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SYMBOLIC COMPUTATION TUNING METHOD FOR THE 
EVALUATION OF ALGORITHMS IN SMALL SIGNAL 

PARAMETERS EXTRACTION 

Cristian ZORIO1, Mircea BODEA2, Ioan RUSU3 

Problema matematică asociată problemei de extracţie a parametrilor unui 
circuit se reduce la determinarea minimului global al unei funcţii obiectiv obţinută 
prin metoda celor mai mici pătrate. În cazul analizei de semnal mic a unui circuit 
(când se utilizează un model liniar), funcţia asociată circuitului este o funcţie 
raţională, şi în consecinţă şi funcţia obiectiv are aceeaşi formă. Aceasta permite a 
se lua în considerare rezolvarea sistemului de ecuaţii format cu derivatele parţiale 
ale funcţiei obiectiv pentru determinarea, în final, a minimului global, metoda care, 
spre deosebire de metoda pur numerică, nu mai necesită valori “de start” ale 
parametrilor de extras şi în plus garantează faptul ca rezultatul obţinut corespunde 
minimului global. Această abordare conduce la problema matematică a rezolvării 
unui sistem de ecuaţii format cu funcţii raţionale, care poate fi transformat într-un 
sistem polinomial echivalent. În lucrare se determină modul în care numărul de 
valori măsurate ale unei funcţii  de semnal mic (asociată unui circuit liniar), care se 
iau în considerare, influenţează gradul acestui sistem iniţial de ecuaţii polinomiale. 
Se arată faptul că timpul de calcul total, (care depinde de gradul sistemului iniţial 
de ecuaţii polinomiale şi, de asemenea, de algoritmul de reducere a sistemului 
polinomial la un sistem echivalent quasi triangular, rezolvabil prin metode 
numerice) poate fi controlat prin ajustarea acestui număr. Utilizând această 
proprietate/dependenţă, care permite generarea de probleme matematice (sisteme 
de ecuaţii polinomiale iniţiale) de complexităţi diferite, pentru aceeaşi problemă de 
extracţie, se analizează în cazul unui circuit particular, posibilitatea obţinerii unui 
rezultat într-un timp rezonabil, cu algoritmii incluşi în două sisteme CAD pentru 
matematică. Concluziile identifică oportunitatea utilizării fiecăruia dintre aceste 
instrumente matematice, pentru implementarea unui program de extracţie  nu 
neapărat bazat pe un sistem CAD. 

The math problem associated to the problem of parameter extraction of a 
circuit can be reduced to the problem of finding the global minimum of an error 
function obtained with the least squares method. In the case of the small signal 
analysis of a circuit (when a linear model is considered), the circuit’s associated 
function is a rational function and as a consequence the error function is of the 
same form too. This makes possible to take into account solving the resulting 
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equation system, formed with the partial derivatives of the error function, in order to 
find, in the end, the global minimum of the error function. The method, unlike any 
pure numeric method, no longer requires "start” values for the parameters being 
extracted and also guarantees that the final result corresponds to the global 
minimum. This approach leads to the mathematical problem of finding the solutions 
of an equation system formed with rational functions, which can be transformed in 
an equivalent polynomial system. The paper highlights the dependency of the degree 
of this initial polynomial equation system, with the number of measured values of a 
linear circuit small signal function which is considered in a particular extraction 
problem. It is shown that the total execution time (which depends on the degree of 
the initial polynomial system and also on the algorithm for reducing the system to an 
equivalent quasi-triangular, numerically solvable form) can be “tuned” by adjusting 
this number. Using this property/dependency which makes possible to generate 
several mathematical problems (initial polynomial equation systems) having 
different complexities, for the same extraction problem, we analyze, using a 
particular circuit, the possibility of getting a solution in a reasonable amount of 
time, with the algorithms implemented in two different Math-CAD systems. The 
conclusions identify which of the mathematical instruments used, could be used to 
implement a standalone program for extraction, which should not necessarily be 
based on a CAD system. 

Keywords: symbolic analysis, modified nodal analysis, small signal analysis, 
parameter extraction, SPICE input format 

1. Introduction 

Extraction of the parameters of a circuit generally leads to the 
mathematical problem of finding the global minimum of an error function which 
is determined by the mathematical model of the circuit and the measured values of 
some circuit signals.  

A classical approach for solving the parameter extraction problem (finding 
the input values of the error function, corresponding to the function’s global 
minimum) is by using a numerical method for generating a convergent descendent 
sequence of error function values. This method is based on an algorithm which 
evaluates the function and selects for the current input values those that reduce the 
gap between calculated and evaluated values, leading to a minimum of the error 
function. The algorithm stops when all possible modifications of the parameters 
representing input values for the error function could not further reduce the value 
of the error function. 

This approach is basically a numeric “refinement” process and although it 
always leads to some minimum of the error function, it can not guarantee that the 
sequence of errors converge to the global minimum of the function (and not to 
some different local minimum). The result of the convergence process depends on 
an initial set of parameter values (the “start values”) representing the iteration 
starting point. The appropriate “guess method” for obtaining these values is by 
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using the engineer’s intuition based on practical experience and/or by using an 
alternative simplified, easy to compute, model of the circuit to estimate somehow 
the (approximate) values of the parameters to be extracted. However, any user 
applying this method, could not invoke conclusive rigorous arguments which 
might prove that any of the “guessed starting points” will lead through the process 
of “refinement” to the global minimum of the error function, and not to any of its 
local minimums. 

A different approach, not based on numerical pure algorithms using 
convergence of a sequence of error values, is a symbolic computation method that 
could potentially find all the minimums of the error function. In theory, this is 
always possible by computing all the partial derivatives of the error function and 
solving the resulting equation system. Two minimal conditions are required for 
this approach: 

- a symbolic formula of the error function must exist (not only a 
procedure/algorithm for numerical evaluation) 

- the equation system formed with partial derivatives has to be solvable 
using numerical and/or symbolic computation method. 

An example of parameter extraction in the case of a linear circuit, that use 
Maple [1] Math-CAD system to perform symbolic calculation of all the 
minimums of an error function combined with numeric procedures for finding real 
roots of polynomials of one variable, was already presented in [4].  

2. Mathematical model of the “extraction problem” 

The generalization of the following example will help us to eliminate the 
task of giving formal definitions for all the elements of the mathematical model 
associated with the “parameter extraction problem”. Assume a given circuit 
having a well determined schema for which some of the values of the circuit 
elements (discrete devices) are unknown and have to be determined by indirect 
measurements. Also assume that we dispose of the real circuit which can be 
subject of different measurements at its input and output gates. 
 

3. Example of a circuit and measurements 
 
The circuit of Fig. 1 which has already been subject of symbolic parameter 

extraction, [4], (when the resultant method for variable elimination was used) will 
be used again, in the next sections for generating an example of polynomial 
equation system to be solved with different algorithms.  

 Example: 



66                                          Cristian Zorio, Mircea Bodea, Ioan Rusu 

V i 

r μ  

rb  cμ  

cπ  

vo= 0  

ic = gmv 1=
mr

v1 =
8

1

x
v

 

r π

re m i  

ro  

rc  

V 1 

io  

i c 

2
r b

3
r b

4
r b

1
r b

0
rb

5
r b

0
rb

=
r b

 
Fig. 1 - Circuit Example – The Giacoletto equivalent circuit of  a bipolar transistor 
Solving the “parameter extraction problem” for the circuit of Fig. 1 when 

knowing the values of a subset of its elements (see Table 1) means finding the 
values of the unknown components, rb and gm, by comparing calculated and 
measured values of some small signal input/transfer/output functions of the 
circuit. 

Circuit’s Input/Transfer/Output function 

Since the circuit’s schema is well determined any small signal 
input/transfer/output function can be computed as a symbolical expression which 
contains the schema elements. Considering, for instance, the input impedance 
z11=z11(gm, rb, rπ , rμ, re, ro , rc , cπ , cμ ,f) of the circuit (which was computed with 
the nodal method [5] and using a specialized script [3]) leads to (1): 
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with: 
R (rb, gm, f)=   
-rbrore  -rbrπrc  -rbrµre  -rbrπro  -rbrµro  -rorerµ  -rbrµrc  -rorerc  -rπrorµ  -rπrerµ  -
j2πfCπrπrorerc  -j2πf Cπrπrerµrc -rbrπre -rπrerc -gmrπrorerc -gmrπrorerµ -rbrπgmrore -
rbrπrcgmro +4π2f 2CπrπroreCµrµrc +4π2f2

CπrbrπrµroCµrc -rπrorc +4π2f 
2

CµrbrπrµCπrore -rbrorc -rπrµrc -rerµrc 
+j(-2πfCπrπrorerµ -2πf rore Cµrµrc -2πf gmrπroreCµrµrc -2πfrπre Cµrµrc -2πf rπro 
Cµrµrc -2πf Cπrbrπrµre     -2πf Cπrbrπrorc -2πf Cπrbrπrµrc -2πf Cπrbrπrµro -2πf rbrµro 
Cµrc -2πf rbrπ Cπrore -2πf Cµrbrµrore              -2πf Cµrbrπrµgmrore -2πfCµrbrπrµre -
2πfCµrbrπrµrc -2πfCµrbrπrµro -2πfrbrπrcgmrµroCµ) 
 
S (rb, gm, f)= 
 -rµrc -rµro -rπre -rπro -rerµ -rπrc -rorc -rore -gmrπrore -rπrcgmro +4π2f 2CπrπrµroCµrc 
+4π2f 2CµrπrµCπrore  

(1) 
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+j(-2πf rπroCµrµ -2πf rπrcgmro Cµrµ -2πf rerµ Cπrπ -2πf Cπrπrµrc -2πfrore Cµrµ -
2πfCπrπrµro -2πf gmrπrore Cµrµ -2πf Cπrπrorc -2πf Cµrµrorc -2πf Cπrπrore -2πf rπre 

Cµrµ -2πf rπrc Cµrµ) 

 
The values for the known elements are given in Table 1 (see the “Initial 

notation” row): 
 

Table 1 
Initial notation gm rb rπ rμ re ro rc cπ cμ 

Initial notation - numeric 
indexes 1/r1 r2 r3 r4 r5 r6 r7 c1 c2 

Notation using vector elements x1 x2 x3 x4 x5 x6 x7 x8 x9 

Values − − 5 × 103 2×108 2 1×105 50 2 × 10−11 2×10−1

3 
Units Ω−1 Ω F 

The known values for rπ , ,rμ , re, ro , rc , cπ , cμ , can be substituted in the 
symbolic formula, resulting an expression (2) which depends only on the 
unknown values rb and gm , “to be extracted” and the frequency f.  

 

)()(
)()(

)(
)(

)(
 + 
 + 

=
 

=
, fr, rjD, fr, rC
, fr, rjB, fr, rA

,, fr, rS
, fr, rR

f,r,rz
πbπb

πbπb

πb

πb
πbin  

with: 
R (rb, gm, f) =  A (rb, gm, f) +   jB (rb, gm, f) =  

= 0.6500000000×1011gmrb+0.5000001250×1018gm−0.2052877716×10−2rbf2+ 

+0.5001166326×1014rb−0.3947841762×10−2f2+0.2501520825×1018+ 
+j(31739961.09rbf + 16336281.80gmrbf + 31415926.54gmf + 78558807.28f) 

S (rb, gm, f)=   C (rb, gm, f) +  jD (rb, gm, f) =  

= 0.6500000000×1011gm−0.2052877716×10−2f2+0.5001166326×1014+ 

j (16336281.80gmf +  31739961.09f)  

(2)

R and S are polynomials having complex (pure real or pure imaginary) 
coefficients and A, B, C, D, are polynomials having real coefficients (to be 
approximated by rational number). 
 

4. Error function formula 
 
Without loosing in generality, using the example of the particular circuit of 

Fig. 1 and including also the data of Table 1, an extraction model can defined. In 
order to illustrate the result’s complexity and size, the huge particular symbolic 
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formula of this circuit’s Error function was already computed, [4], and will not be 
reproduced here again.  

The circuit’s function - general case  
 

Table 1 also provides a method of renaming the circuit’s elements, which 
can be easily generalized to any circuit. The elements having unknown values, 
which must be determined by “extraction”) are in the first columns of the table so 
that, when using the “x1,...,xN” notation, substituting symbolic names with 
numerical values should always replace the last xk,...,xN , k>1, symbols with their 
corresponding values having the effect of reducing N.  

The general “x1,...,xN” notation, will be used next, for an 
input/transfer/output function associated to any circuit so that the left part of the 
expressions (1) or (2) can be rewritten as: 

  )...()( 121 f,x,,xf,c,c,r,r,r,r,r,g Noeμπbm ψψψ ==  (3)
with N=8 when rewriting  (1) or N=2 when rewriting (2). 

When dealing with linear circuits, expression (1) or (2) can be regarded as 
rational functions, as a particular form of a general expression (3). Also, in the 
linear case, the numeric values replacing symbolic elements xi, are embedded in 
the coefficients of the resulting rational functions (see §0). The following general 
definitions for “distance” and “global error function” do not necessarily restrict 
ψ=ψ(x1,…, xN, f), the function associated to a linear circuit, to be a rational 
function.  

Distance formula 

Since we dispose of measurements results for the values of the circuit’s 
associated function, and since we can also compute such values by evaluating its 
formula for different values of the parameters (the schema elements with 
undetermined values), it make sense to define a “distance” d=d (ψCal, ψm), 
between “measured” values, ψm, and “calculated” values ψCal  (4): 

2
1

2
1 }Im)],,...,({Im}Re)],,...,([{Re),( mmNmmNmmCalm fxxfxxdd ψψψψψψ −+−==  (4)

Note that each “distance” dm=d (ψmCal, ψm) depends of the frequency 
values fm chosen for each measurement of ψm (“the good complex value” for ψ). 

Error function formula (global distance) 
The general method for parameter extraction uses an error function that 

estimates a “global” distance” (5), (6):  
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The values xo1 , ... ,xoN which put the error function in its global minimum, 
represent the values which give an optimal fit of the circuit’s calculated values 
(using ψ‘s formula) with the measured values, and represent “extracted 
parameters”. 

This approach leads to the mathematical problem of finding the global 
minimum of a function, having a more or less complex formula.  

The case of a linear circuit  

In the case of a small signal linear circuit the input/transfer/output function 
ψ=ψ(x1,…, xN, f), which represents the behavior of the circuit, has of the form of a 
rational function, [5]: 
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where R and S are polynomials with real or pure imaginary coefficients, 
and A, B, C, D are polynomials with real coefficients such as: 
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This was the case of expressions (1) and (2) for zin=z11(gm, rπ , ,rμ , re, ro , rc , cπ , 
cμ ,f). 

As a consequence the error function will be a rational function with real 
coefficients, (9):  
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(9)

which can be rewritten as (10) , if taking into account the notations (8): 
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where: 
rm=Re(ψm) , x= xm=Im(ψm)  (11)

Notice that in the case of a linear circuit, a symbolic formula of the error 
function can always be determined and the process of calculating a function value 
with the formula for known input values means evaluation of this formula. 

 
5. Analysis of intermediate symbolic expressions complexity when 

computing a polynomial system from a system of rational functions 

Initial system of polynomial equations 

A straight forward method for determining a global minimum of the error 
function Ε=E(x1 , ... , xN), is to choose the smallest point of extremis of Ε, after 
determining all the point of extremis. We will assume that Ε has a finite set of 
points of extremis, as a consequence of physical interpretation of the significance 
of global Error function Ε. Interpretation of the algebra theory concerning “the 
dimension of an affine variety” [7] should lead to the same conclusion.  

 
Since we dispose of the symbolic expression, (9), (10), of the Error 

function Ε=E(x , ... , xN), a first step in this direction is calculating the symbolic 
expressions of its partial derivatives, and constructing the system : 

0
)...( 1 =

∂
∂

i
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 x
x,, xE

;   i = 1...N   (12)

This is a system of rational functions which can be transformed into a 
system of polynomial equations and solved with modern algebra theory [7].    

Solving polynomial equation systems using common algebraic methods, is 
always possible if considering infinite computing resources and/or an infinite 
computing time [7], but when taking into account the possibility of obtaining 
practical results, the complexity of the initial equation system and of the solving 
algorithms must be considered too. This introduces the necessity of a more precise 
definition for the notion of “complexity” of the input data of these algorithms i.e. 
the “complexity” of some given initial polynomial equation system which is to be 
solved. 

The quantifiable properties of any specific initial polynomial equation 
system, used to measure its complexity, s, n, d, h, are variables on which the 
formulae used to calculate the complexity of a solving algorithms depends on, [9]: 
s is the number of equations, n is the number of variables (in our case s=n), d is 
total degree  (associated with a given monomial ordering [7] and referred next as 
“total degree”), and h (height) representing the number of bits needed to store 
denominator/numerator of each rational numbers representing polynomial 
coefficients.  
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Since h affects “numeric precision” which at least at this stage, can be 
considered, a refinement feature, and any analysis concerning s or n, the number 
of equations/variables, is obvious and straightforward, the next paragraphs will 
focus on the order of magnitude of the “total degree” n of the equation system of 
rational functions (12) and simplifying it’s symbolic formula.  

Symbolic transformations and influence of the applying order 

The left part of each of the equations of system (12) can be regarded as a 
symbolic formula, (15) which has to be transformed in a sum of rational functions 
having each the same denominator, which could be then eliminated, so that only 
the numerators of each sum/equation should form a polynomial equation system. 
The set of solutions of this polynomial system will always include the solutions of 
the initial system (12). 

Main computations for transforming  symbolic formulae into 
equivalent formulae 

The main symbolic computations (operators) used to modify symbolic 
formulae, for the above mentioned purpose, into equivalent expressions are:  

• Real and Imaginary part calculus/separation 
• Adding/subtracting measured values to/from rational 

expression 
• Calculating squares in each term  
• Partial derivative symbolic calculus 
• Calculating a common denominator for all terms and 

summing  

(13)

The result of any of these symbolic transformations is always a rational 
function and each possible transformation have as input (see (15), (16) ) symbolic 
formulae of the type of a rational function or a sum of rational functions including 
complex constants (measured) values.   

The input selected operand of each “main computation” depends on the 
selected order for applying the operands (like exemplified next for the derivation 
operator in section §0). 

The total effect of these operations on the degree of intermediate 
polynomials (presented in section §0, after selecting an order of applying these 
main transformations too) will give the complexity (i.e. degree) of the final 
polynomial system.  

Simplifying symbolic computations 
The symbolic formulae (rational functions) representing partial results of 

the main transformation process of symbolic formulae may be the subject 
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simplifying operations before making further (main) transformations by the rest of 
the above main transforming operations(13), in order to keep numerators and 
denominators of rational functions as simple as possible.  Possible simplification 
operations are: 

o Elimination of  common factors between  numerator 
and denominator of each term 

o Factorizing numerators after derivation 
o Finding a greatest common multiple between all 

denominators for the simplest common denominator 
before summing 

o Choosing a set f1,…,fM for factorizing [C (x1 , ... , xN , 
fm)]2 +  
[D (x1 , ... , xN , fm)]2 

(14)

The simplification operations (14) that can be used after each main 
operation (13) are presented in section §0. 

Influence of the order of symbolic computations 

A selection for the order in which main operations are applied can be 
considered to be well defined after stating one of the equivalent forms of the math 
formula (15) (i.e. like formula (16)) representing the left term of equations (12).  

The computing power of modern Math-CAD like Maple, [1], or Singular, 
[2], makes possible to find a final formula of each derivative ixE ∂∂  
independently of the order of applying the main operators (13). However, 
choosing the best order simplifies insight on partial results and can evidence the 
fact that some intermediate symbolic formula of the error function could have 
simpler intermediate expression. An appropriate selection of the order of applying 
the main operators (13) permits an earlier use of any of the appropriate 
simplifying operations (14), providing smaller intermediate formulae representing 
simpler operands for the next main operator (13).  

As an example, take into account computing the symbolic derivates of 
Ε=E(x1 , ... , xN), starting from expression (6) where we substitute ψ=ψ (x1, ... ,xN , 
fm) with its rational expression (7). 

Partial derivation can be done after applying all other transformations (15): 
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or, the derivation operator can be “distributed” the derivation operator to each 
term of the sum: 
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In both (15) and (16) cases, the function to which the derivation operator 
applies is a rational function and the consequence of derivation to degrees of the 
numerator and denominator could be the same in terms of final degree, as 
presented next, in section §0, so it seems that the “moment” of using ix∂∂  does 
not matter. On the other hand applying the derivation operator on each term of the 
sum, like in (16) i.e. before considering multiplying the denominator and 
numerator of each term of the sum (15)  by some polynomials (in order to 
generate a common denominator for each term) could lead to numerators of terms 
which have a common factor. This factor could be separated as a common 
multiplier of each term before doing the symbolic calculus of the sum. As a 
consequence, formula (16) gives a better order selection for the derivation 
calculation than (15).  

Effect of symbolic computations on total degree 

Degrees of the denominator and numerator polynomials after each 
transformation are always substantially bigger than the ones of the rational 
function that represented the (whole or partial) input of the symbolic 
transformation operator. This section analyzes the effect on the degree of 
intermediate formulae of the main, (13) and simplifying, (14), operations, and also 
defines the selected order for the main operations (which must be applied from the 
“inside” to the “outside” of relation (16) ).  

 
• Real and Imaginary part calculus/separation 
Separation of the Real and Imaginary parts of the circuit function which is 
included in each term, results in (17): 
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where Am=A(x1 , ... ,xN, fm), Bm=B(x1 , ... ,xN, fm) respectively Cm=C(x1 , ... ,xN, fm), 
Dm=D(x1 , ... ,xN, fm) are polynomials with real coefficients representing the real 
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and imaginary parts of Rm=R(x1 , ... ,xN, fm), the numerator respectively 
Sm=S(x1 , ... ,xN, fm)  the denominator of the circuit’s function evaluated at fm ,(18): 
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Relations (17) and (18) show that, before derivation, the final degree of the 
two denominators of each term in the sum (15) become the double of the 
maximum degree of the denominator’s and numerator’s real and imaginary 
part,(19):  

deg((Cm) 2+( Dm)2)= 2· max{ deg(Cm), deg[Dm)} (19)
For the numerator of the real and imaginary parts, the new degrees are, 

(20): 
deg(Am Cm

 + Bm Dm) = max{ deg(Am)+ deg(Cm) , deg(Bm)+ deg(Dm) } (20)
and respectively (21) for the imaginary part: 

deg(Am Dm
 + Bm Cm) = max{ deg(Am)+ deg(Dm) , deg(Bm)+ deg(Cm)} (21)

 
• Adding/subtracting measured values to/from rational expression 
Including the measured values rm=Re(ψm) and respectively xm=Im(ψm) in 

the rational expression of each term (22) respectively (23), does not affect the 
degree of the (same) denominator of each rational function’s term representing a 
real or imaginary part:  
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Relations (22) (23) show that the degree of the numerator in each term, 
corresponding to the real/imaginary parts, becomes the maximum of the 
numerator’s and denominator’s degree of the previous symbolic operation. 

 Note: 
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Since the chosen frequency values fm and respectively the measured 
numeric values rm, and xm for the complex impedance, will be embedded in the 
three different polynomials representing numerators or denominators of the 
resulting rational functions calculated with the relations (22) and (23), each of 
these polynomials will respectively have the same monomials and different 
coefficients for each m.  

 Note: 
An important observation which can be made at this point and resulting 

from the relations (22) and (23), is that the fm values, will be embedded each, in 
the coefficients numeric values of the numerator and of the denominator 
polynomial of each term, while the measured values rm respective xm, will be 
included only in the calculation of the numeric coefficients of each “real” (22) and 
respective “imaginary” (23) numerators polynomials,  in each term.  

 
o Choosing a set f1,…,fM for factorizing [C (x1 , ... , xN , fm)]2 + [D (x1 , ... , 

xN , fm)]2 

 Note: 
In a later stage of the symbolic calculation, after analyzing the effect of 

multiplying for each m the term’s numerator and denominator with the same 
polynomial, in order to obtain a common denominator for all the terms before 
computing the sum, the property of independence of the numerator’s coefficients 
of rm respective xm, could be used in a symbolic simplifying computation which 
could find a simpler common denominator. 

  
• Calculating the square in each term and summing the two numerators 

of one term 
Each term Tm of the left part of any equation is, (24):  
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 The denominator’s coefficients still does not depend on rm and xm, and it’s 
final denominator (25) is four times of the maximum of the initial real and 
imaginary parts of the circuit’s function denominator:  
deg([(Cm) 2+( Dm)2]2)= 2· max{ deg([Cm]2), deg([Dm]2)}= 4· max[ deg(Cm), deg(Dm)] (25)

The numerator’s degree increases with a factor of 2 the maximum of the 
former two numerators corresponding to the real and imaginary part of the 
circuit’s function, because, (26):  

deg([Pm] 2+[ Qm]2)= max{ deg([Pm]2), deg([Qm]2 ) }= 2· max{ deg(Pm), deg(Qm)} (26)

 Note: 
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After computing the square of each of the expressions of the resulting 
rational functions (22) and (23), and summing each term’s numerators, all the next 
(main or simplifying) symbolic operations applied to each term (before the 
intermediate symbolic expression allows performing the sum itself) will preserve 
the following property of the terms: each term is a rational functions with the 
same monomials but different numeric coefficients depending only of the fm’s 
values for the denominators and of the fm’s values but also of the rm’s and xm’s for 
the numerators. 

 
• Calculating partial derivatives 
Taking into account (27) and (28) for partial derivation: 
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the calculus of the derivative of each term gives, (29): 
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The degree of each resulting numerators is given by (30): 
deg(Fi ( x1, … , xN))= max{ deg([Pm]2), deg([Qm]2) }+ deg([(Pm) 2+( Qm)2]2)}-1  (30)

 
where deg([(Pm) 2+( Qm)2]2) could be replaced using relation (25). In relation (30) 
subtracting 1 is the consequence of derivation and the addition operation the 
consequence of multiplying denominator/numerator polynomials or derivative of 
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denominator/numerator polynomials with derivative of numerator/denominator or 
respectively numerator/denominator. 

The degree of each denominator increases by a factor of 2 and again, the 
resulting denominator still does not depend on rm and xm.  

 Note: 
 Since from the partial derivation relation (29), it appears that in each 

equation i, the derivation operator ix∂∂ does not appear at the denominator of any 
m-th term, the symbolic expressions of the denominator of the m-th term do not 
differ ant two equations i.  

At this point we can consider simplifying the formula of each ixE ∂∂ . 
 
o Factorizing numerators after derivation 
If the numerators of all terms of a sum have, after derivation a common 

factor for the whole sum, this could lead to leaving each term a simpler numerator 
formula. 

• Calculating a common denominator for all terms and summing 

 Note: 
As a consequence of the fact that the denominator of any m-th term is the 

same in any two equations i, k, of the system (12), the problem of finding a 
common denominator for the terms of any equation is unique and the associated 
symbolic calculation does not depend on the particular equation. 

In order to effectively calculate a symbolic formula for each sum, one 
must multiply the denominator and the numerator of each current term with a 
polynomial that is the less common multiple, LCM, of all the denominators 
divided by the denominator of the rational function representing the current term 
(31):  
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This operation increases the initial degree of each numerator Fi= 
Fi(x1 , ... ,xN, fm) with the degree of the polynomial LCM(x1 ,..., xN 
, f1 ,..., fM)/G(x1 , ... ,xN, fm) (32): 

deg(Fi(x1 , ... ,xN, fm) ×LCM(x1 ,..., xN , f1 ,..., fM)/G(x1 , ... ,xN, fm) )= 

      = deg(Fi(x1 , ... ,xN, fm)+ deg(LCM(x1 ,..., xN , f1 ,..., fM))- deg(G(x1 , ... ,xN, fm) 
(32)

In the worst case the final common denominator of all terms is the product 
of all denominators and the polynomial LCM(x1 ,..., xN , f1 ,..., fM) /G(x1 , ... ,xN, fm) 
is the product of all the denominators excepting the current denominator. The 
effect on total increase of the degree in the worst case is given by relation (36) in 
section §0. 

The next two simplifying operations are presented only as theoretical 
aspects since the classic solving algorithms could have unpractical computing 
time in the general case.  

o Finding a greatest common multiple between all denominators for the 
simplest common denominator before summing 

An algorithm for calculating the less common multiple of two multivariate 
polynomials, (which can be naturally generalized for more then two polynomials) 
is based on computing a Gröbner basis for the intersection of the two (principal) 
ideals generated by the two polynomials. This is presented in [7] in chapter 4 
paragraph §3 after Theorem 11.  

The use of this category of algorithms will require a later analysis that will 
put in balance the computing time consumed for performing the simplifications on 
one hand and, on the other hand, the possible benefits in computing time when 
avoiding the worst case of using the product of all the denominators instead of 
their less common multiple, in the process of eliminating numerators. 

o Choosing a set f1,…,fM for factorizing [C (x1 , ... , xN , fm)]2 + [D (x1 , ... , 
xN , fm)]2 

Since the denominators of the terms contain “embedded” in their 
coefficients only the “arbitrary” (in terms of computation) fm values, an interesting 
question is whether some restrictions imposed on these M values (M being the 
number of measurements equal to the number of terms) could have as 
consequence that the symbolic expression of the polynomials representing the 
denominator of each term could have a form which could lead to a less common 
multiple having a maximal degree (i.e. than in a case of “arbitrary” fi ’s).  

6. Tuning the complexity of the polynomial system by manipulating 
the number of measurements  

The left side of the polynomial equation which results during the last step 
of the process of obtaining a polynomial equation system: the eliminating the 
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common denominator [LCM(x1,…,xN, f1,…,FN )]4  of relation (31), is of the form 
(33) : 
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In the worst case, the less common multiple is the product of all 
denominators, (34): 
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and each equation (33) can be rewritten as (35): 
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Since the number of terms M is equal to the number of frequencies fi, used 
for measuring rm and xm (of zm= rm + j·xm), and in the worst case each 
supplementary frequency fM+1 (which increases the number of measurements to 
M+1) would add to the common denominator a new factor 
of [ ] [ ] [ ][ ]42

11
2

11
4

11 )...()...()...(  + = +++ MnMnMn , fx,, xD, fx,, xC, fx,, xG , each additional 
term/measurement would increase the total degree of each equation (35) with the 
degree of this polynomial, (36): 

deg(P)=maxm{deg(Fi(x1 , ... ,xN,, fm))}+4(M-1)·maxm deg[C(x1 , ... ,xN,, fm))2 + 
(D(x1 , ... ,xN, fm) ) 2]} (36)

This observation shows that tuning M, the number of measurements to be 
taken into account from a given set of measurements on a specific circuit, 
influence (increase/decrease) the total degree of the equations of the polynomial 
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system (35), when keeping unmodified the circuit, its mathematical model and the 
computing algorithms for solving the math problem associated to the extraction 
problem. The number of measurements M will be used in the next paragraph as a 
parameter in order to estimate the power of computing algorithms which can solve 
the mathematical problem, system (35), associated with the extraction problem. 

Evaluation of different symbolic algorithm implementations for 
polynomial equation system solving, using complexity tuning 

The particular form of the math equation system (35) for the extraction 
problem defined in section §0  showed that even for a simple circuit, Fig. 1, the 
size of the polynomial equation system imposed the use of a Math-CAD system 
for solving the math associated problem (see [4] where the resultant elimination 
resultant method was used). 

The Maple [1] and Singular [2] Math-CAD algebraic systems contain their 
own functions for computing the resultant of two polynomials and also for 
computing the Gröbner Basis of an ideal if a set of generators, the polynomials 
defining an equation system is given.  Based on these functions, two methods for 
variable elimination were implemented using each of these CAD systems, and 
their performances in symbolic computing were evaluated for the case of the 
circuit of figure Fig. 1.  

Resultant method 

Computing the symbolic expression of the resultant of two polynomials, 
[6], generates an additional equation for which one of the variables is eliminated. 
This basic elimination step can be used in a more general algorithm by applying it 
to any pair of two equations in order to obtain a triangular system, [4].  This 
system is then solved by using numerical routines to find the roots of the final 
polynomials of one variable and replacing them step by step, in a recursive way, 
the rest of the equations.  

For an initial system of two variables (the extraction problem described in 
section §0) an elimination step was required [4] (no variable elimination strategy 
for two variables) and the maximum number of measurements, M, for which the 
elimination could be made in a reasonable time was determined by tuning the 
complexity of the initial polynomial system, as shown in section §0. The 
determined maximal value for M was M=12, when using Maple [1] and also 
M=12, when using Singular [2].  
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Gröbner Basis method 

At least from a theoretical point of view, an alternate solution to the 
variable elimination part of the algorithm described in section §0 - Resultant 
method, is computing a Gröbner Basis with lexicographic ordering of monomials, 
i.e. an equivalent system having a quasi triangular form [7]. However, in the case 
of our system, computing a Gröbner Basis proved to be a too difficult task for 
both Maple’s [1] and Singular’s [2] intrinsic functions, if a reasonable number or 
measured value, M, were taken into account.  

Tuning the number of measurements, as shown in section §0, in order to 
reduce the complexity of the initial system under a limit that makes it solvable 
with a reasonable computational effort, showed, from a practical point of view, 
weaker computational performance than resultant method as M=3, when using 
Singular [2], and M=12 when using Maple [1]. 

 Maximum computation time was limited to ≈ 3 hours in both resultant 
and Gröbner Basis method and even if the maximal value of 12 for M remains the 
same when using the Maple’s [1] CAD system, the computing performance (in 
terms of computing time) was significantly superior with one order of magnitude 
when using the resultant method.  

7. Conclusions 

This paper analyses a symbolic method which uses symbolic computation 
to solve the math problem associated to the extraction problem, in the case of a 
linear circuit. The method is based on computing partial derivatives of the error 
function obtained with the least square method and generates an initial equation 
system of rational function which can be reduced to a polynomial equation 
system. This polynomial system is solved with a combined symbolic/numeric 
method based on the resultant method or the Gröbner basis method, [7], for 
variable elimination.  

The process of transforming the partial derivatives system consisting of 
rational functions in an initial polynomial equation functions, is described and the 
effect on the total degree of the resulting equations is analyzed.  

An important conclusion of this analysis is that, for the same extraction 
problem, the degree of the initial polynomial strongly depends on the number of 
measurements considered in the extraction problem. This gives a method of 
“tuning” the complexity of the associated math model and, for any particular 
extraction problem, it shows that it is possible to obtain an upper limit for the 
number of measurements taken into account, so that, below it, the variable 
elimination algorithm (included in the more general equation system solving 
method) ends properly. 
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Using the “complexity tuning method”, the extraction process for a 
particular circuit is analyzed, in particular the capability of using symbolic 
computations for polynomial system variable elimination. Evaluation of the 
computing power of existing implemented functions for calculating the resultant, 
[6] and the Gröbner basis with lexicographic monomial ordering, [7], in the case 
of two Math-CAD systems, shows that, in both cases, the implementation for the 
resultant function performs better than the implementation of the function which 
calculates a Gröbner basis.  

This might be interpreted as the consequence of the behavior of the classic 
Buchberger algorithm [7], probably used to the implementation of these intrinsic 
functions, because it has been shown, [7], [8], [10], that this algorithm can 
generate, as intermediate results, huge multivariate complex polynomials of 
degrees which can grow on a double exponential law with the degree of the input 
polynomials. 
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