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DECODING OF CYCLIC CODES OVER THE RING JZZEJ;]

Mohammad Reza Alimoradi®

AbuAlrub et al in (Des Codes Crypt 42:273-287, 2007) proposed an open
problem in decoding of cyclic codes over the rings Fa + uFy with u? = 0. In this
paper we resolve this open problem ancli extend this decoding procedure for cyclic

u
e
0. Note that the ring IZZL%] = F,+uF, +---+u""'F, may be of interest in coding
theory, which have already been used in the construction of optimal frequency-

codes of arbitrary length over the ring , where p is a prime number and u* =

hopping sequence.
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1. Introduction

A landmark paper [5] has shown that certain non-linear binary codes with
excellent error-correcting capabilities and some optimal codes can be identified as
images of linear codes over Z4 under the Gray map. This has motivated the study of
codes over finite rings. We will say that a code is optimal for a given source if its av-
erage length is at least as small as that of any other uniquely-decodable code. Since
some binary codes with good parameters and some optimal codes are Gray im-
ages of cyclic codes over finite rings, apart from Z4 ([13]), the study of cyclic codes
over finite rings is significant. So far,a few papers have been published about the
decoding of codes over finite rings (see [2],[8] and [13]). Codes over Fj + uF5 have
been discussed by a number of authors (see [1],[13]). Note that cyclic codes over
this ring have applied in DNA computing [9]. In this paper we present a method
Bplu Fy +uF, +--- + uk_le by us-

(uk)
ing the torsion codes, which are codes over the residue field associated to a chain

for decoding cyclic codes over the ring

ring. Note that some sequences over this ring having optimal Hamming correlation
properties. These sequences are useful in frequency-hopping multiple-access spread-
spectrum communication systems [14].So the ring = F, + uF), + --- + u*~1F}, is
significant in information theory and coding theory. A linear code C of length n over
ring R is an R-submodule of R"™. A code is called cyclic if it is linear and invariant
with respect to cyclic shift. Note that each (cp,cq1,...,¢n—2,cn—1) € R"™ is identified
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with the polynomial co + 1z + -+ + 12"t € Blzl 9o we can consider a cyclic

(zr—1)
code C of length n as an ideal in R, = (xli[f]w .In this paper we denote Fylu) by Ry p

(uk)
g’;pjﬂ by Ry pn-A ring R is called a von Neumann regular ring if for each a in

R, there exists b in R such that a = a?b and is called reduced ring if its nilradical be
zero. Clearly von Neumann regular rings are reduced. Let R be a ring. By a chain of
prime ideals, we mean a nested sequence py C p1 C ... C p, of distinct primes. The

and

primes p; are called the members of the chain, and n is called its length. The Krull
dimension of R is defined to be the largest length of any chain of prim ideals. Clearly
an Artinian ring is of dimension zero [7].It is clear that a finite ring is an Artinian
ring, thus its dimension is zero.

Fp[u]
(uk)

2. Application of in the construction of optimal frequency-

hopping sequence

In modern radar and communication systems, frequency-hopping spread-
spectrum techniques have become very popular. The hopping sequences are used
to specify which frequency will be used for transmission at any given time. Fuji-
Hara et al. investigated frequency-hopping multiple-access systems with a single
optimal frequency-hopping sequence from a combinatorial approach [4].Let F =
{fo, f1,--, fm—1} be a set of available frequencies with alphabet size m and x(v, F)
be the set of all sequences of length v over F.Any element of x(v, F') is called a
frequency hopping sequence of length v over F'.In multiple-access spread spectrum
communication systems, mutual interference occurs when two or more transmitters
transmit on the same frequency at the same time. Frequency hopping sequences
are required to have good Hamming correlations, and large linear span, where the
linear span is defined to be the length of the shortest linear feedback shift register
that can produce the sequence. In [14] Udaya et.al constructed a sequences over finite

rings with optimal Hamming correlation properties. They constructed new sequences
(w(uw)r)

is a particular case of polynomial residue class

over the residue class ring R = ,where w(u) is an irreducible polynomial
Fplu]
(u)

rings introduced in [14], when w(u) = u.It is generally desired that the family S of
frequency hopping sequences has the following properties:

over Fj,.Note that the ring

(1) The Hamming correlation Hy x(w),w # 0 for all frequency-hopping sequences
X should be as small as possible.

(77) The Hamming correlation between any sequence in a set with all phase shifts of
other sequences in the set should be as small as possible.

(7i7) The sequences should be of large period and linear complexity.

Definition 2.1. For two sequences, X = (xg, x1,...,Ty—1) andY = (Yo, Y1, - - -, Yv—1)
€ x(v, F), the Hamming correlation Hxy (w) is defined by

v—1

Hyy(w) = Z hlzi, Yitw)
=0
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where 0 <w < v if X =Y and 0 < w < v if X =Y and also h[z,y] =1 if x =y and

0 otherwise. Also all operations among position indices are performed modulo v. For

any single frequency hopping sequence X € x(v, F),let H(X) = , nax 1{HXX(t)},
<t<v—

be the mazimum out-of-phase value of Hxx(t). If H(X*) < H(X) for all X €
X(v, F), then the sequence X* is called an optimal frequency-hopping sequence.

Definition 2.2. A m-sequences (maximal length sequences) over the field F, of
length N = p" — 1 is generated by a degree r primitive polynomial over F,. Let
508182 ... be a m sequences over Fj, and f(x) =2a" —ap_12" V= —ajx—ag be the
primitive polynomial over Fy,, then the m-sequence sos1sz ... satisfies the recursion
relationship

Sptr = Qp_1Sp4r—1 + Qr—28p4r—2 + -+ apsp,n =0,1,2,...

Associated with every m-sequence SV can be constructed a family of sequences
,which can be used to construct frequency hopping patterns. The number of se-
quences in a family depends on the number of distinct elements of R occurring in
S?. Families are optimal in the sense that they meet Lempel and Greenberger bound.

Lemma 2.1. ([11], Lemma4, Lempel and Greenberger bound) For every sequence
S = {s;} of length p' — 1 over a set of size pt, we have H(S) > p!~t — 1.

Definition 2.3. Let R be a local ring with maximal ideal m and residue field F =
%, the Galois ring of R denoted as GR(R,r) is defined as %, where f(x) is a
basic monic irreducible polynomial of degree r over R.If o is a root of irreducible

polynomial f(x) in GR(R,r), then each B € GR(R,r) can be uniquely written as
B =ay+aia+a®+---+a_1a"7 ag,a1,...,a,_1 € R

Definition 2.4. Let R be a local ring with residue field F,s (finite field with p° ele-
ment) and f(x) be a basic monic irreducible polynomial of degree r over R, then
trace functions which map elements of GR(R,r) to R is defined as Tri"(8) =
ao Z;:& o +ay Zg;ol o 4o ta, Z:;& a(’"*l)pm’, where B = ag+aja+asa’+
oot a0t ag,al, ..., ar—1 € R.

Theorem 2.1. ([14], Theorem1) Every m-sequence over R has a unique trace rep-
resentation given by S;* = Tr1"(val), where v € GR(R,r) and « is a primitive root

of f(z) of degree r.

Note that Ry, is a local ring with maximal ideal (u) and residue field F},. Now,
select a primitive basic monic irreducible polynomial f(x) of degree r over Ry, (Since
F, is a subring of Ry ,,any irreducible polynomial over F}, is obviously irreducible

over Ry, ,). Then }z}“(’; [)a;] is a Galois ring with residue field F,-. As f(z) is a irreducible

polynomial of degree r over F,then f(x)|2P"~! — 1.Now,if « € GR(Rp,7) is a
primitive element of Fpr,then a? ~! = 1.Therefore from the trace description in
Theorem 2.1,it follows that all m-sequences over the ring Ry, are periodic with

period L = p" — 1 (Note that S, . ; = Tri"(vad*P =) = Tr"(val) = S;).
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Example 2.1. In the following we give a m-sequences over the ring Rz . Let f(x) =
23+ 1+1 and « € GR(R32,7) be a primitive element of Fys. So o® = a+1 and the
following Table implies that « is a primitive element of Fys.

)

Q

S M

a2

a—+1
o’ +
a2+a+1
a?+1
1

O TR W N R O,

Now, let v = u? + ua + o> € GR(R32), then so = So¥ = Tr"(v) = u*Tr"(1) +
uTr"(a) + Tri"(a?). Since Tri"(1) = 1, and Tr1"(a) = Tri"(a?) = 0, then sp =
u?. Similarly, we obtain s; = 1,580 =u,s3 =u’+ 1,54 =u+1,s5 =u’> +u+1 and
s6 = u? + u. So, the m-sequences SV is equal to the set {u? 1, u,u® + 1,u + 1,u> +
u+1,u + u}.

Definition 2.5. Let 8 = bg+bju+- - -+bp_1uF~t € GR(Ryp, 1), where by, b, . .., br_1
€ Fyr. Now, let Mg be a matriz over F), of dimension r x k formed by placing together
k elements by, b1, ...,bx_1 as columns of Mg. So, the rank number of k(B) is defined
as the rank of matriz Mg over Fy. Also the Trace Image of an m-sequence, SV is
defined as the set of distinct elements in Sv.

Suppose v € GR(Ry, p, 1) with k(v) = p, then from definition we have the cardinality
of Trace Image of SV is p”. Now for any m-sequence, S* = {s;} and for every ~ be-
longing to Trace Image of SV a sequence S¥(7) is defined as {s;+~ : i € Z,r_1}. Since
the cardinality of Trace Image of SU is pP, there exists p? such sequence. So a family
of p° sequences associated with SV is given by the set of sequences {SV(~y), v € Trace
Image of SV} is denoted by M (v). So corresponding to each m-sequence SV, a family
of hopping patterns derived from M (v).

Theorem 2.2. ([14], Theorem3) Let S be a m-sequence over the ring Ry, with
k(v) = p. Then Hamming correlation between any two sequences S¥(v1) and S¥(~2)
belonging to the family, M (v) is given by

pr=1 m=m
H 0) =
’71’Y2( ) { 0 o 75,72
and for w # 0, we have
pPrP=1 m=m
H w) =
’71’72( ) { pr—p o] 75 Y2

In the following we give an example of application the ring R32 in the con-
struction of optimal frequency-hopping sequence
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Example 2.2. A family of frequency hopping patterns of length 7 derived from
m-sequences over Rz a.Such sequences are generated by o € GR(Rs32,3) such that

1 00
a® = a+1. Letv = v’ +a+(u?+u+1)a? € GR(R329,3). Than M, = [0 1 0].So
0 01

k(v) =3. Also S¥ = {u® +u+ 1,1, u+ 1,u? +u,u,u® + 1,u?}. In the following table
we give patterns of the family M (v). Note that pattern symbols are represented by
decimal numbers in the range (0 — 7) and h(u) € Rso is represented by h(2).

gl S°(v)
0 (7136254)
1 (6027345)
u (5314076)
u+1 | (4205167)
u? (3572610)
u?+1 | (2463701)
u?+u | (1750432)
u?+u+1](0641523)

Note that in above table H., ,(w) = 2"~F = 1. For example if v = u, y2 = u+1, then
H, . (3) = Z?:Oh[ai,bprg] = h[5,5] = 1. Now we show that the m-sequences SV is
an optimal frequency-hopping sequence. From Theorem 2.2, we have H(S") = 0. As
SY is a m-sequences of length N = 23 —1 over R39 with size 23. So from Lempel and
Greenberger bound, we obtain H(SV) = 2373 —1. So the m-sequences S° meet Lempel
and Greenberger bound and therefore is an optimal frequency-hopping sequence.

3. Decoding of cyclic codes over F), 4 uF),

Udaya et al.in [13] introduced a decoding procedure for cyclic codes over the
ring Fy+uF3 by using of a Gray map and (u, u+v) construction codes. They showed
that a cyclic code C of length n over this ring has structure C = (fh,ufg), where
fgh = 2™ — 1 and Gray image C' is equivalent to a (u,u + v) constructed code with
binary codes C; = Res(C) = (fh) and Cy = Tor1(C) = (f), where the residue
code (] is defined as C; = {x € Fy" |3y € Fy", v + uy € C} and the torsion code
Cy is defined as Cy = {x € F»" |ux € C}. Also the decoding procedure is done in
Galois extension of F» + uF5.In this section we present a decoding procedure for
cyclic codes over the ring Fj, 4+ uFj. Since the ring F), 4+ uF} is a chain ring with
unique maximal ideal m = (u) and the residue field F},, we can use the torsion codes
associated to a code over the chain ring. i.e,let Cy be a linear code of length n over
the ring Ry ,,then we associate to the code C two codes C?% and Tor1(Cy), which
are defined as:

Fpla]
Tori(Cy) = {k(z) € -1 |uk(x) € Ca}
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and C>* = {b(x) € (3[_:% | Ja(z), a(xr)+ub(x) € Ca}. Clear that C** and Tor1(Cs)

are linear codes over the residue field F},.

For proving Theorem 3.3 we use the two following theorem.

Theorem 3.1. ([12], Theorem3.3) Let C}, be a cyclic code of length n over Ry, ,, then
Cy is an ideal in Ryp, that can be generated by Cp = (g9(x) + upi(z) + --- +
uF 1 (2), way (o) +ulqr(z) 4 - P tgp o (2), uag (x) Fully () + - +uF Tl 5(2)
v B 2ag o (z) Fub T (2), uF T rag g (7)) with ap—1(2) | ag—o(x) | ... |a1(z) | g(z) |
(«" = 1) modp, and ag—s(x) | pr()(Sb)s - ar—1(2) [41(2) (G2 ) -+ an—a () |
). Moreover degpr—1 < degak—_1,...,degt; < degay_1,

P @) () - (55w

and degp1 < deg ap—s.

Theorem 3.2. [7] For a reduced ring R, the following conditions are equivalent:
(1) R is a von Neumann regular ring.

(2) The ring R is of dimension zero.

(3) Each finitely generated ideal of R is principal and is generated by an idempotent.

Theorem 3.3. Let C}, be a cyclic code of length n over the ring Ry, and n is
relatively prime to p. Then Cy, = (g(x) + uai(z) + u?ag(x) + - - + uFtag_1(z)).

Proof. We know that if R is a finite chain ring and n is relatively prime to the
characteristic of R, then xli[:_v]l
enough to show that Cy = (g(z) + uai(z) + v?az(z) + - - - + uF~Lag_1(2)). Since n is

relatively prime to p, the polynomial 2™ — 1 can be uniquely written as the product

is a principal ideal ring (see [3], Theorem 3.6). So it is

of distinct irreducible factors and hence

" —1
GCD(ar_o(x), =1. 1
(ax-2(0). s )
From Theorem 3.1, we know that ai_o(x) | p1 (x)(:”gn(;)l), which means a;_o(z) | p1(x)
by (1).But degpi(x) < degap_o(z) implis that p;(z) = 0.Similarly we can prove
that pa(z) = =pp—1(z) = q1(z) = - - = qr—2(x) = t1(z) = 0.So
Cr = (g(x),ua1(z), v?as(z), ..., v ap 1 (x)).

Now let h(x) = g(x) +uai(x)+---+uf"tag_1(x). Since n is relatively prime to p, the
ring Ry, p » is a reduced and its dimension is zero. So (g(z)) = (e(x)) for some idempo-
tent e(x) in Ry, by Theorem 3.2. Now, there exists a polynomial 7(x) € Ry, such
that e(z) = r(z)g(x). Let m = LCM (k, p). Then e(x) = r"(x)g™(z). Since h™(x) =
g™ (x), we have e(x) € (h(z)). This implies that g(z) € (h(x)). Similarly we can show
that a1 (z), as(x), ..., ar_1(z) € (h(x)) and so (g(x), uai(z), u?as(z),..., v tag_1(z))
= (h(z)). O

Lemma 3.1. If Cy = (g(x) +up(z),ua(zx)) is a cyclic code of length n over the ring
Ry, then Tor1(Cs) = (a(z)) and dg(C2) = dg(Tor1(Ca)).
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Proof. Let k(x) € Tor1(Cz). Then uk(z) € Cs.So,there exist polynomials ro(x) +
uri(x), so(x) + usi(x) € Rapp,such that
uk(x) = (ro(x) + wri(x))(9(z) + up(x)) + (so(x) + usi(x))ua(z).

Thus uk(x) = uri(z)g(x) + uso(z)a(z). But we know that a(z) | g(x),so, we obtain
k(x) € (a(x)). Conversely if ua(z) € Co, then a(z) € Tor1(C2). Now, Theorem 4.2 in
[10] implies that di(Ca) = dg(Tor1(C2)). O

Lemma 3.2. Let (3 be a cyclic code of length n over the ring R, where n is
relatively prime to p. Then C*" = Tor1(Cy).

Proof. If ca(x) € C*“ then there exists c1(x) € Flal - uch that c1(z) + uea(z) €

" —1

C5. As by Theorem 3.3, we have Cy = (g(z) + ua(x)). So
ci(x) + uca(x) = (hi(x) + uha(x))(g9(x) + ua(z)).

Since a(x)|g(x),we must have co(x) € (a(x)).So C?* C Tor(Cy). Conversely,
if c(z) € Tori(Cy),then uc(x) € Co,which means that c(z) € C*%.So C** =
TOTl(CQ). ]

The main purpose of this section is to prove the following theorem.

Theorem 3.4. Let Cy be a cyclic code of length n over the ring R ,, w(x) = wy(z)+
uwy(x) be a received word with an error polynomial e(x) = ej(x) + uez(x) and
wr(ei(x)) < L%Lﬁri = 1,2. Then wi(x) and we(x) can be decoded in
the code Tor1(Cs).

Proof. We have two cases

Case(i): Suppose n is relatively prime to p.Now, let w(z) = ¢(x) + e(x), where
c(x) = c1(x) + uca(z) is a codeword in Cs. Since uc(x) = ucy(z) € Cy and ucy(x) =
u(wi(x) —e1(z)), we see that wyi(x) — ey () € Tor1(C2). Now, we know Tor1(Cs) is a
cyclic code over the finite field F},. So, we can determine e;(z) by using the decoding
algorithms for cyclic codes over the field F,. Since ca(x) € C?%, also C** = Tor1(Cy)
by Lemma 3.2 and dg (w2, c2) < {%J
decoded to co.

Case(ii): Suppose n is not relatively prime to p.Let ¢1(z) + uca(x) be a codeword
in Cs. Then by Theorem 3.1, we have

c1(x) + uea(x) = (ri(z) + ura(2))(9(2) + up(z)) + s(z)ua(z).
Similar to case (i) we can determine ej(x),then the word wi(z) will be uniquely
decoded to ci(x). Let wa(x) = wa(x) — ri(x)p(x). Now, we know that a(x) | g(x),so
wh(z) — e2(x) € (a(x)) = Tor1(Cz). Then we can determine es(x) with using of the
decoding algorithm for cyclic codes over the field F,. U

,we see that we will be uniquely

Decoding Procedure:
1) Calculation of dg(Tori(C2)).
2) Let dH(CQ) = dH(TOTl(CQ)).
3) Decode wi(x) to c¢i(x) in Tori(Cs), where wi(z) + uwa(x) is a received word.
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4) if GCD(n,p) = 1, then wa(z) decode to ca(x) in Tori(Cs),else go to 5.
5) Let wh(z) = wa(z) — ri(z)p(@).

6) Decode wh(z) to () in Tor(Cs).

7) Let c2(z) = ca(2) + r1(z)p(x).

We give an example in order to illustrate our results.

Example 3.1. Let Cy = ((x + 2)a(x), ua(x)) be a cyclic code of length 8 over the
ring R 3, where a(z) = x°+ 221 + 23 + 22 4 2. We know that the polynomial 28 —1 is
uniquely decomposed to (z+1)(z+2)(2? +1) (22 + 2 +2) (22 +22+2) over Ra3. Then
dp(Cs) = dy(Tor1(C2)) = wy({a(x))). Let o € GF(3?%) = % be a root of the
primitive polynomial 2% + x + 2 € F3[x]. Clearly 2> +z +2 = (z — a)(z — a3) over
the Galois field GF(32). Also x + 1 and 2% + 1 are minimal polynomials of o and
a?, respectively. This implies that a(x) has roots {a, a?, a3, a*} in the Galois field

GF(3%). So Tory(Cy) is a ternary 2-error-correcting cyclic code. Let
w(z) =2" + 225 + 2% + 2% + 1+ u(22° + 22° + 2° + 222 + 2)

be a received word with an error pattern e(x). We can decode wi(z) in the ternary
code T'or1(C2) by using of the Peterson-Gorenstein-Zierler algorithm ([6] Section’5.4.1).
Suppose that e1(x) = E1x't + Eyx'? where By, By € F3. Since

S =wi(a) =a,Sy = a?, 85 =0a3 8, =at

S S 3\ ) . .
and My = Lo=2) a3 a3 s a non-singular matriz with inverse My™' =
Sy S3 o’

6 4
(a2 34) , we conclude that exactly two errors have been made. So,

| -5 6)

Thus the error locator polynomial is o(x) = 1+ o®z + a"22. It is easy to see that
the error locator polynomial has roots a* and o°. So, the error location numbers
are X1 = ot and X9 = 3. As the code is ternary, we must determine the error
magnitudes E1 and Es. Since S1 = E1a* + Esa® and So = E1 + E2ab, we must solve

the matriz equation
ot o? E1\ [«
1 046 EQ N a3 '

Solution of this matriz equation implies that 1 = 1 and Ey = 2. Therefore e1(x) =
ot 4+ 223

Similarly we must decode wa(x) = 22° + 22° + 23 + 222 + 2 in the ternary code
Tor,(Cy). Decoding of wa(x) implies that ea(x) = 227 + 2x2. If we correct these
errors in the received polynomial, then the vector w(x) will be decoded to the code
polynomial c(x) = x7 + 22% + 2% + 223 + 22 + 1 + u(2” + 22% + 225 + 23 + 2).0
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Fp[u]
(uk)

4. Decoding of cyclic codes over the ring

In this section, we extend the previous decoding procedure for cyclic codes

T%] =F,+uF, +u?F, + -+ ukile,where uk = 0.

Lemma 4.1. Let C3 = (g(z) + up1(x) + u’pa(z), uai(z) + u?qi(x), u’az(z)) be a
cyclic code of length n over the ring R3,, then Tory(Cs) = (az(x)) and dy(Cs) =
dp(Tore(C3)), where Tore(C3) = {k(zx) € <f,i’[_x1> |u?k(z) € Cs}.

over the ring

Proof. Theorem 4.2 in [10], implies that dy(C3) = dg(Tora(Cs3)). Since u?az(z) €
C3, we have az(x) € Tora(C). So, (az(x)) C Tory(Cs). Conversely let k(z) € Tory(Cs),
then u?k(z) € C3.So by the structure of the code Cjs,there exist polynomials

ro(z), s1(x),to(x) € <§{’[_$1> such that k(z) = ra(z)g(x)+s1(z)ai(x)+to(z)az(z). But,
we know that as(z)|a1(z) | g(x). Then k(x) € (az(x)). O

Definition 4.1. Let n be a positive integer relatively prime to p and s be an integer
with 0 < s < n. If GF(p') is an extension field of F, and o be a primitive element of
GF(p') with minimal polynomial My(x) in F,(z), then the p-cyclotomic coset of s
modulo n is defined the set Cs = {sp'(modn) : i = 0,1,2,...}. A subset {i1,ia,...,i}
of Z, is called a set of representatives of the p-cyclotomic cosets of s modulo n if
Ci,, Ciy, ..., Cs, are distinct and Uﬁ-:lCij =Zy.

Theorem 4.1. ([6], Theorem4.1.1) Let n be a positive integer relatively prime to p,
t = ord,(p) and « be a primitive n-th root of unity in Galois field GF(p'). So

(i) For each integer s with 0 < s < n, the minimal polynomial of o over F), is
Meys(x) = Wieo, (v — ab).

(ii) " — 1 = Iy Mys(x) is the factorization of ™ — 1 into irreducible factors over
F,, where s runs through a set of representatives of the p-cyclotomic cosets modulo
n.

Definition 4.2. Let C3 be a cyclic code of length n over the ring R3,, then we
associate to the code Cg two codes

F,
o3 {ea(z) € <xnp[_$]1> | Jco, 1,00+ ucy + ulcy € Cs}
and
F;
O3 — {1 € <xnp[_x]1> | Jco, e, co+ ucy + u?cy € Cs}.

Lemma 4.2. Let C3 be a cyclic code of length n over the ring R3,, where n is a
positive integer relatively prime to p. Then C3% = Tory(Cs).

Proof. At first,we show that Tori(Cs) = (ai(z)), where C5 = (g(x) + uayi(x) +
u?as()). Clearly
Fpla]

Tori(C3) = {k(z) € T

13t(x), uk(z) + u’t(x) € Cs}.
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Since uaq(z) € Cs, we must have a;(x) € Tor;(Cs). Conversely if k(x) € Tor;(C3), then
uk(z) + u?t(x) € Cs, for some t(z) € <3’Eg}1> .So,

uk(z) + u’t(z) = (ho(x) + uhi(x) + u?ha(z))(g(z) + uai () + uas(x)).

Now, we know that a;(z)|g(z),then k(z) € (ai(x)).
Since uay(x) € C3,we have a;(x) € C3%. So Tory(C3) C C3“. Let c1(x) € C3*, then
there exist polynomials cg(z), co(x) € (3%) such that co(x) + uecy(z) + ulca(x) €

Cs. Now, by the structure of the code C3, we have

co(x) 4 ucy (z) + uca(z) = (ho(x) + uhy(x) + u?ho(x))(g(z) + uai(z) + ulas(x))
Since a1(z) | g(z), we must have c¢1(z) € (a1(z)) = Tor1(C3). O

Lemma 4.3. Let C3 be a cyclic code of length n over the ring Rs3,, where n is
relatively prime to p, then o3 = Tory(C3).
Proof. Let co(x) € C3%° then co(z) + uci(x) + ulea(z) € Cs, for some polynomials

co(z),c1(x) € <5,{’E3}1> . So,

co(x) + ucy (x) + u?ca(x) = (ho(x) + uhi(z) + u’he(x))(9(x) + uai(z) + u?az(x)).

But, we know that as(z)|ai(z)|g(z), thus ca(z) € (az(z)).So C3* C Tory(Cs).
Conversely if ¢(z) € Tora(Cs), then u?c(x) € Cs. This implies that c(z) € C3¥”. So,
CS’u2 = TO?“Q(Cg). O

Theorem 4.2. Let C3 be a cyclic code of length n over the ring Rs3,. If w(x) =
wo(x) + vwi (z) + uws(z) be a received word with an error pattern e(x) = eo(x) +
uer(z) + ules(w),wy(ei(x)) < L%L]‘ori = 0,2 and wg(e1(z)) <
LWL then woy(x),wa(x) can be decoded in the code Tors(Cs) and w(x)

can be decoded in the code Tor1(C3).

Proof. Case(i): Suppose n is relatively prime to p.Let w(x) = c(z) + e(x), where
c(z) = co(x) + uci(z) + ulca(z) is a codeword in Cs. As u?c(x) = u?co(x) € C3
and u?cy(z) = u?(wo(x) — eg(x)), then wo(z) — eg(z) € Tory(Cs). Since Tory(Cs)
is a cyclic code over the finite fieldF},, the word wg can be decoded in the code
Toro(C3). As co(x) + uci(z) + uca(x) € Cs,then ci(z) € C3* = Tor1(C3).So we
can decode wi(z) in the code Tor1(C3). Similarly we will decode wa(z) in the code
TOT‘Q(Cg).

Case(ii): Suppose n is not relatively prime to p.Similar to case (i) we can de-
code wo(x) in the code Tory(Cs). Let c(x) = co(z) + uci(z) + u’ca(z) € Cs,then
c(z) = (ro(x)+ury(z) +ulra(z)) (g(x) +upr () +upa(z)) + (so(x) +usi(z)) (uay (z) +
u?q(x))+uto(w)az(z). Let wi(x) = wi(x)—ro(z)p1(x). Now, we know that a; (x) | g(z)
,then w) (z)—ei(x) € (a1(x)) = Tor1(Cs). So,wi(x) can be decoded in T'or1(C3). Then
wi(z) = di(x)ai(x) + e1(z) for some polynomial dy(z) € Fp(z).So,r1(x), so(z) can
be determined by dividing the polynomial d;(z) to by (z). Let

wh(z) = wa(x) — ro(x)p2(z) — ri(z)p1(z) — so(z)q1(z).
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But, we know that as(z) | ai(x) | g(x),s0 wh(x) — ea(x) € (az(x)) = Tore(Cs). Hence
we can decode wh(z) in the code Tory(Cl3). O

We work an example of this decoding procedure.

Example 4.1. Let o € GF(33%) be a root of the irreducible polynomial 223 + 2%+ +
1 € F3[z]. In the following table we see that 23 +2% +x+1 is a primitive polynomial
over the finite field Fs.

) %

1| « 1| «@

11010 7 | 121
21001| 8 | 120
31111 9 | 012
41122 (10| 220
5120111022
6101 |12 221

Clearly My (z) = ieo, (x — ') = (z — a)(x — a®)(x — ) =223 + 22 + 2 + 1 over
the Galois field GF(33). Also M2 (x) = 223 + 2 + 1, Mya(z) = 223 + 222 + 22 + 1
and M7 (x) = 223 + 222 + 1. But {Cy, C1,Co,Cy, C7} is a set of representatives of
the 3-cyclotomic cosets modulo 13, then x'3 — 1 = (z 4+ 2)(223 + 22 + 2 + 1)(22% +
z+ 1)(223 + 222 + 22 4+ 1)(223 + 222 + 1) over F3 and R3 3. Let

C3 = (My(2) My2 (2) Mya (2) Moz (2) + uMp(x) Mo () M (x) 4 u® My (2) Ma2 (2))
be a cyclic code of length 13 over the ring R3 3. Since
Tory(C3) = (Ma(x)Mg2(x)),

the code Tora(C3) has roots {a, a?, a3} in the Galois field GF(33). So, Tors(C3) is a
ternary 1-error-correcting cyclic code. Also Tor1(C3) = (M (x)M2(x)Mya(x)), has
roots {a, a2, a3, a* o’ a} in the Galois field GF(33). So, Tor1(Cs) is a ternary
3-error-correcting cyclic code. Let w(x) = 2012 + 2210 4229 + 228 + 227 4226 4+ 22° +
20t + 223 + 222 + 22 + 2 + (2! + 225 + 20 + 202 + 2) + w? (2212 + 221 + 210 +
229 + 227 + 220 + 20* 4 223 + 22 + 2) be a received word with an error polynomial
e(x) = eo(x) +uer(z) +uea(x). Let eg(x) = uz’, where u € F3 and 0 < j < 12. Since

S1 = wo(a) =022 = o'l = ey(a) = ua,

then eo(x) = z'l. By using of the Sugiyama decoding algorithm ([6], Section’5.4.3)
and the following table we can decode wi(zx) in the code Tori(C3). Now, we know
that at most three errors have been occuring and the syndromes are

S =wi(a) = 2,58 =2a°, 55 =2,8 = a'l, S5 =203, 5 = 2a.



30 Mohammad Reza Alimoradi

Now, we summarizes the results in the following table.

i ri(z) hi(z) bi(x)
-1 20 0
0 2ax®+ 203z + allz3 + 222 + 2092 + 2 1
1 a2 + al?2® + al%? + 2022 + o 2022 4+ o al?z 4 20
2 201! 200z 4+ 20% otz? + 207z + ol

This implies that exactly two errors have been occuring. Hence o(x) is a multiple of
ba(z) = a*2? 4+ 2"z + all. So o(z) = a?ba(x) = S22 +20°x + 1. It is easy to check
that o(z) has roots a and o°. Then the error location numbers are X1 = o'? and
Xy = 7. As the code is ternary, we must determine the error magnitudes Ey and
Es, where e1(x) = Eq12'2 + Esx”. Then we must solve the matriz equation

(%) () = o)

Solution of this matriz equation implies that 1 = 2 and Ey9 = 1. Therefore e1(x) =
2212 + 27, Similarly wo(a) = 208, then ea(x) = 228.0

In continue let Cj be a cyclic code of length n over the ring Ry ,,then for
i=1,2,...,k—1 the code Tori_1(C}) is defined as:

Fpla]
{zm = 1)
It is clear that Tor,_1(C)) is a cyclic code over the finite field F,. Also for i =

1,2,...,k — 1 the code C**" is defined as C*' = {¢;(z) € (sz[—:Cl) | co(z) + uci(z) +

st uT ey (2) +utt e (z) + -+ uF e 1 (2) € Ok}, for some co(w), ¢ (z),

oo cpe1(z) € (J%[_zh.lt is clear that Tor;(C) and C** are cyclic codes over the

finite field Fj,for i =1,2,...,k — 1.

Tori—1(Cy) = {t(x) € | uf 1t (x) € Oy}

Lemma 4.4. Let Cp, = (g+upy + - +uF Ipp_y,uar + - + 0¥ Lqp_g, u?as + - +
uF s, uF e g+ ub sy, ukilakq) be a cyclic code of length n over the ring

Ry, p, then Tor(C) = (ai(x)) fori=1,2,....k —1,and dg(Cr) = dg(Torp—1(C)).
Proof. The proof is similar to proof of Lemma 3.1. O

Lemma 4.5. Let Cy = (g + ua1 + u?as + u*2ap_y + v Laz_1) be a cyclic code of
length n over the ring Ry, and n is relatively prime to p,then fori=1,2,...,k —
1, the relation C**" = Tor;(Cy) = (a;(z)) does hold.

Proof. Let t(x) € Tor;(Cy), then u't(z) € Cy.So t(z) € C*'. Conversely let ¢;(z) €
Ck' then co(ax) +ucy (x) +- - -+uFLep_1(x) € Cy, for some polynomials co(z), ¢ (z
yoooycr_1(2). S0, by Theorem 3.3, co(x) + ucy(x) + - + uF L1 () = (ro(z) +
ury(z)+- -+ gy (2)) (g(@) Fuar (2)+uag (@) +uF2ag o () +uF " ag 1 (x)). Then
ci(x) = g(x)ri(z) + ar(z)ri—1(z) + - + ai(z)ro(x) for ¢ = 1,2,...,t — 1. Since
ai(x)|ai—1(z)| ... |az(z) | ai(x) | g(x), we must have ¢;(z) € (a;(x)) = Tor;(C). O
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Theorem 4.3. Let Cy, be a cyclic code of length n over the ring Ry ,. If w(x) =

wo(z) + vwy (x) + - + uFtwp_1(x) is a received word with an error polynomial

e(z) = eg(z) + uey(x) + -+ +ut~te, 1 (),

(dg(Torg—1(Ck) — 1)
2

wp(eo(z)) < |

and fori=1,2,...,k—1,

)
wileia)) < PTG 2 1))

then wo(x) can be decoded in the code Tory_1(Ck) and fori=1,2,.... k — 1, w;(x)
can be decoded in the code Tor;(Cy).

Proof. The proof is similar to proof of Theorem 4.2. O

5. Conclusions

Fp [u]
(uk)
the code length is an arbitrary number. A natural open problem is to extend this work

for cyclic codes over chain rings, which residue field of chain ring is of characteristic

We have described a decoding method for cyclic codes over the ring

,when

prime number p. Another useful direction for further study would be to present a
Fplu]

decoding algorithm for cyclic codes over the ring )

with considering the Lee
weight.
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