
U.P.B. Sci. Bull., Series A, Vol. 82, Iss. 1, 2020 ISSN 1223-7027

ON THE ESTIMATES OF WARPING FUNCTIONS ON ISOMETRIC

IMMERSIONS

Kwang-Soon Park1

Using the results of [11], we get some estimates of warping functions for isomet-
ric immersions by changing the target manifolds by some types of Riemannian manifolds:

constant space forms and Hermitian symmetric spaces. We deal with equality cases and

obtain applications. Finally, we present some open problems.
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1. Introduction

Let (B, gB) and (F, gF ) be Riemannian manifolds. Given a warped product manifold
M = B ×f F with a warping function f (See [11]), we can consider an isometric immersion

ψ : M 7→ (M, g), where (M, g) is a Riemannian manifold.
In 2018, B. Y. Chen [5] proposed two Fundamental Questions on the isometric im-

mersion ψ : M 7→ (M, g), where (M, g) is a Kähler manifold and gave some recent results
on these problems.

In 2014, as a generalization of Chen’s works ([3],[4]), the author [11] obtained two

inequalities, which give the upper bound and the lower bound of the function 4f
f . Re-

placing the Riemannian manifold (M, g) with several types of Riemannian manifolds (i.e.,
real space forms, complex space forms, quaternionic space forms, Sasakian space forms,
Kenmotsu space forms, Hermitian symmetric spaces: complex two-plane Grassmannians,
complex hyperbolic two-plane Grassmannians, complex quadrics), we will obtain the upper

bounds and the lower bounds of the functions 4ff . And by using these results, we will get

some equality cases of these relations and obtain their applications.
We also know that warped product manifolds take an important position in differential

geometry and in physics, in particular in general relativity. And Nash’s result [9] implies
that each warped product manifold can be isometrically embedded in a Euclidean space.

The paper is organized as follows. In section 2 we recall some notions, which will be
used in the following sections. In section 3 we estimate the upper bounds and the lower
bounds of the functions 4ff for constant space forms (M, g) and have some equality cases

and their applications. In section 4 we do the works for Hermitian symmetric spaces (M, g).
In section 5 we present some open problems.

2. Preliminaries

In this section we recall some notions, which will be used in the following sections.
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Let (M, g) be an n-dimensional Riemannian manifold and let M be an m-dimensional
submanifold of (M, g). We denote by ∇ and ∇ the Levi-Civita connections of M and M ,
respectively.

Then we get the Gauss formula and the Weingarten formula

∇XY = ∇XY + h(X,Y ), (1)

∇XN = −ANX +DXN, (2)

respectively, for tangent vector fields X,Y ∈ Γ(TM) and a normal vector field N ∈ Γ(TM⊥),
where h, A, D denote the second fundamental form, the shape operator, and the normal
connection of M in M , respectively.

Then we know

g(ANX,Y ) = g(h(X,Y ), N). (3)

Fix a local orthonormal frame {v1, · · · , vn} of TM with vi ∈ Γ(TM), 1 ≤ i ≤ m and
vα ∈ Γ(TM⊥), m + 1 ≤ α ≤ n. We define the mean curvature vector field H, the squared
mean curvature H2, the squared norm ||h||2 of the second fundamental form h as follows:

H =
1

m
traceh =

1

m

m∑
i=1

h(vi, vi), (4)

H2 = g(H,H), (5)

||h||2 =

m∑
i,j=1

g(h(vi, vj), h(vi, vj)). (6)

We call the submanifold M ⊂ (M, g) totally geodesic if the second fundamental form h van-
ishes identically. Denote by R, R the Riemannian curvature tensors of M , M , respectively.

Let

K(X ∧ Y ) :=
g(R(X,Y )Y,X)

g(X,X)g(Y, Y )− g(X,Y )2
,

K(X ∧ Y ) :=
g(R(X,Y )Y,X)

g(X,X)g(Y, Y )− g(X,Y )2

for X,Y ∈ Γ(TM), where g denotes the induced metric on M of (M, g). i.e., given a
plane V ⊂ TpM , p ∈ M , spanned by the vectors X,Y ∈ TpM , K(V ) = K(X ∧ Y ) and

K(V ) = K(X∧Y ) denote the sectional curvatures of a plane V in M and in M , respectively.
Let

(inf K)(p) := inf{K(V ) | V ⊂ TpM,dimV = 2}, (7)

(supK)(p) := sup{K(V ) | V ⊂ TpM,dimV = 2}. (8)

Let R(X,Y, Z,W ) := g(R(X,Y )Z,W ) for X,Y, Z,W ∈ Γ(TM).
Given a C∞−function f ∈ C∞(M), we define the Laplacian 4f of f by

4f :=

m∑
i=1

((∇vivi)f − v2i f).

Let (B, gB) and (F, gF ) be Riemannian manifolds.
Throughout this paper, we will denote by (M, g) := (B ×f F, gB + f2gF ) the warped

product manifold of Riemannian manifolds (B, gB) and (F, gF ) with the warping function
f : B 7→ R+ (See [11]).

By Theorem 3.1, Theorem 3.4, and their proofs of [11], we have
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Lemma 2.1. Let (M, g) = (B×f F, gB+f2gF ) be a warped product manifold and let (M, g)

be a Riemannian manifold. Let ψ : (M, g) 7→ (M, g) be an isometric immersion. Then we
get

m1m
2

2(m− 1)
H2 − m1

2
||h||2 +m1 inf K ≤ 4f

f
≤ m2

4m2
H2 +m1 supK, (9)

where m1 = dimB, m2 = dimF and m = m1 +m2.

3. Constant space forms

In this section, we will estimate the functions 4ff for isometric immersions ψ :

(M, g) = (B ×f F, gB + f2gF ) 7→ (M, g) with constant space forms (M, g). We also deal
with equality cases and obtain their applications.

Using Lemma 2.1, we obtain

Theorem 3.1. Let (M, g) = (B×fF, gB+f2gF ) be a warped product manifold and (M, g) =

(M(c), g) a real space form of constant sectional curvature c. Let ψ : (M, g) 7→ (M, g) be an
isometric immersion. Then we have

m1m
2

2(m− 1)
H2 − m1

2
||h||2 +m1c ≤

4f
f
≤ m2

4m2
H2 +m1c, (10)

where m1 = dimB, m2 = dimF and m = m1 +m2.

Proof. We know that the Riemannian curvature tensor R [8] of (M, g) is given by

R(X,Y )Z = c(g(Y, Z)X − g(X,Z)Y ) (11)

for X,Y, Z ∈ Γ(TM). Since inf K = supK = c, by Lemma 2.1, we get the result. �

Then we easily obtain

Corollary 3.1. Let (M, g) = (B×fF, gB+f2gF ) be a warped product manifold and (M, g) =

(M(c), g) a real space form of constant sectional curvature c. Let ψ : (M, g) 7→ (M, g) be an
isometric immersion. Assume that the manifold (M, g) is a totally geodesic submanifold of
(M, g). Then we get

m1c ≤
4f
f
≤ m1c .

Remark 3.1. Let (M, g) = (B×f F, gB+f2gF ) be a warped product manifold and (M, g) =

(M(c), g) a real space form of constant sectional curvature c. Let ψ : (M, g) 7→ (M, g) be an
isometric immersion. Assume that the manifold (M, g) is a totally geodesic submanifold of
(M, g). Then the warping function f is an eigen-function with eigenvalue m1c.

In particular, if c = 0 (i.e., (M, g) is a Euclidean space En.), then the warping
function f is a harmonic function.

Lemma 3.1. Let (M, g) = (B×f F, gB + f2gF ) be a warped product manifold and (M, g) =

(M(c), g) a real space form of constant sectional curvature c. Let ψ : (M, g) 7→ (M, g) be an
isometric immersion.

There does not exist a totally geodesic submanifold (M, g) of (M, g) such that either
the warping function f is not an eigen-function or the eigenvalue of f is not equal to m1c.

Theorem 3.2. Let (M, g) = (B×fF, gB+f2gF ) be a warped product manifold and (M, g) =

(M(c), g, J) a complex space form of constant holomorphic sectional curvature c. Let ψ :
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(M, g) 7→ (M, g) be an isometric immersion. Then we have

m1m
2

2(m− 1)
H2 − m1

2
||h||2 +m1

c

4
≤ 4f

f
≤ m2

4m2
H2 +m1c, c ≥ 0, (12)

m1m
2

2(m− 1)
H2 − m1

2
||h||2 +m1c ≤

4f
f
≤ m2

4m2
H2 +m1

c

4
, c < 0, (13)

where m1 = dimB, m2 = dimF and m = m1 +m2.

Proof. The Riemannian curvature tensor R [8] of (M, g) is given by

R(X,Y )Z (14)

=
c

4
(g(Y, Z)X − g(X,Z)Y + g(JY, Z)JX − g(JX,Z)JY − 2g(JX, Y )JZ)

for X,Y, Z ∈ Γ(TM). Given orthonormal vectors X,Y ∈ TpM , p ∈M , we get

K(X ∧ Y ) = R(X,Y, Y,X) =
c

4
(1 + 3g(JX, Y )2) (15)

so that since 0 ≤ |g(JX, Y )| ≤ 1, we easily obtain

c

4
≤ K(X ∧ Y ) ≤ c, c ≥ 0,

c ≤ K(X ∧ Y ) ≤ c

4
, c < 0.

From Lemma 2.1, the result follows. �

Corollary 3.2. Let (M, g) = (B×fF, gB+f2gF ) be a warped product manifold and (M, g) =

(M(c), g, J) a complex space form of constant holomorphic sectional curvature c. Let ψ :
(M, g) 7→ (M, g) be an isometric immersion. Assume that the manifold (M, g) is a totally
geodesic totally real submanifold of (M, g) (i.e., J(TM) ⊂ TM⊥).

Then we have

m1
c

4
≤ 4f

f
≤ m1

c

4
.

Proof. By Lemma 2.1 and (15), we obtain the result. �

Remark 3.2. Let (M, g) = (B×f F, gB+f2gF ) be a warped product manifold and (M, g) =

(M(c), g, J) a complex space form of constant holomorphic sectional curvature c. Let ψ :
(M, g) 7→ (M, g) be an isometric immersion. Assume that the manifold (M, g) is a totally
geodesic totally real submanifold of (M, g).

Then the warping function f is an eigen-function with eigenvalue m1c
4 .

Lemma 3.2. Let (M, g) = (B×f F, gB + f2gF ) be a warped product manifold and (M, g) =

(M(c), g, J) a complex space form of constant holomorphic sectional curvature c. Let ψ :
(M, g) 7→ (M, g) be an isometric immersion.

There does not exist a totally geodesic totally real submanifold (M, g) of (M, g) such
that either the warping function f is not an eigen-function or the eigenvalue of f is not
equal to m1c

4 .

Corollary 3.3. Let (M, g) = (B×fF, gB+f2gF ) be a warped product manifold and (M, g) =

(M(c), g, J) a complex space form of constant holomorphic sectional curvature c. Let ψ :
(M, g) 7→ (M, g) be an isometric immersion. Assume that the manifold (M, g) is a 2-
dimensional totally geodesic complex submanifold of (M, g) (i.e., J(TM) = TM).

Then we have

m1c ≤
4f
f
≤ m1c.
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Remark 3.3. Let (M, g) = (B×f F, gB+f2gF ) be a warped product manifold and (M, g) =

(M(c), g, J) a complex space form of constant holomorphic sectional curvature c. Let ψ :
(M, g) 7→ (M, g) be an isometric immersion. Assume that the manifold (M, g) is a 2-
dimensional totally geodesic complex submanifold of (M, g).

Then the warping function f is an eigen-function with eigenvalue m1c.

Lemma 3.3. Let (M, g) = (B×f F, gB + f2gF ) be a warped product manifold and (M, g) =

(M(c), g, J) a complex space form of constant holomorphic sectional curvature c. Let ψ :
(M, g) 7→ (M, g) be an isometric immersion.

There does not exist a 2-dimensional totally geodesic complex submanifold (M, g) of
(M, g) such that either the warping function f is not an eigen-function or the eigenvalue of
f is not equal to m1c.

Theorem 3.3. Let (M, g) = (B×fF, gB+f2gF ) be a warped product manifold and (M, g) =

(M(c), E, g) a quaternionic space form of constant quaternionic sectional curvature c. Let
ψ : (M, g) 7→ (M, g) be an isometric immersion. Then we obtain

m1m
2

2(m− 1)
H2 − m1

2
||h||2 +m1

c

4
≤ 4f

f
≤ m2

4m2
H2 +m1c, c ≥ 0, (16)

m1m
2

2(m− 1)
H2 − m1

2
||h||2 +m1c ≤

4f
f
≤ m2

4m2
H2 +m1

c

4
, c < 0, (17)

where m1 = dimB, m2 = dimF and m = m1 +m2.

Proof. We know that the Riemannian curvature tensor R [6] of (M, g) is given by

R(X,Y )Z =
c

4
(g(Y,Z)X − g(X,Z)Y (18)

+

3∑
α=1

(g(JαY, Z)JαX − g(JαX,Z)JαY − 2g(JαX,Y )JαZ))

for X,Y, Z ∈ Γ(TM). Given orthonormal vectors X,Y ∈ TpM , p ∈M , we have

K(X ∧ Y ) = R(X,Y, Y,X) =
c

4
(1 + 3

3∑
α=1

g(JαX,Y )2). (19)

Since {J1X, J2X, J3X} is orthonormal, we get 0 ≤
∑3
α=1 g(JαX,Y )2 ≤ |Y |2 = 1 so that

c

4
≤ K(X ∧ Y ) ≤ c, c ≥ 0,

c ≤ K(X ∧ Y ) ≤ c

4
, c < 0.

From Lemma 2.1, we obtain the result. �

Corollary 3.4. Let (M, g) = (B×fF, gB+f2gF ) be a warped product manifold and (M, g) =

(M(c), E, g) a quaternionic space form of constant quaternionic sectional curvature c. Let
ψ : (M, g) 7→ (M, g) be an isometric immersion. Assume that the manifold (M, g) is a
totally geodesic totally real submanifold of (M, g) (i.e., Jα(TM) ⊂ TM⊥, ∀α ∈ {1, 2, 3}).

Then we have

m1
c

4
≤ 4f

f
≤ m1

c

4
.

Proof. By Lemma 2.1 and (19), we obtain the result. �

Lemma 3.4. Let (M, g) = (B×f F, gB + f2gF ) be a warped product manifold and (M, g) =

(M(c), E, g) a quaternionic space form of constant quaternionic sectional curvature c. Let
ψ : (M, g) 7→ (M, g) be an isometric immersion.
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There does not exist a totally geodesic totally real submanifold (M, g) of (M, g) such
that either the warping function f is not an eigen-function or the eigenvalue of f is not
equal to m1c

4 .

Corollary 3.5. Let (M, g) = (B×fF, gB+f2gF ) be a warped product manifold and (M, g) =

(M(c), E, g) a quaternionic space form of constant quaternionic sectional curvature c. Let
ψ : (M, g) 7→ (M, g) be an isometric immersion. Assume that the manifold (M, g) is a
4-dimensional totally geodesic quaternionic submanifold of (M, g) (i.e., Jα(TM) = TM ,
∀α ∈ {1, 2, 3}).

Then we have

m1c ≤
4f
f
≤ m1c.

Lemma 3.5. Let (M, g) = (B×f F, gB + f2gF ) be a warped product manifold and (M, g) =

(M(c), E, g) a quaternionic space form of constant quaternionic sectional curvature c. Let
ψ : (M, g) 7→ (M, g) be an isometric immersion.

There does not exist a 4-dimensional totally geodesic quaternionic submanifold (M, g)
of (M, g) such that either the warping function f is not an eigen-function or the eigenvalue
of f is not equal to m1c.

Theorem 3.4. Let (M, g) = (B×fF, gB+f2gF ) be a warped product manifold and (M, g) =

(M(c), φ, ξ, η, g) a Sasakian space form of constant φ-sectional curvature c. Let ψ : (M, g) 7→
(M, g) be an isometric immersion. Then we obtain

m1m
2

2(m− 1)
H2 − m1

2
||h||2 +m1 ≤

4f
f
≤ m2

4m2
H2 +m1c, c ≥ 1, (20)

m1m
2

2(m− 1)
H2 − m1

2
||h||2 +m1c ≤

4f
f
≤ m2

4m2
H2 +m1, c < 1, (21)

where m1 = dimB, m2 = dimF and m = m1 +m2.

Proof. We see that the Riemannian curvature tensor R [10] of (M, g) is given by

R(X,Y )Z =
c+ 3

4
(g(Y, Z)X − g(X,Z)Y ) (22)

+
c− 1

4
(η(X)η(Z)Y − η(Y )η(Z)X + η(Y )g(X,Z)ξ − η(X)g(Y,Z)ξ

+g(φY,Z)φX − g(φX,Z)φY − 2g(φX, Y )φZ)

for X,Y, Z ∈ Γ(TM). Given orthonormal vectors X,Y ∈ TpM , p ∈M , we have

K(X ∧ Y ) = R(X,Y, Y,X) =
c+ 3

4
+
c− 1

4
(−η(Y )2 − η(X)2 + 3g(φX, Y )2). (23)

If ξ ∈ Span(X,Y ), then −η(Y )2−η(X)2+3g(φX, Y )2 = −1. If Y = φX and η(X) = 0, then
−η(Y )2 − η(X)2 + 3g(φX, Y )2 = 3. Hence we get −1 ≤ −η(Y )2 − η(X)2 + 3g(φX, Y )2 ≤ 3
so that

1 ≤ K(X ∧ Y ) ≤ c, c ≥ 1,

c ≤ K(X ∧ Y ) ≤ 1, c < 1.

From Lemma 2.1, the result follows. �

Corollary 3.6. Let (M, g) = (B×fF, gB+f2gF ) be a warped product manifold and (M, g) =

(M(c), φ, ξ, η, g) a Sasakian space form of constant φ-sectional curvature c. Let ψ : (M, g) 7→
(M, g) be an isometric immersion. Assume that the manifold (M, g) is a totally geodesic
φ-totally real submanifold of (M, g) with ξ ∈ Γ(TM⊥) (i.e., φ(TM) ⊂ TM⊥).
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Then we get

m1
c+ 3

4
≤ 4f

f
≤ m1

c+ 3

4
.

Proof. By Lemma 2.1 and (23), we obtain the result. �

Lemma 3.6. Let (M, g) = (B×f F, gB + f2gF ) be a warped product manifold and (M, g) =

(M(c), φ, ξ, η, g) a Sasakian space form of constant φ-sectional curvature c. Let ψ : (M, g) 7→
(M, g) be an isometric immersion.

There does not exist a totally geodesic φ-totally real submanifold (M, g) of (M, g) such
that either the warping function f is not an eigen-function or the eigenvalue of f is not equal

to m1(c+3)
4 .

Corollary 3.7. Let (M, g) = (B×fF, gB+f2gF ) be a warped product manifold and (M, g) =

(M(c), φ, ξ, η, g) a Sasakian space form of constant φ-sectional curvature c. Let ψ : (M, g) 7→
(M, g) be an isometric immersion. Assume that the manifold (M, g) is a 2-dimensional
totally geodesic submanifold of (M, g) with ξ ∈ Γ(TM).

Then we get

m1 · 1 ≤
4f
f
≤ m1 · 1.

Lemma 3.7. Let (M, g) = (B×f F, gB + f2gF ) be a warped product manifold and (M, g) =

(M(c), φ, ξ, η, g) a Sasakian space form of constant φ-sectional curvature c. Let ψ : (M, g) 7→
(M, g) be an isometric immersion.

There does not exist a 2-dimensional totally geodesic submanifold (M, g) of (M, g)
with ξ ∈ Γ(TM) such that either the warping function f is not an eigen-function or the
eigenvalue of f is not equal to m1.

Corollary 3.8. Let (M, g) = (B×fF, gB+f2gF ) be a warped product manifold and (M, g) =

(M(c), φ, ξ, η, g) a Sasakian space form of constant φ-sectional curvature c. Let ψ : (M, g) 7→
(M, g) be an isometric immersion. Assume that the manifold (M, g) is a 2-dimensional
totally geodesic φ-invariant submanifold of (M, g) with ξ ∈ Γ(TM⊥) (i.e., φ(TM) = TM).

Then we have

m1c ≤
4f
f
≤ m1c.

Lemma 3.8. Let (M, g) = (B×f F, gB + f2gF ) be a warped product manifold and (M, g) =

(M(c), φ, ξ, η, g) a Sasakian space form of constant φ-sectional curvature c. Let ψ : (M, g) 7→
(M, g) be an isometric immersion.

There does not exist a 2-dimensional totally geodesic φ-invariant submanifold (M, g)
of (M, g) with ξ ∈ Γ(TM⊥) such that either the warping function f is not an eigen-function
or the eigenvalue of f is not equal to m1c.

Theorem 3.5. Let (M, g) = (B ×f F, gB + f2gF ) be a warped product manifold and

(M, g) = (M(c), φ, ξ, η, g) a Kenmotsu space form of constant φ-sectional curvature c. Let
ψ : (M, g) 7→ (M, g) be an isometric immersion. Then we obtain

m1m
2

2(m− 1)
H2 − m1

2
||h||2 −m1 ≤

4f
f
≤ m2

4m2
H2 +m1c, c ≥ −1, (24)

m1m
2

2(m− 1)
H2 − m1

2
||h||2 +m1c ≤

4f
f
≤ m2

4m2
H2 −m1, c < −1, (25)

where m1 = dimB, m2 = dimF and m = m1 +m2.
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Proof. We know that the Riemannian curvature tensor R [7] of (M, g) is given by

R(X,Y )Z =
c− 3

4
(g(Y, Z)X − g(X,Z)Y ) (26)

+
c+ 1

4
(η(X)η(Z)Y − η(Y )η(Z)X + η(Y )g(X,Z)ξ − η(X)g(Y,Z)ξ

+g(φY,Z)φX − g(φX,Z)φY − 2g(φX, Y )φZ)

for X,Y, Z ∈ Γ(TM). Given orthonormal vectors X,Y ∈ TpM , p ∈M , we have

K(X ∧ Y ) = R(X,Y, Y,X) =
c− 3

4
+
c+ 1

4
(−η(Y )2 − η(X)2 + 3g(φX, Y )2) (27)

so that since −1 ≤ −η(Y )2 − η(X)2 + 3g(φX, Y )2 ≤ 3, we get

−1 ≤ K(X ∧ Y ) ≤ c, c ≥ −1,

c ≤ K(X ∧ Y ) ≤ −1, c < −1.

From Lemma 2.1, we obtain the result. �

Corollary 3.9. Let (M, g) = (B ×f F, gB + f2gF ) be a warped product manifold and

(M, g) = (M(c), φ, ξ, η, g) a Kenmotsu space form of constant φ-sectional curvature c. Let
ψ : (M, g) 7→ (M, g) be an isometric immersion. Assume that the manifold (M, g) is a
2-dimensional totally geodesic submanifold of (M, g) with ξ ∈ Γ(TM).

Then we get

m1 · (−1) ≤ 4f
f
≤ m1 · (−1).

Lemma 3.9. Let (M, g) = (B×f F, gB + f2gF ) be a warped product manifold and (M, g) =

(M(c), φ, ξ, η, g) a Kenmotsu space form of constant φ-sectional curvature c. Let ψ : (M, g) 7→
(M, g) be an isometric immersion.

There does not exist a 2-dimensional totally geodesic submanifold (M, g) of (M, g)
with ξ ∈ Γ(TM) such that either the warping function f is not an eigen-function or the
eigenvalue of f is not equal to −m1.

Corollary 3.10. Let (M, g) = (B ×f F, gB + f2gF ) be a warped product manifold and

(M, g) = (M(c), φ, ξ, η, g) a Kenmotsu space form of constant φ-sectional curvature c. Let
ψ : (M, g) 7→ (M, g) be an isometric immersion. Assume that the manifold (M, g) is a
2-dimensional totally geodesic φ-invariant submanifold of (M, g) with ξ ∈ Γ(TM⊥) (i.e.,
φ(TM) = TM).

Then we get

m1c ≤
4f
f
≤ m1c.

Lemma 3.10. Let (M, g) = (B×f F, gB+f2gF ) be a warped product manifold and (M, g) =

(M(c), φ, ξ, η, g) a Kenmotsu space form of constant φ-sectional curvature c. Let ψ : (M, g) 7→
(M, g) be an isometric immersion.

There does not exist a 2-dimensional totally geodesic φ-invariant submanifold (M, g)
of (M, g) with ξ ∈ Γ(TM⊥) such that either the warping function f is not an eigen-function
or the eigenvalue of f is not equal to m1c.

Corollary 3.11. Let (M, g) = (B ×f F, gB + f2gF ) be a warped product manifold and

(M, g) = (M(c), φ, ξ, η, g) a Kenmotsu space form of constant φ-sectional curvature c. Let
ψ : (M, g) 7→ (M, g) be an isometric immersion. Assume that the manifold (M, g) is a totally
geodesic φ-totally real submanifold of (M, g) with ξ ∈ Γ(TM⊥) (i.e., φ(TM) ⊂ TM⊥).

Then we have

m1
c− 3

4
≤ 4f

f
≤ m1

c− 3

4
.
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Lemma 3.11. Let (M, g) = (B×f F, gB+f2gF ) be a warped product manifold and (M, g) =

(M(c), φ, ξ, η, g) a Kenmotsu space form of constant φ-sectional curvature c. Let ψ : (M, g) 7→
(M, g) be an isometric immersion.

There does not exist a totally geodesic φ-totally real submanifold (M, g) of (M, g)
with ξ ∈ Γ(TM⊥) such that either the warping function f is not an eigen-function or the

eigenvalue of f is not equal to m1(c−3)
4 .

4. Hermitian symmetric spaces

Theorem 4.1. Let (M, g) = (B×fF, gB+f2gF ) be a warped product manifold and (M, g) =
G2(Cm+2) = SUm+2/S(UmU2) the complex two-plane Grassmannian. Let ψ : (M, g) 7→
(M, g) be an isometric immersion. Then we have

m1m
2

2(m− 1)
H2 − m1

2
||h||2 −m1 ≤

4f
f
≤ m2

4m2
H2 + 8m1, (28)

where m1 = dimB, m2 = dimF and m = m1 +m2.

Proof. The Riemannian curvature tensor R [12] of (M, g) is given by

R(X,Y )Z = g(Y, Z)X − g(X,Z)Y (29)

+g(JY, Z)JX − g(JX,Z)JY − 2g(JX, Y )JZ

+

3∑
α=1

(g(JαY, Z)JαX − g(JαX,Z)JαY − 2g(JαX,Y )JαZ)

+

3∑
α=1

(g(JαJY, Z)JαJX − g(JαJX,Z)JαJY )

for X,Y, Z ∈ Γ(TM). Given orthonormal vectors X,Y ∈ TpM , p ∈M , we get

K(X ∧ Y ) = R(X,Y, Y,X) = 1 + 3g(JX, Y )2 (30)

+

3∑
α=1

(3g(JαX,Y )2 + g(JαJY, Y )g(JαJX,X)− g(JαJX, Y )2).

With simple computations, we obtain
g(JX, Y )2 ≤ |JX|2|Y |2 = 1,
3∑

α=1

g(JαX,Y )2 ≤ |Y |2 = 1 (since {J1X, J2X,J3X} is orthonormal),

|
3∑

α=1

g(JαJY, Y )g(JαJX,X)| ≤

√√√√ 3∑
α=1

g(JαJY, Y )2 ·

√√√√ 3∑
α=1

g(JαJX,X)2

≤
√
|Y |2

√
|X|2 = 1

(by Cauchy-Schwarz inequality and since {J1JY, J2JY, J3JY } and {J1JX, J2JX, J3JX}
are orthonormal)

⇒ −1 ≤
3∑

α=1

g(JαJY, Y )g(JαJX,X) ≤ 1,

3∑
α=1

g(JαJX, Y )2 ≤ |Y |2 = 1 (since {J1JX, J2JX, J3JX} is orthonormal).

By using the above relations, we obtain

K(X ∧ Y ) ≤ 1 + 3 · 1 + 3 · 1 + 1 = 8. (31)
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On the other hand, by the above relations, we have

K(X ∧ Y ) ≥ 1 +

3∑
α=1

(g(JαJY, Y )g(JαJX,X)− g(JαJX, Y )2) (32)

≥ 1− 1− 1 = −1.

From Lemma 2.1, by using (31) and (32), the result follows. �

Remark 4.1. Choose orthonormal vectors X,Y ∈ TpM , p ∈ M such that Y = JX and X
is a singular vector, i.e., conveniently, JX = J1X (See [1]). From (30), we get

K(X ∧ Y ) = 1 + 3 + 3 + 1 + 0 = 8.

So, the upper bound of the function K(X ∧ Y ) is rigid.

Corollary 4.1. Let (M, g) = (B×fF, gB+f2gF ) be a warped product manifold and (M, g) =
G2(Cm+2) = SUm+2/S(UmU2) the complex two-plane Grassmannian. Let ψ : (M, g) 7→
(M, g) be an isometric immersion. Assume that the manifold (M, g) is a 2-dimensional
totally geodesic J-invariant submanifold of (M, g) with a singular vector field X ∈ Γ(TM)
(i.e., J(TM) = TM).

Then we get

m1 · 8 ≤
4f
f
≤ m1 · 8.

Proof. By Lemma 2.1 and (30), we obtain the result. �

Lemma 4.1. Let (M, g) = (B×f F, gB + f2gF ) be a warped product manifold and (M, g) =
G2(Cm+2) = SUm+2/S(UmU2) the complex two-plane Grassmannian. Let ψ : (M, g) 7→
(M, g) be an isometric immersion.

There does not exist a 2-dimensional totally geodesic J-invariant submanifold (M, g)
of (M, g) with a singular vector field X ∈ Γ(TM) such that either the warping function f is
not an eigen-function or the eigenvalue of f is not equal to 8m1.

Theorem 4.2. Let (M, g) = (B×fF, gB+f2gF ) be a warped product manifold and (M, g) =

SU2,m/S(U2 ·Um) the complex hyperbolic two-plane Grassmannian. Let ψ : (M, g) 7→ (M, g)
be an isometric immersion. Then we obtain

m1m
2

2(m− 1)
H2 − m1

2
||h||2 − 4m1 ≤

4f
f
≤ m2

4m2
H2 +

1

2
m1, (33)

where m1 = dimB, m2 = dimF and m = m1 +m2.

Proof. We know that the Riemannian curvature tensor R [12] of (M, g) is given by

R(X,Y )Z = −1

2
(g(Y,Z)X − g(X,Z)Y (34)

+g(JY, Z)JX − g(JX,Z)JY − 2g(JX, Y )JZ

+

3∑
α=1

(g(JαY, Z)JαX − g(JαX,Z)JαY − 2g(JαX,Y )JαZ)

+

3∑
α=1

(g(JαJY, Z)JαJX − g(JαJX,Z)JαJY ))

for X,Y, Z ∈ Γ(TM).
Hence, in a similar way with Theorem 4.1, we easily get the result. �
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Remark 4.2. We choose orthonormal vectors X,Y ∈ TpM , p ∈ M , such that Y = JX
and X is a singular vector. i.e., conveniently, JX = J1X (See [2]). In a similar way with
Remark 4.1, we obtain

K(X ∧ Y ) = −4.

So, the lower bound of the function K(X ∧ Y ) is rigid.

Corollary 4.2. Let (M, g) = (B×fF, gB+f2gF ) be a warped product manifold and (M, g) =

SU2,m/S(U2 ·Um) the complex hyperbolic two-plane Grassmannian. Let ψ : (M, g) 7→ (M, g)
be an isometric immersion. Assume that the manifold (M, g) is a 2-dimensional totally
geodesic J-invariant submanifold of (M, g) with a singular vector field X ∈ Γ(TM).

Then we get

m1 · (−4) ≤ 4f
f
≤ m1 · (−4).

Lemma 4.2. Let (M, g) = (B×f F, gB + f2gF ) be a warped product manifold and (M, g) =

SU2,m/S(U2 ·Um) the complex hyperbolic two-plane Grassmannian. Let ψ : (M, g) 7→ (M, g)
be an isometric immersion.

There does not exist a 2-dimensional totally geodesic J-invariant submanifold (M, g)
of (M, g) with a singular vector field X ∈ Γ(TM) such that either the warping function f is
not an eigen-function or the eigenvalue of f is not equal to −4m1.

Theorem 4.3. Let (M, g) = (B×fF, gB+f2gF ) be a warped product manifold and (M, g) =

Qm = SOm+2/SOmSO2 the complex quadric. Let ψ : (M, g) 7→ (M, g) be an isometric
immersion. Then we get

m1m
2

2(m− 1)
H2 − m1

2
||h||2 − 2.3m1 ≤

4f
f
≤ m2

4m2
H2 + 5m1, (35)

where m1 = dimB, m2 = dimF and m = m1 +m2.

Proof. We see that the Riemannian curvature tensor R [13] of (M, g) is given by

R(X,Y )Z = g(Y,Z)X − g(X,Z)Y (36)

+g(JY, Z)JX − g(JX,Z)JY − 2g(JX, Y )JZ

+g(AY,Z)AX − g(AX,Z)AY + g(JAY,Z)JAX − g(JAX,Z)JAY

for X,Y, Z ∈ Γ(TM). Given orthonormal vectors X,Y ∈ TpM , p ∈M , we obtain

K(X ∧ Y ) = R(X,Y, Y,X) = 1 + 3g(JX, Y )2 (37)

+g(AY, Y )g(AX,X)− g(AX,Y )2 + g(JAY, Y )g(JAX,X)− g(JAX, Y )2.

Since A is an involution (i.e., A2 = id), we get the following decompositions

X = aX1 + bX2

Y = cY 1 + dY 2,

where |X1| = |X2| = |Y 1| = |Y 2| = 1, X1, Y 1 ∈ V (A) = {Z ∈ TpM | AZ = Z},
X2, Y 2 ∈ JV (A) (See [13]) so that

1 = |X|2 = a2 + b2,

1 = |Y |2 = c2 + d2,

0 = g(X,Y ) = acg(X1, Y 1) + bdg(X2, Y 2).

Conveniently, let (a, b) = (cosα, sinα) and (c, d) = (cosβ, sinβ).
If necessary, by replacing X1, X2, Y 1, Y 2 with −X1,−X2,−Y 1,−Y 2, respectively, we

may assume

0 ≤ α, β ≤ π

2
. (38)
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z = cos(2x+2y)–2sin(2x) sin(2y)-cos(x)^2 cos(y)^2,  

 z = –3.2

00.20.40.60.811.21.41.6

x

00.20.40.60.811.21.4

y

–3

–2

–1

0

1

(a) z = h(x, y) and z = −3.2

z = cos(2x+2y)–2sin(2x) sin(2y)-cos(x)^2 cos(y)^2,  

 z = –3.3

00.20.40.60.811.21.41.6

x

00.20.40.60.811.21.4

y

–3

–2

–1

0

1

(b) z = h(x, y) and z = −3.3

Figure 1. The lower bound of h(x, y)

Thus, with a simple calculation, we have

K(X ∧ Y ) = 1 + 2a2 cos2 α sin2 β + 2b
2

sin2 α cos2 β + cos 2α cos 2β (39)

+2ab sin 2α sin 2β + cd sin 2α sin 2β − e2 cos2 α cos2 β,

where

a = g(X1, JY 2)

b = g(X2, JY 1)

c = g(JY 1, Y 2)

d = g(JX1, X2)

e = g(X1, Y 1).

We see that

−1 ≤ a, b, c, d, e ≤ 1. (40)

Consider the function

S(x, y) = 2a2 cos2 x sin2 y + 2b
2

sin2 x cos2 y + cos 2x cos 2y (41)

+2ab sin 2x sin 2y + cd sin 2x sin 2y − e2 cos2 x cos2 y

for (x, y) ∈ [0, π2 ]× [0, π2 ].
Since sin 2x sin 2y ≥ 0, by (40), we obtain

S(x, y) ≤ 2 cos2 x sin2 y + 2 sin2 x cos2 y (42)

+ cos 2x cos 2y + 2 sin 2x sin 2y + sin 2x sin 2y

= 2(cosx sin y + sinx cos y)2 + cos(2x− 2y) + sin 2x sin 2y

= 2 sin2(x+ y) + cos(2x− 2y) + sin 2x sin 2y

≤ 4
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and

S(x, y) ≥ cos 2x cos 2y − 2 sin 2x sin 2y (43)

− sin 2x sin 2y − cos2 x cos2 y

= cos(2x+ 2y)− 2 sin 2x sin 2y − cos2 x cos2 y.

Consider the function h(x, y) = cos(2x + 2y) − 2 sin 2x sin 2y − cos2 x cos2 y for (x, y) ∈
[0, π2 ]× [0, π2 ].

We see that (See Figure 1)

h(x, y) ≥ −3.3 . (44)

From Lemma 2.1, by using (39), (41), (42), (43), and (44), the result follows. �

Remark 4.3. We get h(π4 ,
π
4 ) = −3.25. But hx(π4 ,

π
4 ) = 1

2 6= 0 and hy(π4 ,
π
4 ) = 1

2 6= 0,
which implies that (π4 ,

π
4 ) is not a critical point of h(x, y).

Corollary 4.3. Let (M, g) = (B×fF, gB+f2gF ) be a warped product manifold and (M, g) =

Qm = SOm+2/SOmSO2 the complex quadric. Let ψ : (M, g) 7→ (M, g) be an isometric
immersion. Assume that the manifold (M, g) is a 2-dimensional totally geodesic J-invariant
submanifold of (M, g) with a non-vanishing vector field X ∈ Γ(TM) ∩ V (A).

Then we get

m1 · 2 ≤
4f
f
≤ m1 · 2.

Proof. By Lemma 2.1 and (37), we obtain the result. �

Lemma 4.3. Let (M, g) = (B×f F, gB + f2gF ) be a warped product manifold and (M, g) =

Qm = SOm+2/SOmSO2 the complex quadric. Let ψ : (M, g) 7→ (M, g) be an isometric
immersion.

There does not exist a 2-dimensional totally geodesic J-invariant submanifold (M, g)
of (M, g) with a non-vanishing vector field X ∈ Γ(TM)∩V (A) such that either the warping
function f is not an eigen-function or the eigenvalue of f is not equal to 2m1.

Corollary 4.4. Let (M, g) = (B×fF, gB+f2gF ) be a warped product manifold and (M, g) =

Qm = SOm+2/SOmSO2 the complex quadric. Let ψ : (M, g) 7→ (M, g) be an isometric
immersion. Assume that the manifold (M, g) is a 2-dimensional totally geodesic submanifold
of (M, g) with TM ⊂ V (A).

Then we get

m1 · 2 ≤
4f
f
≤ m1 · 2.

Lemma 4.4. Let (M, g) = (B×f F, gB + f2gF ) be a warped product manifold and (M, g) =

Qm = SOm+2/SOmSO2 the complex quadric. Let ψ : (M, g) 7→ (M, g) be an isometric
immersion.

There does not exist a 2-dimensional totally geodesic submanifold (M, g) of (M, g)
with TM ⊂ V (A) such that either the warping function f is not an eigen-function or the
eigenvalue of f is not equal to 2m1.

Corollary 4.5. Let (M, g) = (B×fF, gB+f2gF ) be a warped product manifold and (M, g) =

Qm = SOm+2/SOmSO2 the complex quadric. Let ψ : (M, g) 7→ (M, g) be an isometric
immersion. Assume that the manifold (M, g) is a 2-dimensional totally geodesic submanifold
of (M, g) with TM ⊥ J(TM) and dim(TM ∩ V (A)) = dim(TM ∩ JV (A)) = 1.

Then we get

m1 · 0 ≤
4f
f
≤ m1 · 0.
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Lemma 4.5. Let (M, g) = (B×f F, gB + f2gF ) be a warped product manifold and (M, g) =

Qm = SOm+2/SOmSO2 the complex quadric. Let ψ : (M, g) 7→ (M, g) be an isometric
immersion.

There does not exist a 2-dimensional totally geodesic submanifold (M, g) of (M, g)
with TM ⊥ J(TM) and dim(TM ∩ V (A)) = dim(TM ∩ JV (A)) = 1 such that the warping
function f is not a harmonic function.

5. Open questions

In section 3 and section 4, we deal with estimates of the functions 4ff for isometric

immersions ψ : (M, g) = (B ×f F, gB + f2gF ) 7→ (M, g). And we also consider equality
cases and their applications. As future projects, we can use these results to study the
properties of base manifolds and target manifolds and investigate other equality cases and
their applications. We will also estimate the functions 4ff by changing target manifolds.

Questions
1. What kind of eigenvalues of the warping functions f can we get?
(We obtained the following eigenvalues:

m1c,
m1c

4
,
m1(c+ 3)

4
,m1,

m1(c− 3)

4
, 8m1,−4m1, 2m1, 0.)

2. If the warping function f is an eigen-function with eigenvalue d, then what can we
say about M and M?
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