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ROBUST ACTIVE CONTROL LAW WITH INTERNAL 
MODEL FOR VIBRATION ATTENUATION 

Eliza MUNTEANU1, Ioan URSU2 

Lucrarea de faţă continuă o serie de cercetări ale autorilor ([1], [2]) în 
domeniul controlului activ al vibraţiilor pentru un model de aripă din material 
compozit prin utilizarea de actuatori piezo de tip MFC (Macro-Fiber-Composite). 
Caracteristicile de robusteţe ale controlului optimal LQR (Linear Quadratic 
Regulator) sunt recuperate de către filtrul Kalman aplicând o construcţie specială a 
estimatorului. Legea de control obţinută poartă numele de LQG/LTR (Linear 
Quadratic Gaussian/ Loop Transfer Recovery). Pe de altă parte, introducerea unui 
model intern în compensatorul sistemului oferă un plus de robusteţe şi performanţe 
remarcabile. 

 
The present work continues some recent researches of the authors ([1], [2]) 

in the vibration active control domain for a composite wing model by using MFC  
(Macro-Fiber-Composite) piezo actuators.  The robustness characteristics of the 
optimal control LQR (Linear Quadratic Regulator) are recovered by the Kalman 
filter applying a special construction for the estimator. The obtained control law is 
called LQG/LTR (Linear Quadratic Gaussian/ Loop Transfer Recovery). Moreover, 
including an internal model in the compensator of the system confers more 
robustness properties and remarkable performances. 
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1. Introduction 

In general, to meet the regulatory requirements for any certified aircraft to 
be free of wing dangerous vibrations, one can use either passive or active control 
techniques. The first ones increase the structure weight and in certain situations 
are not feasible. The active techniques enhance dynamic behavior of the wing, 
without redesign and adding mass; nowadays, these are used both for flutter 
suppression and structural load alleviation. Thus, herein our target concerns the 
obtaining of a robust active control law, based on the LQG/LTR synthesis [3], for 
a piezo smart composite wing. Moreover, to increase the robustness 
characteristics and the performance of the designed control law we incorporate an 
                                                            
1 PhD Student eng., Advanced Studies and Research Center, România, email: 
eliza.munteanu@asrc.ro 
2 PhD. math., National Institute for Aerospace Research “Elie Carafoli”, România, email: 
iursu@incas.ro 



44                                           Eliza Munteanu, Ioan Ursu 

internal model [4].  
The organization of the paper is as follows. Section 2 presents the 

mathematical model derived from an ANSYS FEM (Finite Element Method) 
structural modeling. Section 3 presents a design of the LQG/LTR scheme of 
control synthesis. Section 4 ends the work with numerical simulations and Section 
5 present some conclusions.  

2. Mathematical model 

The computational program ANSYS, performing FEM analysis of a wing 
physical model defined only in terms of geometrical and structural data [5], was 
applied to obtain the structural, second order, mathematical model 

0Mx Kx+ =  (1)

where x  is the vector of nodal displacements, and M, respectively K are mass and 
stiffness matrices. A model wing with an Eppler 211 airfoil and basic dimensions 
semi-span - 650 mm and chord - 200 mm, was considered. The wing skin is built 
from a composite material E-glass texture/orto-ophthalic resin with 4 layers and 
0.14 mm thickness each. The wing spars, placed at 30 %, respectively, 65 % of 
chord, are made of the same material, but with different number of layers. The 
ANSYS geometric model equipped with MFC (Macro Fiber Composite) actuators 
is given in Fig. 1. The skin and the spars were modeled as shell 99 - 2D - 
elements. In fact, the wing skin with MFC S1 actuators has five layers (four layers 
for composite material and one layer for MFC materials). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The wing model with two pairs of MFC  
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(one pair for introducing the perturbation and one pair for the control signal) 
 MFC S1 is a smart piezoelectric actuator with collocated sensor that has 
been developed at the NASA Langley Research Center. It is composed of 
rectangular fibers diced from a piezoceramic wafer. The main advantage of fiber-
based actuators is their poling in the same direction as their length. Thus, they are 
able to act with the piezoelectric strain constant d33 that is about twice as much as 
the d31 constant, used to actuate conventional PZT patches, which are poled in a 
direction transverse to their length [6]. 

Following a modal analysis using the full ANSYS model, the first three 
natural modes and frequencies (Hz) – 18.98, 79.58 and 327.78 – were found.  

Then, by an ANSYS substructuring analysis, the mathematical model was 
completed in the form 

1 2Mx Kx B B u+ = +ξ  (2)

where 1 2,B B are the vectors of the influences of the perturbation ξ and the control 
u . The operation assumed the static interaction cause-effect 

2 1, ,k k k kKx B u Kx B= = ξ  (3)

kx  being the  displacement   vector  corresponding  to  a  unitary electric field 

ku applied to the k MFC actuator. In principle, to calculate piezo action, we used 
the analogy between thermal and piezoelectric equations developed in [8], so 
introducing a thermal model for piezo material. Analogously one proceeds for 
obtaining of the vector 1B . The subsequent operations concern a) the recuperation 
in MATLAB of the matrices in system (2), codified in ANSYS as Harwell Boeing 
format and b) the modal transformation  

x Vq=  (4)

of the system (2) by using a reduced modal matrix (of order three) of eigenvectors 
V of dimension 7740×3 (7740 is the number of generalized coordinates in 
ANSYS, in connection with the number of the chosen FEM nodes) 

1 2
T T T T TV MVq V CVq V KVq V B V B u+ + = +ξ  (5) 

Thus, a modal quasidecentralized system, of three modes:  

( ) 2
1 22 i i iq diag q diag q B B u⎛ ⎞

⎜ ⎟
⎝ ⎠

+ ζ ω + ω = +  ξ  (6) 

is obtained  as a basis for standard LQG optimal problem, defined in terms of the 
first order state form system 
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( )1 2
1

2

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )

x t Ax t B t B t u t
z t C x t

y t C x t I t

= + ξ +
=

= + μ η
 (7) 

where ( )x t  is the state, ( )z t  is the controlled output, ( )y t  is the measured 

output, and ( )u t  is the control input. The state vector is given by  

( ) ( )T
3 2 1 3 2 1x t q q q q q q  =  ,  , ,  ,  ,   (8)

The external and internal components of the perturbations ξ and η  are the 
substitute of the aerodynamic disturbances and sensor noise vector, respectively. 
The controlled output ( )z t , in the following, will concern the whole system state 

(the modes and the modal derivatives); the control vector variable ( )u t  will be 
also penalized, taking into account the definition of the cost, see next Section. 
After the modal analysis, three displacement and three velocities were assigned 
for each node from the ANSYS wing model. The y- axis displacement of the node 
where the sensor is positioned will be taken as measured output ( )y t . 

3. Design of LQG/LTR robust active control  

The LQG control synthesis concerns the system (6). The goal is to find a 
control ( )u t  such that the system is stabilized and the control minimizes the cost 
function  

( ) ( ) ( )
( )

T T
0

01lim
0

T
LQG

T

x tQ
J E x t u t dt

u tRT→∞

⎧ ⎫⎡ ⎤⎡ ⎤⎪ ⎪⎡ ⎤= ⎨ ⎬⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎪ ⎪⎣ ⎦⎩ ⎭
∫  (10)

where the operator E denotes expectation (average value). The matrices Q  and R  
are thus defined as 

T
1 1 2, RQ C C R I=   = ρ  (11)

( Rρ  is herein scalar). Thus, the framework of the LQG synthesis is a stochastic 
one and the minimization of the index (10) means implicitly a minimization of the 
effect of disturbances on the controlled output z, and, in fact, an active alleviation 
of the vibrations. The solution is well-known and consists in the building of a 
controller and a state-estimator (Kalman filter) [8]. The state estimator is of the 
form 
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( ) ( )0ˆ ˆ fx A x t K y t= +  (12)

The controller makes use of this estimator and is defined by 

( ) ( )ˆcu t K x t∗ = −  (13)

The LQG control is built by first solving the decoupled algebraic Riccati 
equations 

T 1 T T
2 2 1 1

T T 1 T
2 2 1 1

0

0
JA P PA PB R B P C Q C

AS SA SC Q C S B Q B

−

−
η ξ

+ − + =

+ − + =
 (14)

where the noise matrices Qξ  and Qη  are so defined 

( )
( ) ( ) ( ) ( )

0

0

Qt
E t t t

t Q
ξ

η

⎡ ⎤⎧ ⎫ξ⎡ ⎤⎪ ⎪ξ η = δ − τ⎡ ⎤ ⎢ ⎥⎨ ⎬⎢ ⎥ ⎣ ⎦η⎪ ⎪ ⎢ ⎥⎣ ⎦⎩ ⎭ ⎣ ⎦
 (15)

with ( )tδ − τ  being the Dirac distribution. The controller gain, cK , the filter gain, 

fK , and the filter matrix are defined by 

1 T T 1
2 2 0 2 2, ,c f c fK R B P K SC Q A A B K K C− −

η=    =    = − −  (16)

Using the state-estimator (12) and the control law (13), the system (7) becomes  

( )
( ) ( ) ( )

1 2
2 0 22

ˆ( ) ( ) ( )
ˆ ˆ( ) ( )

c
f f c

x t Ax t B t B K x t
x t K C x t K I t A D K x t

= + ξ −
= + μ η + −

 (17)

As comparison term for this system in numerical simulations, it will be taken the 
LQR closed loop system 

( )2 1( ) ( ) ( )cx t A B K x t B t= − + ξ  (17’)

and the “passive” one (without control)   

1( ) ( ) ( )x t Ax t B t= + ξ  (17”)

Now, in the following, the LQG/LTR procedure will be applied to recover 
the lost robustness of the LQR system. Indeed, it is well known that the LQR 
controller has good robustness properties, but these properties are usually lost 
when the Linear Quadratic Regulator (LQR) is used in conjunction with Kalman 
filter. 

In view of this procedure, both the 2H -tradeoff type optimization 
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perspective used in [3] and the open loop singular value perspective defined in 
[9], will be involved. Thus, the controller gain synthesis is performed such that   

( ) ( )1
1 2 /C sI A B W s−− ρ =  (18)

where ( )W s is a weight to trade the sensitivity function ( )S s and complementary 
sensitivity function ( )T s  

( ) ( ) ( ) ( ) ( ) ( ) ( )1 ,S s I G s K s T s G s K s S s−
= +   =⎡ ⎤⎣ ⎦  (19)

one against the other – WS versus T. It is emphasized that the significance of this 
functions derives from the following fundamental frequency domain prescriptions 
for feedback design: a) ( )S s  must be small whenever output perturbations are 

large and b) ( )T s  must be small wherever model errors are large [9]. The filter 
gain synthesis will be performed such that 

( ) ( )LQG LQRL j L jω ≈ ω  (20)

in a certain range, as large as possible [ ]max0,ω∈  ω , where ( )j sω =   

( ) ( ) ( )

( ) ( )

1 1
2 2 2 2

1
2

LQG f c f

LQR c

L s sI A K C B K K C sI A B

L s K sI A B

− −

−

= − − − − −⎡ ⎤
⎢ ⎥⎣ ⎦

= −
 (21)

Thus, the filter gain fK  is chosen so that the closed-loop LQG/LTR 

system (having open loop LQGL  transfer matrix, containing Kalman filter matrix) 
recovers internal stability and some of the robustness properties (gain and phase 
margins) of the LQR design (with open loop LQRL  transfer matrix). In fact, the 

weight matrix ( )W s  is chosen such that its crossover frequency is at least the 
frequency of the first neglected mode.  

The internal-model-based approach seems to be the best suited to 
problems of tracking unknown reference trajectories or rejecting unknown 
disturbances [4]. Thus, control schemes incorporating a robust controller 
efficiently address the problem of rejecting all disturbance inputs generated by the 
exosystem 

Sξ = ξ  (22)

The dynamics of the introduced compensator, ( )tθ ,  is described by the equation 
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( ) ( ) ( )t C t B y t∗ ∗θ = θ +  (23)

where C∗ and B∗are weight matrices. The control signal becomes 

( ) ( )0 1ˆ ( )u t K x t K t= − + θ  (24)

and the LQR and LQG/LTR controlled systems corresponding to the systems 
(17’), respectively (17) include the compensator’s equation (23) 

( )
( )

2 0 1 2 1

2

( ) ( ) ( ) ( )

( ) ( ) ( )

x t A B K x t B t B K t

t C t B C x t B I t∗ ∗ ∗

= − + ξ + θ

θ = θ + + μ η
 (25)

respectively 

( ) ( )
( )

( ) ( ) ( ) ( )

1 2 0 2 1

2

2 2 0 2 2 1

ˆ( ) ( ) ( )

( ) ( ) ( )

ˆ ˆ( ) ( )f f f

x t Ax t B t B K x t B K t

t C t B C x t B I t

x t K C x t K I t A B K K C x t B K t

∗ ∗ ∗

= + ξ − + θ

θ = θ + + μ η

= + μ η + − − + θ

 
(25’)

The open loop transfer matrices become 

( ) ( ) ( ){
]( ) } ( )

( ) ( ) ( )

1
2

1 1
0 2 2 0 0 2 2 0

1
2 2

1 1
0 1 2 2

1

LQG f f f

LQR

L s

sI A B

K sI A K C B K K K sI A K C B K

B sI C B C

L s K K sI C B C sI A B

−

− −

−∗ ∗

− −∗ ∗

= −

−

⎡− + + + − + +⎢⎣

+ −

⎡ ⎤= − − − −⎢ ⎥⎣ ⎦

 (26)

 

4. Numerical simulations 

The previously described LQG/LTR control synthesis was tested in 
numerical simulations of the systems (17) in a first step. 

We are thus first interested in the passive versus LQG/LTR closed loop 
systems comparison of the time histories of the three modes, see Fig. 2. By a trial 
and error process, the following values of the LQR and LQG/LTR weighting 
matrices were chosen  
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( )7 6 5

T
1 1

2 10
1

10 ,10,10,10 ,1,1,diag  , 1 10

, 1

, 3.16 10

J R

csi csi

Q

Q q B B q

Q I

−

ξ

−
η

=  ρ = ×

 =   =

 = μ   μ = ×

 
(27)

The state perturbation  

( )1500sin 2 f tξ = π×  (28)

was considered as generating a system resonance for the most dangerous, bending 
type, first mode.  

 
Fig. 2. LQG/LTR closed loop versus passive time histories  
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Similar sensor noises were introduced  

( )400sin 2 50tη = π×  (29)

The attenuations, in dB values, of LQR and LQG/LTR nominal systems versus 
the passive one, for the first three modes are: 30.70, -0.72 and -3.53 respectively, 
28.60, 2.32 and 3.96 dB. We can remark very close values of the two nominal 
controlled systems, which means a successful synthesis procedure. On the other 
hand, the first mode attenuation had a remarkable value and the other two modes 
remained stable. 

 
Fig. 3. LQG/LTR with internal model closed loop versus passive time histories  
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In the next step, the performance of the LQG/LTR with internal model 
system (25’) was tested.  The weighting matrices for the controller and filter 
remained the same as in the relation (27) and we added only one weight for the 
compensator with the value 1110 . For both type of systems we take into account 
the limitation of the control signal (no higher then 500± V). The obtained 
attenuations for the LQR, respectively LQG/LTR controlled systems were: 42.34, 
1.74 and 2.92, respectively 38.31, 6.86 and 3.19 dB (Fig. 3). Once again we can 
observe that the LQR and LQG/LTR performance are similar. In terms of 
comparison for the systems with and without internal model, the attenuations are 
clearly better in the case of using the internal model. 
The last set of tests complete the numerical simulations with robustness 
characteristics testing in the case of the model errors expressed as random 
uncertainties on modes natural frequencies. The results for both systems, without 
and with internal model (IM), are presented in the Table 1. As we can see, both 
systems had similar behavior regarding the robustness property, but the obtained 
performances are almost twice better for the system with internal model. 
 

Table 1 
Results for robustness testing 

Nr. 
crt. 

Deviations 
for mode 1 
frequency  

[%] 

Deviations 
for mode 2 
frequency 

[%] 

Deviations
for mode 3 
frequency 

[%] 

Mode 1 
attenuation 

LTR without
IM 

[dB] 

Mode 1 
attenuation 
LTR with 

IM 
[dB] 

System 
attenuation 

LTR without 
IM 

[dB] 

System 
attenuation 
LTR with  

IM 
[dB] 

1 20 -10 -10 8.33 17.28 8.19 20.49 
2 25 -15 -10 6.53 15.46 6.36 18.69 
3 25 -10 -15 6.52 15.13 6.32 18.66 
4 25 0 -25 6.52 14.37 6.19 18.53 
5 25 -25 0 6.54 15.94 6.43 18.40 
6 25 25 0 6.53 15.93 6.42 18.70 
7 25 25 25 6.54 16.74 6.51 18.67 
8 -25 25 25 7.96 17.81 8.10 20.09 
9 -25 -25 25 7.96 17.81 8.10 20.09 
10 -25 -25 -25 7.91 14.81 8.03 19.90 
11 -25 25 -25 7.91 14.8 8.03 19.90 
12 -30 -30 30 6.74 16.58 6.9 18.76 
13 -40 -40 40 5.01 14.78 5.21 16.80 
14 -50 -50 48 3.87 13.48 4.06 15.32 
15 -50 -50 50 unstable unstable unstable unstable 
16 -50 50 48 3.86 13.44 4.06 15.32 
17 50 50 48 1.72 11.14 1.65 12.49 
18 50 50 50 1.71 11.17 1.65 12.49 
19 50 -50 50 1.72 11.19 1.66 12.49 
20 -50 50 50 unstable unstable unstable unstable 
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All tested systems remained stable with the exception of systems 
numbered with 15 and 20. In these cases, the condition of decreasing the first 
frequency coupled with the increasing of the third frequency with 50 percents, 
seems to induce the worst behavior of systems. Even so, a 50 % deviation from 
the nominal system can appear only in the cases of health affected systems. 
Usually, the range of system uncertainties is in practice rounded about 15± %. In 
this range both systems performed, but it can be observed a decreasing attenuation 
in the case of the system without internal model. 

5. Conclusions 

The purpose of this study was to develop and evaluate a robust and highly 
performant integrated LQG/LTR method of control synthesis as applied to a piezo 
smart composite wing mathematical model in view of vibrations attenuation. 
Beyond many classical contributions in the field, our approach consists in the 
proposal of the following two criteria of obtaining the LQG/LTR controller: a) 
choosing the weight ( )W s  (18) with a well-defined crossover frequency in 
correlation with the system dynamics and b) performing a filter gain to satisfy the 
condition (20). 

In fact, the numerical results resumed in the Table 1 can be assumed as a 
proof of the expected robustness of the LQG/LTR system. Moreover, by 
introducing an internal model in the controller’s design we obtain more robustness 
properties and remarkable performances. 

Thus, the main conclusion of the work concerns the idea of validating the 
proposed LQG/LTR procedure as an effective methodology of vibrations 
attenuations for a piezo smart wing. 
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