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QUANTITATIVE ESTIMATES FOR A NEW COMPLEX Q-
DURRMEYER TYPE OPERATORS ON COMPACT DISKS

A. Sathish KUMAR?, Purshottam N. AGRAWAL?,
Tuncer ACAR?

In the present article, the upper bound and Voronovskaya type result with
guantitative estimate and the exact degree of approximation for a new complex g-
Bernstein-Durrmeyer operators attached to analytic functions on compact disks are
obtained. In this way, we put in evidence the over convergence phenomenon for the
g-Bernstein-Durrmeyer polynomials, namely the extensions of approximation
properties (with quantitative estimates) from real intervals to compact disks in the
complex plane.

Keywords: g-Durrmeyer type operators, g-integers, complex approximation,
Voronovskaja-type result, exact degree of approximation.

1. Introduction

Since last few years, the study of linear positive operators defined on a
complex domain has been an active area of research in approximation theory. S.
N. Bernstein [19] was the first one who initiated complex approximation and
introduced complex Bernstein polynomials by

n

n
Ba(fiz) = ) (1) 241 = 2" f /)
k=0

If f:G— C is an analytic function in the open set G c C, with D; € G
(where D, = {z € C: |z| > 1}, then Bernstein proved that the complex Bernstein
polynomials converges to f uniformly in D;.

Sorin Gal pioneered the study of the upper gquantitative estimates for the
uniform convergence of B,,(f) to f in [7]. In [9], Gal proved the Voronovskaja
type results with quantitative estimates for the complex Bernstein polynomials.
Anastassiou-Gal [6], Gal [8], Gal-Gupta [13], and Gupta [15] established
quantitative estimates for certain other variants of Durrmeyer type operators.

In 2011, Mahmudov [20] obtained the order of simultaneous
approximation and Voronovskaja type theorems with quantitative esimates for the
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complex one parameter class of Bernstein-Durrmeyer polynomials on compact
disks. In the present paper, we establish the exact order in ordinary approximation
and a Voronovskaja type theorem with a quantitative esimate for the complex
modified Bernstein-Schurer operators based on g-integers on compact disks.
Recently, Agarwal-Gupta [4] studied the upper quantitative estimates

for g-Bernstein-Durrmeyer operators on compact disks. To make the convergence
faster, Ren and Zeng used the King type approach for these operators on compact
disks in [24]. A g-analogue of genuine Bernstein-Durrmeyer operators on
compact disks is given in [21]. Also Agrawal-Sathish has studied the over
convergence properties of new type of g-Bernstein Schurer operators on compact
disks in [5]. Recently, Gal [14] and Gupta-Agarwal [16] studied the over
convergence properties for several integral operators. In 2016, Gal and Gupta [10]
studied the approximation properties of the complex version of Durrmeyer type
operators based on Polya distribution, attached to analytic functions on a disk. In
the recent years several researchers have studied in this direction for different
sequences of linear positive operators (see [1-3], [11-12], [17-18], [22-23], [25-
26], etc.).

Let p € N° = N U {0} (the set of all non-negative integers) and 0 < g <
1. For f € C[0,1 + p] the g-modified complex Bernstein-Schurer operators are
defined for vz € C, as

Dy, (f3q,2)
[n+p + 1], [n], TS
=TS bu@ 20 [ M S Obupe@a0d,©,
4 k=0 0
where

Il m+py  (In+ply TP
bn+p,k(q'z)—m( k >ZR<W—Z>(I .

Let Di be the disk Dg: = {z € C: |z| < R} in the complex plane C. Let us
denote by H(Dg), the space of all analytic functions on Dy. For f € H(Dg), we
may write

o)

HOEDIL

m=0
In this paper, we have shown the overconvergence phenomenon for a new
type of g-Bernstein-Durrmeyer type operators, namely the extensions of the
approximation properties with quantitative estimates from real intervals to
complex domain.
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2. Basic Results
In the sequel, we require the following results.

Lemma 2.1. Let D,,(f;q,z) be as defined in(1) and 0 <gq <1. Then,
D, ,(t™; q, z) is a polynomial in z of degree < min{m, n} and

Dn,p(tm; q,2)
[n+p+1],! [m+p+110

T mtptm+1l,!  [mm ; ¢s(m, )[nlgByp(es q,2), (2)

where c;(m, q) > 0 are certain constants depending on m and g and B, ,,(f, q, z)
is the g-Bernstein-Schurer polynomial defined by Y. 2P b,y (q; 2)f ([K]4/[n]4)-
Proof. By simple computations and using [k + s]; = [s]q + q°[k]g, the proof of
the lemma easily follows hence the details are omitted.

Lemma 2.2. Let 0 < g < 1. Then, for all m,n € N and p € N° such that m <
n + p, we have

n+p+1],! < ;-
[n+p+m+ 1]q!ch(m,q)[n+p]q -
s=0

Proof. In view of Lemma 2.1 with e, (t) = t™, we obtain

[n+P]q>

D,,|t"q
"**’( "l

n+p+1],! [n+pl7 “ [n+p]q>

- [n+p+m+1],! [n]7 ; cs(m, q)[n]gBy, <es; ‘LW

If we consider the operators
n+p

ot = LS (107) (e YT ()
T 4 plp P&\ kg0 \ Il . \Inlq
And putting z = %w, then we get
q

n+p

[y n+p k([n+p]q_ )(@)
e )7 U, ), Il

q k=0
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n+p

=207 i (i)
n+p

i 17) -

: _k (IKlg)®
By ([7], p.61, Theorem 1.5.6), since 2’,;‘:0(;‘)qw"(1 - w)g k (ﬁ) =latw =

1 forall s = 0,1,2 ...therefore,
n+ —
mE? O mApy L (ntply \PF (K [ntplg
A (1) o (e b
[Tl + p]q =0 k q [n]q q [n]q [n]q

atz = %. Further

Nlq

[n+ph>

Dn tm;q,
,p( [n]q
[n+p+1]! [n+plg

R L ch(m,q)[n+p]3- 3)
s=0

. [n+p]q

Since by k (qW) =0fork=0,1,2,..,n+p—1and

byipi <¢I: %) =1fork = n+ p wehave

[n+plq
m.
Dn,p <t 4 q' [n]q
et T g, (g Pl
[n + p] ’ " [n]
[n+plgq 1 !

[n]
Xf ! tmbn+p,n+p(q; qt)dq(t)
0

n+p+1], [n+pl7
n+p+m+1], [n]F
<M+M$
- [nlg

(4)
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From (3) and (4), we obtain

[n+p+1],!
n+p+m+1],!

z cs(m @)[n+plg < 1.

s=0
which completes the proof.

Lemma 2.3. Letr > %and 0 < q < 1.0Then, for all m,n € N%nd|z| < r,
q

we have |Dy, ,(em; ,2)| < 7™

Proof. FromGal ([7] p.61, proof of Theorem 1.5.6), we have|Bn,q(es;z)| <

rSwhenever |z| < r and r > 1. Hence, in view of Lemmas 2.1 and 2.2, for all

+
mneN®and |z| <7, r> n*plq
[n]q

we get

n+p+1], [n+pm<

D esm, @ 3| Buy(es a.2)|
nt+p+m+1],! [n]F — s q1Pnp\€s

|Dyp(em; q,2)| < [

[n+p+1],! [n+p]{l"ic [n+p]fl< [n], >s
s(m, q) r
[ lq

Tm+pt+m+1]! [n]P p] [n]3 n+p

m

r Z cs(m q@)[n+pl <r™.
s=0

[n+p+1],!
T n+p+tm+1]!

Remarkz2.1. By simple computations, we have

+
z <[n[n]1:]q _ z) D, (bnﬂ,,k(q; z))
[n+ p]
= buipa(d;2) (U‘]q qu —[n+ p]qz>
and
k
Z<% - Z> qun+p,k(q; z) = bn+p,k(q; z) <[ ]qgi]: p]q — qt[n + p]q>.

Lemma24.Let0 < q < 1.Forall e,,(t) = t™, m € N°and z € C we have
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[n + p]
z< . a_ z> D, (Dn,p(em; q, z))
= (qln+pl, + [m + 2], ™V)D,, ,(em+1; 9, 2)

_men) M T PI
- ([m + 1]q4q ( I)T‘I + [n+ p]qz>.

q

Proof. Applying Remark 2.1, we have

z ([n[:]f]" - z> D, (Duplem z))
[n + 11: i ; kZ < n+pl,
[n+,,]q
- Z>q Dy (buipi(@:2)) q " fo Mg (@ qt)dg (6
_ [+ p+ ], 0 [+ pl,
FEr an+,,k(q,z)( G

P]q

[n
—[n+ p]qz) q_k f t bn+p,k(q; qt)dq ®)
0

1
_[n+ZIp] n]qzbnﬂ»k(q'z)( klq [[]] — [n+plgqt + [n + pl,z

[n+plq

[n]
—[n+ pL,Z) q* f T t™b (g qt)d, (D)
0

n+p

[n+p+1 [n+pl,
n+p anﬂ)k(q'z)( ] [ ]

[n‘H”]q
[n]
—[n+ p]qqt> q* f T by (q; qO)d, (0)
0

+ q[n + p]an,p(em+1; q Z)
—[n+ p]qZDn,p(em; q,7) (5)
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n m+1 n .
Let 8(¢) = ([ ‘2l _ t) (2) , then 6(qt) = (ﬂ - qt) t™*1 Using q-

[n]q [n]q
integration by parts, we have

[n+plq

fo [nlq D, (bn+p,k(q; qt)) 5(qt)d, ()

[n+plq [n+plq
[nlq [nlq

0 - j; byipk(q; qt)Dq(5(t))dq(t)

= 6(t) bn+p,k (q; qt)

[n+plq
L[ [n + p]
-~ qm+1f0 ! bn+p,k(q; qt)Dq (qu tm+1 _ tm+2 dq(t)

[71+P]q

1 (g +
= P fo - by.pi(aq; qt) <% [m+1],t" — [m + Z]qt"‘“) d, (0.

In view of (5), we get the desired recurrence relation.
3. Main Results

Let P,,(z) be a polynomial of degree n of complex variable z with derivative
P,,'(z). Then, by the Bernstein inequality and the complex mean value theorem,
we have

n
[D4(Pr(@)| < IPll; < ~[IPyll,, for all |2]
< (6)

where||. ||,-denotes the sup-normon |z| < r.
Our first main result is the following upper estimate.

Theorem3.1. Let0 < q < 1, f(2) = Yn—oCmz™, forall |z| < R and let
[n[,:]p]q <r < R.Then, forall |z] <randn € N, we have
q

. [n+p]q Cr(f)
|Dn,p(fJ q,Z) - f(z)l < [n]q [n T p T 1]q,
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where C,.(f) = (1 + 1) Yo _jlepmim + 1) r™ 1 < oo,

Proof. First we show that D,,(f;q,2) = Xn-0CmDnp(em; q,2), where

en(2) = 2", m = 0,1,2, ... Indeed, denoting f,,(2) = X2oc;2/, |z| <1, me

N, by applying the linearity of D,,, we get D,,(fin;q,2) =

M oCiDnyp(ej;q,2). For any fixed ne N and |z| <r with r > %, it is
q

enough to show that
1111—r>rolo Dn,p(fm; q.z) = Dn,p(f; q,2).
But this is immediate fromlim || f,,, — fll, = 0 and from the inequality
m-—oo
|Dn,p(fm; q,2z) — f(z)l
[n+plq

n+p
[n+p +1]4[n] e [T
< T bk @ D™ [ " Buepa@5 a0 @)
k=0 0

[n+plg -
—fOldg(t) < My ppllfm — fl-

valid for all |z| < r, where

_[n+p+1]q[n]qn+p n+p [n + pl,
T =T [t pl, Z( k >qu< [n],

[n+plgq

n+p-k o
+ T> q_kJ ! bn+p,k(q; qt)dq(t)
q 0

ntp [ 1 n+p-k
- kZO (n Z p)q rk <—n[:]:’ 74 r)q .

Therefore, we get
D0y (f:0.2) = FD] < ) [Cul[Duplem 0.2) - em(2)]
m=0

= Z |Cm||Dn,p(em; q, z) — em(z)l
m=1
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since D, ,(eg; q,2) = eg(z) = 1. Now from Lemma 2.4, for all m € N we have

Dn,p(em; q, Z) - em(z)

m ["+p]q _ )
1z ( e -
[n+p+m+1],
["+p]q
[m]q [n]q
[n+p+m+1],
[n+p] [n+plq
[n + p+m+1],

an,p (em—l; q, Z)

+ q™z[n + pl,
Dn,p(em—l; q,z) — em—l(z))

+ q™z[n +pl,

m [n+p]q_ )
~ q z(—[n]q z
[n+p+m+1]q
[m], ["+”"+q z[n +pl,

np(em—li q; Z)

[n+p+m+1] n.p(em—li q.z)— em—l(z))
q

[n+p]q
_|_
[n+p+m+1],
(q [n+pl,—[n+p+m+1],)
[n+p+m+1],

m—-1

m

Since q"[n +pl, — [n+p +m+ 1], = —[m], — q"*P*™, we have
|Dn,p(em; q,z) — em(z)l

|Dn,p(em—1; q,z) — em—l(z)|

m-—1

+ n+p+m+1],
(q™n+ply—[n+p+m+1],)
n+p+m+1],
Using (6) and Lemma 2.3 we obtain

m
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q™r (—[n+p]q + r)

[n]q
[n+p+m+1],
q™r (—[n]q +r)(m—-1)
[n+p+m+1],r

qm™ —[T;]r;]q + r) (m-1)

n+p+m+1],

|Dan,p (em—l; q, Z)|

”Dn,p(em—l; q, )”r

”Dn,p(em—l; q, )”r

2le (1 41)
[n]q Tm_l
T [In+p+1],

Also, we have

[n+plq [n+plq

[ml], T, - [m+1], e .
m+p+m+1], T [n+p+1]

and

[m]q + qn+p+m . [m + 1]q + qn+p+m
[n+p+m+1]qr - [n+p+1],
From [n +p+m+ 1], = q™[n + pl, + [m]; + g""P*™, it follows that

m+p+m+1],

m

Hence, we get
|Dn,p(em; q,z) — em(z)l

[n+p]
—[n]qq 1+r)(m-1)
[Tl +p+ 1] rmt + rlDTl.p (em—1; q,z) - em—l(z)l
q
[n+plq [n+plq
m+1 m+1

_|_
[n+p+1], r [n+p+1], r
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"*pQ(1-+ M (m—1)

[n+p+ 1]4
[m+ 1],

m_l + ran’p(em—l; q; Z) - em—l(z)l
[n+plg
[n]q

[n+p+ 1],

[n+plq
o (L+7)

m [n + p+ 1]q
By writing the last inequality form = 2,3, ...we can easily obtain step by step,
the following

|Dn,p(em; q,2z) — em(Z)l

rm 11 +71)

rmt 4 ran,p(em—l; q,z) — em—l(z)l-

<r ran,p (em—2:0,2) — em_y (Z)|

2(m—1 )[”+pq(1+ ) 2m ”*“(1+ r)
rm—Z + m-—1
[n+p+1]q [n+p+1]q
= rlenp(em 20, Z) — e Z(Z)l
2(m —1)““”(1+ ) 2n1WWq(1+ )
Fm—1 [nlq m
[n+p+1]q [n+p+1l,
= rlenp(em 2:4,%) — em—z(z)l
2Pl g 4 0y
[nlq yFm—1
2m—1) < -
[n+p+ 1], (2m )
["+p“(1-+ )
[ m—1
<—2 _ __r +1).
[n+p+1], m(m +1)

Therefore, we have
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Dnp(Fia.2) - F(2)] < Z Conl Doy (emi 4,2 = em(2)]

[n+p q

(1+7)
m—1
Zlml n+p+1] m(m +1)

n+pq(1+ ) .

[nlq
< m Z |Cplr™™ 1m(m +1)

_ntpl C, (f)
~ Inly In+p+1]’
where C,.(f) = (1 +7r) Xo_,|C, [r™ tm(m + 1).
This completes the proof of the theorem.
Remark 3.1.Let 0 < g < 1 be fixed. Since,

[1] —-1—q as n—- o, by
q
applying limit n — oo,in the Theorem 3.1, D, ,,(f; q, z) does not converge to f(z)

But this can be achieved by taking a sequence q = q,, satisfying 0 <gq, < 1
with g, = 1 and g;; = 0 as n = co. In this case — 5 0as n — oo. Therefore

[n]q
from Theorem 3.1, we have D, ,,(f; q,z) — f(z) asn — oo uniformly for |z| <,
when [n+plg <r<R.
[n]q

Our next main result is the following Voronovskaja type theorem with a
quantitative estimate.

Theorem 3.2. Let R > 1+ p, f: Dg — C be analytic in Dy, i.e. we can write

f(2) = Y7o cxz¥, forall z € Dg. For any fixed r € [[[] 1 R) and foralln €

N, |z| < r, we have

z(1-2)f' (2)+z(1-(c+1)2)f' (2) | 1- q""'l’ M p 1 (f)

1Dnp(f;q,2) — f(2) — g
3(1 — q) X lewrk?,

+ rpk(f)

]2 mZ T

Where MT,p,k(f) = Z]ogozl |Ck|rkka’r‘p < o, Tr,p,k(f) = ZIO(O=1 |Ck|rkka’r'p <
and Fy.p.p = 4(1 + Ok(k — 1)2(1 + 1), Diry = (1 + p)(1 + )20k — 1)% +
8k*(k+1) + 8k(k + 1)?).

Proof. Since f is an analytic function, we can write D, ,(f; q,z) =
Y=o Can,p(ek: q,z). Also,
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z(1-2)f'(2) +z(1 - (c+ D2)f'(2)

[n]q

_z(1-2) = B w—p 21—
- kZZ cok(k — 1)252 +

(c+1)2) 1
[n]q kZl Cka

(0]

_ L 2 k-1
= o, kZl (k2 — (k + ©)2)z

Forall z€ Dy and n € N, we have

|Dynp(f;9,2) — f(2)
z(l —2)f'(2)+zQ1 - (c+1)2)f'(2)

z Ck |an(ek; q,z) ek(z)

[n]g ]
_( —(k+0)z) 1|
[n]q
. _ . (k+C)Z) k 1
If we consider Ey,,(q,2) = Dy p(ex; q,2) — ex(z) — = , itis clear
q

that Ey ,, ,(q, z) is a polynomial in z of degree <k. Using Lemma 2.4, we have

[n+p

"( —z)

[n+p+k+1]

([k]q['1[+p]"+q z[n +ply)
n+p+k+1],

Ek,n,p (q' Z) Elk—l,n,p (q' Z)

Ek—l,n,p(q: Z) + Xk,n,p (q' Z);

Zk—=2

[nlgm+p+h+il,
1)20k]g) + 2 g1k = gln + plg - g*Ge = Dk - 1+ Ok - 2], o
q“(k — 1)?*[k — 2], + q*(k — 1)*[n + pl, + [Klg[n + plq — ¢*(k — 1) (k -
1+ )"*” —Kn+p+k+1] )+z2( q [ [k — 1], + q*(k — 1) (k —
1+c)[k 2]q+q [n]q[n+p]q+qk(k—1)(k—1+c)—q"[n+p]q(k—
Dk —1+0) = [nlgln+p+k+ 1]y + k(k + Oln +p + ke + 1])| =

(A (@) + 2Bion(@) + 22Cn(9))

where Xy ,(q,2) = ] {"+pq( k(k 1)2[k — 2] +(k—

[n]g[n+p+k+1]q
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First we estimate Ay ,,(q).

[n+p]q

An(@) =51 = (q"(k — 1)?[k — 2] +(k — 1)*[k],)

1_qn+p
1-q™

(q*(k — 1)?[k — 2]+ (k — 1)?[K],).

It is clear from the above equation |Ay ,(@)|< 2(1 + p)(k — 1)3. Next, we
estimate By ,(q). Using [n + plg = [n], + q"[plyand [n+p + k+ 1], =
[n]g + q"[p + k + 1],, we have

Bk,n(CI) = [n]q(qk[k — 1]q + [k]q + qk(k — 1)2 —k?) + [P]q(qn+k(k _
12+ q"[kly + "k — 1)) — @K [p + ke + 1] + ot (~q¥ (k

1%k - 2], — q*(k—1)(k—1+0)). (7)
It is clear that

(g e = Dk =1+ )k — 2], — q“U = Dk — 1+ )

1-— qn+p

1_—qn |2(1 + C) (k - 1)3

=< |

<2(1+c)(1+p)(k—-1)3

Now, we have

[n]q(q [k — 1]q + [K]q + g*(k — D? — k?) = (1 — ) {-q* 3}FLilq -
Yo Ulg — (ke — D[] g},

which implies that

|[n]q(qk[k - 1]q + [k]q + qk(k - 1)2 - kz)l
- (k—1)(k—2)+ (k—-1)

k%(k —1).
< 2 2 + k*( )
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Hence, in view of (7), we have

Bin(@| < (1+p)1+0){2(k—1)3+k(k—1)2+k*k—-1)+ (k
-2)(k—1)?+Kk*(k—-1) +k*(k+1) + (k—2)(k— 1)}
<8(1+p)(1+ok*(k+1).

Now, we estimate Cy ,(q). Using [n + p], = [n], + q"[pl,and [n+p + k +
1], = [n]q + q"[p + k + 1], we obtain

Cin(@) < [n]3(q* — 1)+ [n]y,(—q*[k — 1], + ¢*"™"[p]l, — q*(k— D (k— 1+
O—-q'lp+k+1],+k(k+c)+q“[k—2],(k—1)(k—1+¢) +
q“(k—1)(k—1+¢c)—q¢"™"[pl,(k—1)(k—1+¢c)+q"[p+ k+ 1] ,k(k +
c).

Using the identites

[k —11,=Y}¢llq(@— D+ (k- 1), [k+1]1,=Y o0l (g— 1D+ (k+1),
we obatm

m3(q* — 1)+ [nl, (—*lk — 11, + 4™ [pl, — q“Ck— Dk —1+¢) -
q"[p + k+1], +k(k+c)) = [n],(1 — q™) (k- [K],) + (1 -

a{a"* 350 + 4 Xfcolile + 44T plg + K2kl — [K]gk(1 — )} +
[n]q(ch_ n)

Thus, we get
|Ckn(@)] < 10(1 4+ p)(1 + Ok(k + 1)% + 3(1 + O)K3[n]4(1 — q").

Therefore, we have

k-2
Xinp(@,2)] < %]”;(““)(Z(k —1)3 + 8rk2(k + 1) + 10r2k(k + 1)?) +

3(1+c)r*k3(1 - q).

From Theorem 3.1, we obtain

. — 1-q"*P (1+1) k—1
1Dy (e 4,2) = ex(D)|s Tk + Drict,
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Forall k,n € N and |z| < r we get
[n+p]
(5 ] i)

| k— 1np(q; Z)|+|anp(q;z)|

|Eknp(qJ )l—

n+p q

IE k- lnp(qrz)l +
1-q™*P r(1+7)
1-q" [n],

|E' )1 0p(@ 2] +
1_

r | k— 1np(qiz)|+|anp(q:Z)|

Now, we shall find an estimate of |E'y_1,,,(q,2z)|, for k > 2

, k-1
|E k—l,n,p(q' Z)I < T ||Ek—1;"'l7||r

-1
= T”Dn.p(ek—l; q, Z) - ek_l(Z)”r
o D2 - k= Dk =1+ enersy

[n]g
- 21+ ok(k— 1?1 +1) k2

B [nlq

11

Thus, we have

< 1= q"+1’ 4(1+c)k(k— 1)2(1+r) rk
l_qn+p
r 1-qn |Ek—1,n,p(q' Z)|+|Xk,n,p(q' Z)|1
where
Xionp(@, 2)|< D4 (5 _ 1)3 4 8ri?(k + 1) + 10r2k(k + 1)) +

[n]q
3(1+o)r*k3(1 - q) < oE kac +3(1+orkk3(1 - q),

where Dy, . =(1+p)(1+c) (2(k — 1) + 8k*(k + 1) + 10k(k + 1)?).
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Thus, forall |z| < r,k > 1 and n € N, we obtain

1-q™*P 4(1+c)k(k—1)%2(1+7) vk
|Eknp(qu)| = 1—qn 2 +
1-
r q |Ek 1np(qiz)|+ kac+3(1+c)rkk3(1 q) <
1— n+p k
qu [:l] Fkrp+r IEk 1np(q;z)|+ kac+3(1+c)rkk3(1 q)

where Fy,.,, is a polynomial of degree 3 in k defined as

Firp =41+ c)k(k—1)>(1+ 7). ButEg,,(q,2) = 0, forany z € € and
therefore writing the last inequality for k = 1, 2, ...we easily obtain step by step
following

+p
|Eknp(q:z)| T [:22 Fip+ 22 1D]pc+3(1+c)rk(1_

qn
Q)Z 1]3 S 1

—q"tP rk
q [n]q

— kFy,p + @knk_p,c +3(1+ork(1 - q)k*.

Hence, we conclude that

(1-2)f' (@) +z(1-(c+1)2)f' (2) ©
1Dy (f;q,2) = f(2) - A0 | < 50 e |Einp (0,2)] <

1-q"*P 1 1 woo
P sz 1|kl kF gy + @Zk=1|ck|rkk0k,p,c+3(1+C)(1—

q) Zk=1 ICkIT k*.

As f®(z) = T2 , o k(k — 1)(k — 2)(k — 3)z%* and the series Yy, ci ¥ is
absolutely convergent in |z| < r, it easily follows that };_, c k(k — 1)(k —
2)(k—3)z¥* is absolutely convergent in |z| <r, which implies that
Y1 lck|r*kFy ., < 0 and YL, |cx|r¥kDy . < 0. Thus, the proof is
completed.

Remark 3.2. Let 0 < g < 1 be fixed. Since, i]—> 1—q as n— oo, by

[n q

applying limit n — oo, in the Theorem 3.2, we don’t get the convergence. But this

can be achieved by choosing 1 — n_12 < qn, < 1 with with g, -1 asn - . In
1_qn+p 1

(]G,

-0 as - oo |
n]Qn 1_qn
Therefore, from Theorem 3.2, we have

: 1
this case —»lasn—-oand 1-q, <5<
n
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Mr,p,k(f)

1z,

Tr,p,k(f)

[n1z,

z(1-2)f' (2)+z(1-(c+1)2)f' (2) |
[n]q

<

+ +

|Dn,p(f; q,2z) — f(z) —
3 Qoo

mZkﬂ |k,
that is, the order of approximation is 0(—[ ]12 ).

n

an

Now we will find the exact order of approximation for complex g-modified
Bernstein-Schurer operators. Throughout thesection, we assume that g, is a
sequence such that 0 < q, <1 with g, > 1asn—- o and qn - a(a<1) as
n — oo,

Theorem3.3.LetR> 14+ p,Dp={z € C;|z| < R}and f(z) = X m-0CmZ™,

for all z € Dy. If f is a non constant polynomial, then for r € [%,R)
q
Crnp(f)
1D (f; @) = Fllr 2 —,
[n]g

where C;.,(f) > 0 depends on f,r,p and on the sequence {g, }nen butitis
independent on of n.

Proof. Forall z € Dy and n € N, we get

1Dy (fi G ) = fllr = ﬁ{zu —2)f"(2) + (1 - (c+ D2)f (2) +

1 (1-2f (@ +2(1-(+ DS ()
E([n]gn(Dn,p(fiQ»Z)—f(Z)—Z e )}

[n] q

Now, using the identity ||F + G|, = |||F|| — ||G]|-| = ||F|l; — |G|l we
obtain

”Dn,p(f; qn:-) - f”r
1
>—{e;(1—e)f"+ (1 —(c+De)f

~ [n],
= (1D @) — f
[nl, gn ! 1PnpU: Qn, -
e (11— eD)f"+ (@A - (c+De)f"”

1D}

[n]g
Since f is a non-constant polynomial in Dg ,we get

llex(1 —e)f" + (1 = (c+ De)f'||, > 0.
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Indeed, supposing contrary it follows that
z(1-2)f"(2)+ (1 - (c+1)z2)f'(2) = 0,

writing the expansion of f'(z) and f''(z) in the last equality, we can see that
a,=0m=1,2,.. Thus f is a constant, which is a contradiction to the
hypothesis.

Now, from Remark 3.2, we have

(1,1 (f @, ) = f — =P ERL | S 0 asn - o

Consequently, there exists n; (depending only on fand r) such that, for all
n = n4, we have

lles(1 = en)f” + (1= (¢ + Ve flly = = (13, [1Dnp (Fi @ ) — f

lq
allenf H O D) > 2 les (1= e)f” + (1= (e + Def s

which implies that
1D (@) = fllr 2 g lles (X — e)f” + (1 = (e + Den)f Il for  all

n > n4. For 1 < n < n4, we have

Crnpf) .
1Dnp (@) = Flly 2 F228, With Cpnp(F) = [, 1D (f Gr-) = Fllr >

0.
Then, finally we get

| Chnp()
IIDn,p(f; qn:-) - f”r = [n]q

I} . 1 "
where Cr,n,p (f) = mln{erl,p, CT,Z,p Cr,n—l,p'E | |el(1 - el)f + (1 -
(c+ 1)ey)f'|l}- Hence, the proof is completed.

)

4. Conclusion

In this paper, an upper bound, the exact order of approximation and a
Voronovskaja-type theorem with a quantitative estimate are obtained for the
complex g-Bernstein-Durrmeyer type operators attached to analytic functions on
compact disks. Our results show that extension of complex q-Bernstein-
Durrmeyer type operators from real intervals to compact disks in the complex
plane extends approximation properties.
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