(An Dy + By Cyy) = max{ deg(A,)+ deg(D,) . deg(B,)+ deg(C,)} 21)

e Adding/subtracting measured values to/from rational expression

Including the measured values r,=Re(y,,) and respectively x,=Im(y,,) in
the rational expression of each term (22) respectively (23), does not affect the
degree of the (same) denominator of each rational function’s term representing a
real or imaginary part:

R(x...x,, f. )) AC —B D
Re 1 nJm _Re —_mm mom e =
( ) Re)

S(%-e0 %, [c.f+[b,]
_4,C,-B,D,-|C,)+(D )2]2;» B P (22)
B )+, (€, )+(D,)

{3 - G
_4,0,-8,C,-[c,y+(, ko, (23)
B () +(D,) (¢, ) +(D,)

Relations (22) (23) show that the degree of the numerator in each term,
corresponding to the real/imaginary parts, becomes the maximum of the
numerator’s and denominator’s degree of the previous symbolic operation.

» Note:
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Since the chosen frequency values f, and respectively the measured
numeric values r,, and x, for the complex impedance, will be embedded in the
three different polynomials representing numerators or denominators of the
resulting rational functions calculated with the relations (22) and (23), each of
these polynomials will respectively have the same monomials and different
coefficients for each m.

» Note:

An important observation which can be made at this point and resulting
from the relations (22) and (23), is that the f,, values, will be embedded each, in
the coefficients numeric values of the numerator and of the denominator
polynomial of each term, while the measured values r, respective x,,, will be
included only in the calculation of the numeric coefficients of each “real” (22) and
respective “imaginary” (23) numerators polynomials, in each term.

0 Choosing a set f}, ...,fiys for factorizing [C (x;, ..., xy, fi)]* + [D (x, ...,
XN, ﬁn)]z

» Note:

In a later stage of the symbolic calculation, after analyzing the effect of
multiplying for each m the term’s numerator and denominator with the same
polynomial, in order to obtain a common denominator for all the terms before
computing the sum, the property of independence of the numerator’s coefficients
of r,, respective x,,, could be used in a symbolic simplifying computation which
could find a simpler common denominator.

e Calculating the square in each term and summing the two numerators
of one term
Each term T, of the left part of any equation is, (24):

- {(cm Fewy } ’ Lcm o, )2} ) [((Z i g))]

The denominator’s coefficients still does not depend on 7, and x,,, and it’s
final denominator (25) is four times of the maximum of the initial real and
imaginary parts of the circuit’s function denominator:

deg([(C,)*+( D,)’Y)= 2+ max{ deg([C,,)’), deg([Dn]’)}= 4+ max{ deg(C,), deg(D,)] (25)
The numerator’s degree increases with a factor of 2 the maximum of the

former two numerators corresponding to the real and imaginary part of the
circuit’s function, because, (26):

deg([Pn] *+[ On]’)= max{ deg([P,]’), deg(10,]’) }= 2- max{ deg(P,), deg(0,,)} (26)
» Note:

(24)
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After computing the square of each of the expressions of the resulting
rational functions (22) and (23), and summing each term’s numerators, all the next
(main or simplifying) symbolic operations applied to each term (before the
intermediate symbolic expression allows performing the sum itself) will preserve
the following property of the terms: each term is a rational functions with the
same monomials but different numeric coefficients depending only of the f,’s
values for the denominators and of the f£,,’s values but also of the 7,,’s and x,,’s for
the numerators.

e (alculating partial derivatives
Taking into account (27) and (28) for partial derivation:

0 {Re[R(xl,..., x, f.) j_Re(%‘)} _

67)6,. S(xpenx,, f0))
) ﬁ sz ) [(Cm)z +(Dm)2:|z %sz +sz aixi[cz +D2]Z (27)
ox, e,y + (o, ] .7 +@,7]

©, )+, 2 lc,y+o,r] (28)

Ox, Ox,
.y +,y]

the calculus of the derivative of each term gives, (29):
F) R(xpenXyi fy) ) ’ ROxeeaX, o)) |
ax,{Re[S( Yot 1) j Re(‘”’")} J{I“{S( X [ )j Im(‘”’")} }_
2 2 a 2 2 a 2 2 2 2 a v) 2 6 2 2
O P el ARG CA RO e CR RS (29)

(€t £ OF +[D e, £OF

 F(ein fy)
[G( Xipeen Xs S, )]4

The degree of each resulting numerators is given by (30):
deg(F; (x1, ..., xy))= max{ deg(IP,}), deg(10,1) }+ deg([(P,) *+( 0,)°T)}-1 (30)

where deg([(P,) *+( 0.,)°T) could be replaced using relation (25). In relation (30)
subtracting 1 is the consequence of derivation and the addition operation the
consequence of multiplying denominator/numerator polynomials or derivative of
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denominator/numerator polynomials with derivative of numerator/denominator or
respectively numerator/denominator.

The degree of each denominator increases by a factor of 2 and again, the
resulting denominator still does not depend on 7, and x,,.

» Note:
Since from the partial derivation relation (29), it appears that in each
equation i, the derivation operator §/ox, does not appear at the denominator of any

m™ term, the symbolic expressions of the denominator of the m™ term do not
differ ant two equations i.
At this point we can consider simplifying the formula of eachdE /ox, .

0 Factorizing numerators after derivation

If the numerators of all terms of a sum have, after derivation a common
factor for the whole sum, this could lead to leaving each term a simpler numerator
formula.

e Calculating a common denominator for all terms and summing

» Note:

As a consequence of the fact that the denominator of any m™ term is the
same in any two equations i, k, of the system (12), the problem of finding a
common denominator for the terms of any equation is unique and the associated
symbolic calculation does not depend on the particular equation.

In order to effectively calculate a symbolic formula for each sum, one
must multiply the denominator and the numerator of each current term with a
polynomial that is the less common multiple, LCM, of all the denominators
divided by the denominator of the rational function representing the current term
(31):

OE(X, X)) :i F (XX f)
ox, S6(xpnxy, £

& (0 fo) | [LOM( e frooes 1) G %, N |

A Gy £ LM (XX frveos i) G Xy i )]
L F (XKoo Xy S ) X [LCM (Xt X frsees S3)/G (X X, S0 )]

- g = @3l
~ [LCM (x),ix s fro fir)] 3D
_ 1 xi}?;( XXy [ YX[LCM( X, Xpys [ )]
[LCM( xl,...,xN,ﬁ,...,fM)]4 =l G( XX, )

with G(x,,..., xN,fm):[C(x1 ..... Xy S )]2+[D(X1 ----- Xyofom )]2
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This operation increases the initial degree of each numerator F;=
Fix;, ... . xn, fm) with  the degree of the polynomial LCM(x,,..., xy
,f] ,...,fM)/G(X] Y s ,XN,fm) (32)
deg(F,-(x; ) e ,XN,ﬁ,,) XLCM(X] yeres XN,ﬁ ,...,fM)/G(X1 Y e ,XN,fm)):

=deg(Fix;, ... ,xy, fu)+ deg(LCM(x; ,..., Xn, f1 ., Ju)- deg(G(xX;, ... . XN, frn)

In the worst case the final common denominator of all terms is the product
of all denominators and the polynomial LCM(x; ,..., Xn, f7 ,..., fu) /G715 .. ,XN, fn)
is the product of all the denominators excepting the current denominator. The
effect on total increase of the degree in the worst case is given by relation (36) in
section §0.

The next two simplifying operations are presented only as theoretical
aspects since the classic solving algorithms could have unpractical computing
time in the general case.

0 Finding a greatest common multiple between all denominators for the

simplest common denominator before summing

An algorithm for calculating the less common multiple of two multivariate
polynomials, (which can be naturally generalized for more then two polynomials)
is based on computing a Grobner basis for the intersection of the two (principal)
ideals generated by the two polynomials. This is presented in [7] in chapter 4
paragraph §3 after Theorem 11.

The use of this category of algorithms will require a later analysis that will
put in balance the computing time consumed for performing the simplifications on
one hand and, on the other hand, the possible benefits in computing time when
avoiding the worst case of using the product of all the denominators instead of
their less common multiple, in the process of eliminating numerators.

0 Choosing a set f}, ...,fu for factorizing [C (x, ..., xN,fm)]2 +[D (xy, ...,

XN, Jo m)]2

Since the denominators of the terms contain “embedded” in their
coefficients only the “arbitrary” (in terms of computation) f,, values, an interesting
question is whether some restrictions imposed on these M values (M being the
number of measurements equal to the number of terms) could have as
consequence that the symbolic expression of the polynomials representing the
denominator of each term could have a form which could lead to a less common
multiple having a maximal degree (i.e. than in a case of “arbitrary” f; ’s).

(32)

6. Tuning the complexity of the polynomial system by manipulating
the number of measurements

The left side of the polynomial equation which results during the last step
of the process of obtaining a polynomial equation system: the eliminating the
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common denominator /LCM(x,, ....xy, f1,....Fx )]’ of relation (31), is of the form
(33):

LCM( X,,ees Xps fyseees for) ) _
G(xp,n Xy, o)) -

e L F(x,e0xy, fo) (33)
“[LCM(xonxy, [ fi)] X S n) _
LMty o T 2

with G(x,eerxys ) = [C(xprniy £ YV +[DCxprxy £

In the worst case, the less common multiple is the product of all
denominators, (34):

LCM( %,y X [y )= [ [ G( X1, £ (34)

P( xl,...,xn,fl,...,fM)=Z{Fi(xl,...,xN,fm )X{

m=1

and each equation (33) can be rewritten as (35):

M |:HG('X:I”"’XN"fk):|
oo Xy Sryerosfor) = O AF( Xy X, £ )X LD =
P( %00 Xy frsen o) ; (%X /) TERENA
=Dt )% HG()q,..,x,,,m} - (35)

k=1

Sk )]

Since the number of terms M is equal to the number of frequencies f;, used
for measuring r, and x, (of z,= r,+jx,), and in the worst case each
supplementary frequency fy+; (which increases the number of measurements to
M+1) would add to the common denominator a new factor
Of [G(xenx N =[[CCt ety fige D 51ty frne ] each additional
term/measurement would increase the total degree of each equation (35) with the
degree of this polynomial, (36):

deg(P)=max, {deg(F{x;, ... xn_fu)}+4(M-1)-max,, deg[C(x;, ... ,)cj\;”f,',,))2 + (36)
(D1, ¥ fo) )1}

This observation shows that tuning M, the number of measurements to be
taken into account from a given set of measurements on a specific circuit,
influence (increase/decrease) the total degree of the equations of the polynomial
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system (35), when keeping unmodified the circuit, its mathematical model and the
computing algorithms for solving the math problem associated to the extraction
problem. The number of measurements M will be used in the next paragraph as a
parameter in order to estimate the power of computing algorithms which can solve
the mathematical problem, system (35), associated with the extraction problem.

Evaluation of different symbolic algorithm implementations for
polynomial equation system solving, using complexity tuning

The particular form of the math equation system (35) for the extraction
problem defined in section §0 showed that even for a simple circuit, Fig. I, the
size of the polynomial equation system imposed the use of a Math-CAD system
for solving the math associated problem (see [4] where the resultant elimination
resultant method was used).

The Maple [1] and Singular [2] Math-CAD algebraic systems contain their
own functions for computing the resultant of two polynomials and also for
computing the Grobner Basis of an ideal if a set of generators, the polynomials
defining an equation system is given. Based on these functions, two methods for
variable elimination were implemented using each of these CAD systems, and
their performances in symbolic computing were evaluated for the case of the
circuit of figure Fig. 1.

Resultant method

Computing the symbolic expression of the resultant of two polynomials,
[6], generates an additional equation for which one of the variables is eliminated.
This basic elimination step can be used in a more general algorithm by applying it
to any pair of two equations in order to obtain a triangular system, [4]. This
system is then solved by using numerical routines to find the roots of the final
polynomials of one variable and replacing them step by step, in a recursive way,
the rest of the equations.

For an initial system of two variables (the extraction problem described in
section §0) an elimination step was required [4] (no variable elimination strategy
for two variables) and the maximum number of measurements, M, for which the
elimination could be made in a reasonable time was determined by tuning the
complexity of the initial polynomial system, as shown in section §0. The
determined maximal value for M was M=12, when using Maple [1] and also
M=12, when using Singular [2].
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Grobner Basis method

At least from a theoretical point of view, an alternate solution to the
variable elimination part of the algorithm described in section §0 - Resultant
method, 1s computing a Grobner Basis with lexicographic ordering of monomials,
i.e. an equivalent system having a quasi triangular form [7]. However, in the case
of our system, computing a Grobner Basis proved to be a too difficult task for
both Maple’s [1] and Singular’s [2] intrinsic functions, if a reasonable number or
measured value, M, were taken into account.

Tuning the number of measurements, as shown in section §0, in order to
reduce the complexity of the initial system under a limit that makes it solvable
with a reasonable computational effort, showed, from a practical point of view,
weaker computational performance than resultant method as M=3, when using
Singular [2], and M=12 when using Maple [1].

Maximum computation time was limited to = 3 hours in both resultant
and Grobner Basis method and even if the maximal value of 12 for M remains the
same when using the Maple’s [1] CAD system, the computing performance (in
terms of computing time) was significantly superior with one order of magnitude
when using the resultant method.

7. Conclusions

This paper analyses a symbolic method which uses symbolic computation
to solve the math problem associated to the extraction problem, in the case of a
linear circuit. The method is based on computing partial derivatives of the error
function obtained with the least square method and generates an initial equation
system of rational function which can be reduced to a polynomial equation
system. This polynomial system is solved with a combined symbolic/numeric
method based on the resultant method or the Grdébner basis method, [7], for
variable elimination.

The process of transforming the partial derivatives system consisting of
rational functions in an initial polynomial equation functions, is described and the
effect on the total degree of the resulting equations is analyzed.

An important conclusion of this analysis is that, for the same extraction
problem, the degree of the initial polynomial strongly depends on the number of
measurements considered in the extraction problem. This gives a method of
“tuning” the complexity of the associated math model and, for any particular
extraction problem, it shows that it is possible to obtain an upper limit for the
number of measurements taken into account, so that, below it, the variable
elimination algorithm (included in the more general equation system solving
method) ends properly.
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Using the “complexity tuning method”, the extraction process for a
particular circuit is analyzed, in particular the capability of using symbolic
computations for polynomial system variable elimination. Evaluation of the
computing power of existing implemented functions for calculating the resultant,
[6] and the Grobner basis with lexicographic monomial ordering, [7], in the case
of two Math-CAD systems, shows that, in both cases, the implementation for the
resultant function performs better than the implementation of the function which
calculates a Grobner basis.

This might be interpreted as the consequence of the behavior of the classic
Buchberger algorithm [7], probably used to the implementation of these intrinsic
functions, because it has been shown, [7], [8], [10], that this algorithm can
generate, as intermediate results, huge multivariate complex polynomials of
degrees which can grow on a double exponential law with the degree of the input
polynomials.
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