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A THEORETICAL MODEL FOR WELDING PROCESS WITH 
GAUSSIAN HEAT SOURCE - PART. 1 

G. IACOBESCU* 

În procesul de sudare, cele mai interesante regiuni pentru analiza 
transferului de căldură sunt zona de topire şi zona influenţată termic unde se ating 
temperaturi ridicate. Acest nivel ridicat al temperaturii cauzează transformări de 
fază şi modificări ale proprietăţilor mecanice ale materialului sudat. Calculul 
pentru estimarea distribuţiei căldurii la sudarea cu treceri multiple este mai 
complex decât în procesul de sudare cu o singură trecere datărită efectelor termice 
create de o trecere peste cele precedente. Folosirea surselor de căldură distribuite 
previne valori ridicate ale temperaturii în aprecierea zonei de topire. Comparaţia 
arată că ciclurile termice obţinute din modelul de sursă de căldură distribuită 
(Gaussiană) sunt mai de încredere decât cele obţinute din modelul cu sursă de 
căldură concentrată. 

In the welding process, the most interesting regions for heat transfer analysis 
are the fusion zone (FZ) and the heat affected zone (HAZ), where high temperatures 
are reached. These high temperature levels cause phase transformations and 
alterations in the mechanical properties of the welded metal. The calculations to 
estimate the temperature distribution in multiple pass welding are more complex 
than in the single pass processes, due to superimposed thermal effects of one pass 
over the previous passes. The use of distributed heat source prevents infinite 
temperatures values near the fusion zone. The comparison shows that the thermal 
cycles obtained from the distributed (Gaussian) heat source model are more reliabe 
than those obtained from the concentrated heat source model. 

Key words: welding, gaussian, theoretical model, heat source. 

Introduction 

Most of the published works on heat transfer during welding processes 
consider that the heat source is concentrated in a very small volume of the 
material. After such consideration, analytical solutions are obtained assuming a 
point, a line or a plane heat source, as those proposed by Rosenthal (1941). 
However, measurements of temperatures in the fusion and heat affected zones 
differ significantly from the values provided by those solutions, since the 
singularity located at the source origin results in infinite temperature levels. These 
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concentrated source models present higher accuracy in regions where the 
temperature does not exceed twenty percent of the material melting point. 

In order to avoid the occurrence of unrealistic values at the center and in 
the vicinity of the fusion zone (FZ), it is more adequate to consider a distributed 
heat source in the model development. In reality, the heat souce is distributed in a 
finite region of the material, a fact most relevant to the assessment of temperatures 
near the FZ. There are several models for heat source distribution. The Gaussian 
distribution, firstly suggested by Pavelic et al. (1969), is the most used. Although 
solutions considering distributed heat sources can be reached both analytically and 
numerically, there is an increasing tendency to use numerical methods. This work 
presents a new theoretical solution to estimate temperature field in multipass 
welding, as generated by Gaussian heat sources. The solutions were obtained from 
the known forms for the multipass welding, for point heat sources.  

Theoretical model 

In the one-dimensional model, the heat flux is considered to occur only in 
the y direction, as shown in the coordinate system of Fig. 1 The following 
assumptions are made: the heat source moves at a sufficiently high speed (to 
neglect heat flux in the x direction), and each weld pass fulfills the whole etched 
groove (no heat flux in the z direction).  

 
 
 
 
 
 
 
 
 
  
 
 
 

Fig. 1. Coordinate system used in the model. 
 

The formulation of the problem to the first weld pass is made up by the 
one-dimensional transient heat conduction equation, and its boundary and initial 
conditions. It is similar to the formulation of the point heat source problem. In 
terms of  θ , it is [4]: 
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where: 
T = temperature, (oC); T0 = ambient temperature, (oC)  
θ  ( 0TT −=θ ) = temperature difference, (oC); t = time, (s) 
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Q1 = thermal energy per unit area, (J/m2); a = thermal diffusivity weld metal, 
(m2/s); ρ  = density of weld metal, (kg/m3); c = specific heat weld metal, (J/kgoC);  
δ = dimension less plate thickness, (m) 

The thermal diffusivity is related to the thermal conductivity λ and the 
volume heat capacity cρ  through the following equation: ca ρλ /= . 

The solution of this problem is known [1, 4], and it is expressed by: 
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To take into account the distribution of the heat source, please refer to  
Fig. 2, where a source with normal or Gaussian distribution is instantaneously at   
t = 0 to the surface of a plate. The center P of the source coincides with the origin 
O of the coordinate system xyz. The total power of the source is given by: 
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where: 
Q = total power of the source (W) 
qs(y) = power density of distributed (Gaussian) heat source (W/m) 
In the one-dimensional case, the Gaussian distribution of the heat source 

along the y direction occurs simultaneously at all points of the x direction of 
welding. The power qs(y) can be expressed by: 

( ) ( )2exp kyqyq ms −=              (7) 
where: qm = maximum intensity of distributed (Gaussian) heat source (W/m) 
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qs(y)

k = coefficient of arc concentration (m-1); ( ) ='ydqs infinitesimal heat source (W) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Gaussian heat source. 
 

Coefficient k is determined considering a distance yb in Eq. (7), wich 
corresponds to the distance from the origin to the location where the power is 
reduced to five percent of its maximum value (Fig. 2). Thus, 

2

3

by
k =               (8) 

When yb is large, qs(y) decreases slowly with y. Substituting Eq. (8) in Eq. 
(7) and then in Eq. (6), and integrating this equation between (–yb) and (yb) limits, 
one obtains [5,6]: 
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Equation (7) may then be written as: 
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The diffusion process of an instantaneous Gaussian heat source applied to 
the surface of the material can be obtained by the source method. Let the y 
coordinate, along which the heat source varies, be divided in small elements dy. 
The heat dQ = qs(y)dy is supplied to the element dy at t = 0, and can be regarded 

+yb 

Y’

dqs(y’) 

P

qm 

-yb dy’-y 

x

+y 

z 



A theoretical model for welding process with gaussian heat source – Part. 1 

 

49

as an instantaneous point heat source. According to Eq. (5), the difussion process 
to an instantaneous heat source is: 
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Where d is the distance between the instantaneous source and a point 
located on the y axis, that is, 

( )22 `yyd −=             (13) 
Substituting Eqs. (11) and (13) in Eq. (12) there results: 
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By the superposition principle, the temperature change in the y point can 
be obtained by summing the contributions of all instantaneous concentrated 
sources dQ, acting along the y coordinate of the material, between –yb and yb 
points: 
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Solving the integral and rearranging the solution, one obtains[1] : 
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Equation (16) is the solution to the first weld pass, regarding the input of a 
heat source with Gaussian distribution. The solution to the second pass is obtained 
from the point heat source solution (Suzuki, 1996): 
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In Eq. (17), it can be observed that the t variable was displaced by a value 
tp, which corresponds to the sum of the welding and waiting times to the 
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beginning of the second pass. The use of indices 1 and 2 in the qs variable is for 
possible and sought variations of the heat input between passes. The same steps 
applied to obtain Eq. (16) are used to reach the solution for the second pass, and 
so on. Analogously, the general solution to n passes, in terms of T, is given by [2]: 
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Conclusions 

Equation (18) is the solution to the temperature distribution in one-
dimensional multipass welding processes, supplied by Gaussian heat sources. Far 
from the heat source, i.e., for distances where y is of the same magnitude as yb, 
Eq. (17) is similar to the solution obtained for the point heat source. However, 
near the FZ and HAZ (y<<yb), the correction introduced by the distributed heat 
source approach in Eq. (18) allows to better predicting the temperatures in these 
regions. 
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