

ON EDGE IRREGULARITY STRENGTH OF TOEPLITZ GRAPHS

Ali Ahmad¹, Martin Bača², Muhammad Faisal Nadeem³

An edge irregular k -labeling of a graph G is a labeling of the vertices of G with labels from the set $\{1, 2, \dots, k\}$ in such a way that for any two different edges xy and $x'y'$ their weights $w(xy)$ and $w(x'y')$ are distinct. The weight $w(xy)$ of an edge xy in G is the sum of the labels of the end vertices x and y . The minimum k for which the graph G has an edge irregular k -labeling is called the edge irregularity strength of G , denoted by $es(G)$.

In this paper, we study the edge irregular k -labeling for Toeplitz graphs and determine the exact value for several classes of Toeplitz graphs.

Keywords: irregular assignment, irregularity strength, edge irregularity strength, Toeplitz graphs

MSC2010: 05C78

1. Introduction

Let G be a connected, simple and undirected graph with vertex set V and edge set E . By a *labeling* we mean any mapping that maps a set of graph elements to a set of numbers (usually positive integers), called *labels*. If the domain is the vertex-set or the edge-set, the labelings are called respectively *vertex labelings* or *edge labelings*. If the domain is $V(G) \cup E(G)$ then we call the labeling *total labeling*. Thus, for an edge k -labeling $\delta : E(G) \rightarrow \{1, 2, \dots, k\}$ the associated weight of a vertex $x \in V(G)$ is

$$w_\delta(x) = \sum \delta(xy),$$

where the sum is over all vertices y adjacent to x .

Chartrand *et al.* in [10] introduced edge k -labeling δ of a graph G such that $w_\delta(x) \neq w_\delta(y)$ for all vertices $x, y \in V(G)$ with $x \neq y$. Such labelings were called *irregular assignments* and the *irregularity strength* $s(G)$ of a graph G is known as the minimum k for which G has an irregular assignment using labels at most k . The irregularity strength $s(G)$ can be interpreted as the

¹College of Computer Science & Information Systems, Jazan University, Jazan, KSA, e-mail: ahmadsm@gmail.com

²Department of Applied Mathematics and Informatics, Technical University, Košice, Slovak Republic, e-mail: martin.baca@stuba.sk

³Department of Mathematics, COMSATS, Institute of Information Technology, Lahore, Pakistan, e-mail: mfaisalnadeem@ymail.com

smallest integer k for which G can be turned into a multigraph G' by replacing each edge by a set of at most k parallel edges, such that the degrees of the vertices in G' are all different. This parameter has attracted much attention [5, 6, 9, 16].

Motivated by these papers, Ahmad *et al.* in [1] started to investigate an *edge irregularity strength*. A vertex k -labeling $\phi : V(G) \rightarrow \{1, 2, \dots, k\}$ is called an *edge irregular k -labeling* of the graph G if for every two different edges xy and $x'y'$ there is $w_\phi(xy) \neq w_\phi(x'y')$, where the weight of an edge $xy \in E(G)$ is $w_\phi(xy) = \phi(x) + \phi(y)$. The minimum k for which the graph G has an edge irregular k -labeling is called the *edge irregularity strength* of G , denoted by $es(G)$. The notion of the edge irregularity strength was defined in [1]. There is estimated the lower bound of the edge irregularity strength as follows

Theorem 1.1. [1] *Let G be a simple graph with maximum degree $\Delta = \Delta(G)$. Then $es(G) \geq \max \{ \lceil (|E(G)| + 1)/2 \rceil, \Delta(G) \}$.*

In [1] it is proved that for path P_n , $n \geq 2$, $es(P_n) = \lceil n/2 \rceil$, for star $K_{1,n}$, $n \geq 1$, $es(K_{1,n}) = n$, for double star $S_{m,n}$, $3 \leq m \leq n$, $es(S_{m,n}) = n$ and for Cartesian product of two paths P_n and P_m , $m, n \geq 2$, $es(P_n \square P_m) = \lceil (2mn - m - n + 1)/2 \rceil$. Al-Mushayt [4] determined the edge irregularity strength of products of certain families of graphs with path P_2 .

2. Toeplitz graph

A simple undirected graph T of order p is called *Toeplitz graph* if its adjacency matrix $A(T)$ is Toeplitz. A *Toeplitz matrix* $A(T) = (a_{i,j})$, is a $(p \times p)$ symmetric matrix which has constant values along all diagonals parallel to the main diagonal, i.e. $a_{i,j} = a_{i+1,j+1}$ for each $i, j = 1, 2, \dots, p - 1$. The p distinct diagonals of a $(p \times p)$ symmetric Toeplitz adjacency matrix will be labeled $0, 1, 2, \dots, p - 1$. Diagonal 0 is the main diagonal and it contains only zeros, i.e. $a_{ii} = 0$ for all $i = 1, 2, \dots, p$ so that there are no loops in the Toeplitz graph. A Toeplitz graph T is uniquely defined by the first row of $A(T)$, a $(0 - 1)$ -sequence. Let t_1, t_2, \dots, t_s be the diagonals containing ones, $0 < t_1 < t_2 < \dots < t_s < p$. Then, the corresponding Toeplitz graph will be denoted by $T_p(t_1, \dots, t_s)$. That is, $T_p(t_1, \dots, t_s)$ is the graph with the vertex set $V(T) = \{v_i : i = 1, 2, \dots, p\}$ in which two vertices u, v of T being connected by an edge if and only if $|u - v| \in \{t_1, t_2, \dots, t_s\}$. If t_j , $j = 1, 2, \dots, s$, is the diagonal containing ones then the diagonal elements a_{i,t_j+i} , $i = 1, 2, \dots, p - t_j$, determine edges $v_i v_{t_j+i}$ in the Toeplitz graph. Thus the edge set is $E(T) = \bigcup_{j=1}^s \{v_i v_{t_j+i} : i = 1, 2, \dots, p - t_j\}$, $|V(T)| = p$ and $|E(T)| = ps - \sum_{j=1}^s t_j$.

Toeplitz graphs have been introduced by Sierksma and first been investigated by van Dal *et al.* [11] with respect to their hamiltonicity. Later

Heuberger [18] has extended this study in 2002. The properties of Toeplitz graphs; such as bipartiteness, planarity and colourability, have been studied in [12, 13, 14, 15]. For more recent works on Toeplitz graphs see [8, 21, 22, 25]. A Toeplitz graph is not necessarily connected, see Figure 1.

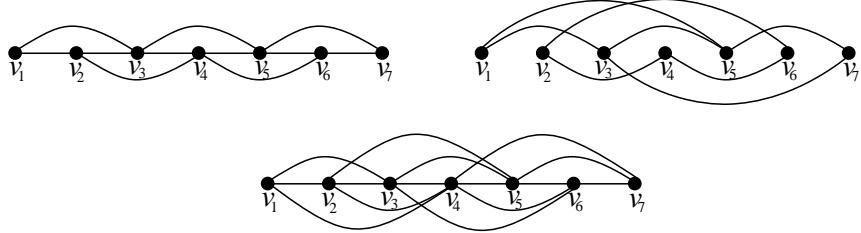


FIGURE 1. Toeplitz graphs $T_7\langle 1, 2 \rangle$, $T_7\langle 2, 4 \rangle$ and $T_7\langle 1, 2, 3 \rangle$

The following result proved by van Dal et al. [11], provides a lower bound on the number of components of a Toeplitz graph.

Theorem 2.1. [11] $T_p\langle t_1, \dots, t_s \rangle$ has at least $\gcd(t_1, \dots, t_s)$ components.

In the paper we investigate the existence of the edge irregularity strength for Toeplitz graphs.

3. Results

Next theorem gives the exact value of the edge irregularity strength of Toeplitz graph $T_n\langle 1, 2 \rangle$ which is bigger than the lower bound in Theorem 1.1.

Theorem 3.1. Let $T_n\langle 1, 2 \rangle$ be a Toeplitz graph on $n \geq 3$ vertices. Then $es(T_n\langle 1, 2 \rangle) = n$.

Proof. Let $T_n\langle 1, 2 \rangle$ be a Toeplitz graph with the vertex set $V(T_n\langle 1, 2 \rangle) = \{v_i : 1 \leq i \leq n\}$ and the edge set $E(T_n\langle 1, 2 \rangle) = \{v_i v_{i+1} : 1 \leq i \leq n-1\} \cup \{v_i v_{i+2} : 1 \leq i \leq n-2\}$. According to Theorem 1.1 we have that $es(T_n\langle 1, 2 \rangle) \geq n-1$. Since every two adjacent vertices in $T_n\langle 1, 2 \rangle$ are a part of complete graph K_3 , therefore under every edge irregular labeling the smallest edge weight has to be at least 3 and the largest edge weight has to be at least $2n+2-t_1-t_2 = 2n-1$. Since the edge weight $2n-1$ is the sum of two labels, so at least one label is at least $\lceil (2n-1)/2 \rceil = n$. Therefore $es(T_n\langle 1, 2 \rangle) \geq n$. To prove the equality, it suffices to prove the existence of an optimal edge irregular n -labeling.

Let $\phi_1 : V(T_n\langle 1, 2 \rangle) \rightarrow \{1, 2, \dots, n\}$ be the vertex labeling such that

$$\phi_1(v_i) = i, \quad \text{for } 1 \leq i \leq n.$$

Since $w_{\phi_1}(v_i v_{i+1}) = \phi_1(v_i) + \phi_1(v_{i+1}) = 2i+1$, for $1 \leq i \leq n-1$ and $w_{\phi_1}(v_i v_{i+2}) = \phi_1(v_i) + \phi_1(v_{i+2}) = 2i+2$, for $1 \leq i \leq n-2$, so the edge weights are distinct for all pairs of distinct edges. Thus, the vertex labeling ϕ_1 is an optimal edge irregular n -labeling. This completes the proof. \square

Next theorem proves that the lower bound in Theorem 1.1 is tight.

Theorem 3.2. *Let $T_n\langle 1, 3 \rangle$ be a Toeplitz graph on $n \geq 4$ vertices. Then $es(T_n\langle 1, 3 \rangle) = n - 1$.*

Proof. Let $T_n\langle 1, 3 \rangle$ be a Toeplitz graph with the vertex set $V(T_n\langle 1, 3 \rangle) = \{v_i : 1 \leq i \leq n\}$ and the edge set $E(T_n\langle 1, 3 \rangle) = \{v_i v_{i+1} : 1 \leq i \leq n-1\} \cup \{v_i v_{i+3} : 1 \leq i \leq n-3\}$. According to Theorem 1.1 we have that $es(T_n\langle 1, 3 \rangle) \geq \lceil (2n+1-4)/2 \rceil = n-1$. For the converse, we define a suitable edge irregular labeling $\phi_2 : V(T_n\langle 1, 3 \rangle) \rightarrow \{1, 2, \dots, n-1\}$ in the following way

For $n \equiv 1 \pmod{4}$

$$\phi_2(v_i) = \begin{cases} i, & \text{if } i \equiv 1 \pmod{4} \text{ and } 1 \leq i < n-1 \\ i-1, & \text{if } i \equiv 2, 3 \pmod{4} \\ i-1, & \text{if } i \equiv 0 \pmod{4} \text{ and } 1 \leq i \leq n-2 \\ i, & \text{if } i = n-1 \\ i-2, & \text{if } i = n \end{cases}$$

For $n \equiv 0, 2, 3 \pmod{4}$

$$\phi_2(v_i) = \begin{cases} i, & \text{if } i \equiv 1 \pmod{4} \\ i-1, & \text{if } i \equiv 0, 2, 3 \pmod{4} \end{cases}$$

The edge weights are as follows

If $n \equiv 1 \pmod{4}$

$$w_{\phi_2}(v_i v_{i+1}) = \begin{cases} 2i, & \text{if } i \equiv 0, 1 \pmod{4} \text{ and } 1 \leq i < n-2 \\ 2i-1, & \text{if } i \equiv 2, 3 \pmod{4} \text{ and } 1 \leq i < n-2 \\ 2i, & \text{if } i = n-2 \\ 2i-1, & \text{if } i = n-1 \end{cases}$$

If $n \equiv 0, 2, 3 \pmod{4}$

$$w_{\phi_2}(v_i v_{i+1}) = \begin{cases} 2i, & \text{if } i \equiv 0, 1 \pmod{4} \\ 2i-1, & \text{if } i \equiv 2, 3 \pmod{4} \end{cases}$$

If $n \equiv 1 \pmod{4}$

$$w_{\phi_2}(v_i v_{i+3}) = \begin{cases} 2i+2, & \text{if } i \equiv 1, 2 \pmod{4} \text{ and } i < n-4 \\ 2i+1, & \text{if } i \equiv 0, 3 \pmod{4} \\ 2i+3, & \text{if } i = n-4 \\ 2i, & \text{if } i = n-3 \end{cases}$$

If $n \equiv 0, 2, 3 \pmod{4}$

$$w_{\phi_2}(v_i v_{i+3}) = \begin{cases} 2i+2, & \text{if } i \equiv 1, 2 \pmod{4} \\ 2i+1, & \text{if } i \equiv 0, 3 \pmod{4}. \end{cases}$$

Since, the edge weights are distinct for all pairs of distinct edges, the vertex labeling ϕ_2 is a suitable edge irregular $(n-1)$ -labeling. Hence, we have $es(T_n \langle 1, 3 \rangle) = n-1$. \square

Next theorem gives the exact value of the edge irregularity strength for $T_n \langle 2, 4 \rangle$ and show that this value is bigger than the lower bound in Theorem 1.1.

Theorem 3.3. *Let $T_n \langle 2, 4 \rangle$, $n \geq 5$, be a Toeplitz graph. Then $es(T_n \langle 2, 4 \rangle) = n-1$.*

Proof. Let $T_n \langle 2, 4 \rangle$ be a Toeplitz graph with the vertex set $V(T_n \langle 2, 4 \rangle) = \{v_i : 1 \leq i \leq n\}$ and the edge set $E(T_n \langle 2, 4 \rangle) = \{v_i v_{i+2} : 1 \leq i \leq n-2\} \cup \{v_i v_{i+4} : 1 \leq i \leq n-4\}$. Let $\phi_3 : V(T_n \langle 2, 4 \rangle) \rightarrow \{1, 2, \dots, n-1\}$ be the vertex labeling such that

$$\phi_3(v_i) = \begin{cases} \frac{i+1}{2}, & \text{if } i \text{ is odd} \\ \lceil \frac{n+i-2}{2} \rceil, & \text{if } i \text{ is even.} \end{cases}$$

The edge weights are as follows:

$$w_{\phi_3}(v_i v_{i+2}) = \begin{cases} i+2, & \text{if } i \text{ is odd} \\ n+i-1, & \text{if } i \text{ and } n \text{ are even} \\ n+i, & \text{if } i \text{ is even and } n \text{ is odd} \end{cases}$$

$$w_{\phi_3}(v_i v_{i+4}) = \begin{cases} i+3, & \text{if } i \text{ is odd} \\ n+i, & \text{if } i \text{ and } n \text{ are even} \\ n+i+1, & \text{if } i \text{ is even and } n \text{ is odd.} \end{cases}$$

We can see that all vertex labels are at most $n-1$. The edge weights under the labeling ϕ_4 successively attain values $3, 4, \dots, n-1, n, n+2, n+3, \dots, 2n-3$ for n odd and $3, 4, \dots, n-2, n-1, n+1, n+2, \dots, 2n-3$ for n even. Thus the edge weights are distinct for all pairs of distinct edges and the labeling ϕ_3 provides the upper bound on $es(T_n \langle 2, 4 \rangle)$, i.e $es(T_n \langle 2, 4 \rangle) \leq n-1$.

Since every edge of $T_n\langle 2, 4 \rangle$ belongs to K_3 , then under every edge irregular labeling the smallest possible edge weight is obtain as sum of the vertex labels 1 and 2. Then the largest edge weight has to be at least $|E(T_n\langle 2, 4 \rangle)| + 2 = 2n - 4$ and obtained as the sum of different vertex labels. Thus the largest edge weight is at least $2n - 3$ and $es(T_n\langle 2, 4 \rangle) \geq \lceil (2n - 3)/2 \rceil = n - 1$. This provides the lower bound on $es(T_n\langle 2, 4 \rangle)$. Combining with previous upper bound, we get that $es(T_n\langle 2, 4 \rangle) = n - 1$. \square

The following theorem gives the exact value of the edge irregularity strength for Toeplitz graph $T_n\langle 1, 2, 3 \rangle$ for $n \not\equiv 1 \pmod{4}$.

Theorem 3.4. *Let $T_n\langle 1, 2, 3 \rangle$, $n \geq 4$, be a Toeplitz graph. Then*

$$es(T_n\langle 1, 2, 3 \rangle) = \begin{cases} \frac{3n}{2} - 1, & \text{if } n \text{ is even} \\ \frac{3n-3}{2}, & \text{if } n \equiv 3 \pmod{4}. \end{cases}$$

Proof. Let $V(T_n\langle 1, 2, 3 \rangle) = \{v_i : 1 \leq i \leq n\}$ be the vertex set and $E(T_n\langle 1, 2, 3 \rangle) = \{v_i v_{i+1} : 1 \leq i \leq n-1\} \cup \{v_i v_{i+2} : 1 \leq i \leq n-2\} \cup \{v_i v_{i+3} : 1 \leq i \leq n-3\}$ be the edge set of $T_n\langle 1, 2, 3 \rangle$ with $|E(T_n\langle 1, 2, 3 \rangle)| = 3n - 6$. According to Theorem 1.1 we have $es(T_n\langle 1, 2, 3 \rangle) \geq \max\{\lceil (3n-4)/2 \rceil, 6\} = \lceil (3n-4)/2 \rceil$. Since every four consecutive vertices in $T_n\langle 1, 2, 3 \rangle$ form a complete graph K_4 , therefore under every edge irregular labeling no couple of adjacent vertices can be assigned by the same label. This implies that the smallest edge weight 2 is not possible. So if the smallest edge weight is 3 then the largest edge weight is at least $3n - 4$. Since each edge weight is a sum of two labels, at least one label is at least $\lceil (3n-4)/2 \rceil$. Thus for $n = 4t + 3$, $t \geq 1$, we have

$$es(T_n\langle 1, 2, 3 \rangle) \geq \left\lceil \frac{3n-4}{2} \right\rceil = \left\lceil 6k + 2 + \frac{1}{2} \right\rceil = \frac{3n-3}{2}. \quad (1)$$

For n even the edge weight $3n - 4$ is the sum of two the same labels $3n/2 - 2$ assigned to the adjacent vertices. Since it is not possible, then one label from the sum $3n - 4$ has to be at least $\lceil (3n-3)/2 \rceil$. Hence we have

$$es(T_n\langle 1, 2, 3 \rangle) \geq \left\lceil \frac{3n-3}{2} \right\rceil = \left\lceil \frac{3n}{2} - 1 - \frac{1}{2} \right\rceil = \frac{3n}{2} - 1. \quad (2)$$

For the converse, we define the vertex labeling ϕ_4 as follows:

$$\phi_4(v_i) = \begin{cases} \frac{3i-2}{2}, & \text{if } i \text{ is even} \\ \frac{3i-1}{2}, & \text{if } i \equiv 1 \pmod{4} \\ \frac{3i-3}{2}, & \text{if } i \equiv 3 \pmod{4}. \end{cases}$$

Observe that under the vertex labeling ϕ_4 all vertex labels are at most $3n/2 - 1$ for n even and $(3n-3)/2$ for $n \equiv 3 \pmod{4}$. For $n \equiv 0, 3 \pmod{4}$ the edge weights successively attain values $3, 4, \dots, 3n - 4$ and for $n \equiv 2 \pmod{4}$ the edges receive the weights $3, 4, \dots, 3n - 6, 3n - 5, 3n - 3$. It means that the edge weights are distinct for all pairs of distinct edges and the labeling ϕ_4 is a

suitable edge irregular $(3n/2 - 1)$ -labeling, respectively $((3n - 3)/2)$ -labeling. Thus the labeling ϕ_4 provides the upper bound on $es(T_n\langle 1, 2, 3 \rangle)$. Combining with the lower bounds given by (1) and (2), produces the desired result. \square

The following theorem gives the upper bound of the edge irregularity strength for Toeplitz graph $T_n\langle 1, 2, 3 \rangle$ for $n \equiv 1 \pmod{4}$.

Theorem 3.5. *Let $T_n\langle 1, 2, 3 \rangle$, be a Toeplitz graph for $n \equiv 1 \pmod{4}$, $n \geq 5$. Then*

$$es(T_n\langle 1, 2, 3 \rangle) \leq \frac{3n - 1}{2}.$$

Proof. In view that $(3n - 1)/2$ is an upper bound on the edge irregularity strength of graph $T_n\langle 1, 2, 3 \rangle$ it suffices to prove the existence of a vertex labeling $\phi_5 : V(T_n) \rightarrow \{1, 2, \dots, (3n - 1)/2\}$ with edge irregular properties. Define the vertex labels as follows:

$$\phi_5(v_i) = \phi_4(v_i) \text{ for } v_i \in V(T_n\langle 1, 2, 3 \rangle).$$

It is a routine matter to verify that all vertex labels are at most $(3n - 1)/2$ and the edge weights form the set of different integers, namely $\{3, 4, \dots, 3n - 6, 3n - 5, 3n - 3\}$. Thus the labeling ϕ_5 is desired edge irregular $((3n - 1)/2)$ -labeling. \square

4. Conclusion

In this paper we dealt the existence of the edge irregularity strength for Toeplitz graphs. We determined the exact values of the edge irregularity strength of Toeplitz graphs $T_n\langle 1, 2 \rangle$, $T_n\langle 1, 3 \rangle$ and $T_n\langle 2, 4 \rangle$, namely we proved that $es(T_n\langle 1, 2 \rangle) = n$, $es(T_n\langle 1, 3 \rangle) = es(T_n\langle 2, 4 \rangle) = n - 1$. Moreover we proved that $es(T_n\langle 1, 2, 3 \rangle) = 3n/2 - 1$ for n even and $es(T_n\langle 1, 2, 3 \rangle) = (3n - 3)/2$ for $n \equiv 3 \pmod{4}$. For $n \equiv 1 \pmod{4}$ we showed that $es(T_n\langle 1, 2, 3 \rangle) \leq (3n - 1)/2$. We believe that this upper bound is the exact value therefore we propose the following conjecture.

Conjecture 1. *Let $n \equiv 1 \pmod{4}$, $n \geq 5$. Then*

$$es(T_n\langle 1, 2, 3 \rangle) = (3n - 1)/2.$$

Acknowledgement. The research for this article was supported by Jazan University and by APVV-15-0116.

REFERENCES

- [1] *A. Ahmad, O. Al-Mushayt and M. Baća*, On edge irregularity strength of graphs, *Appl. Math. Comput.* **243**(2014) 607-610.
- [2] *A. Ahmad, M. Baća, Y. Bashir and M.K. Siddiqui*, Total edge irregularity strength of strong product of two paths, *Ars Combin.* **106**(2012) 449-459.
- [3] *O. Al-Mushayt, A. Ahmad and M.K. Siddiqui*, On the total edge irregularity strength of hexagonal grid graphs, *Australas. J. Combin.* **53**(2012) 263-271.
- [4] *O. Al-Mushayt*, On edge irregularity strength of products of certain families of graphs with path P_2 , *Ars Combin.* to appear.

[5] *M. Aigner and E. Triesch*, Irregular assignments of trees and forests, SIAM J. Discrete Math. **3**(1990) 439-449.

[6] *D. Amar and O. Togni*, Irregularity strength of trees, Discrete Math. **190**(1998) 15-38.

[7] *M. Bača, S. Jendrol, M. Miller and J. Ryan*, On irregular total labellings, Discrete Math. **307**(2007) 1378-1388.

[8] *M. Bača, Y. Bashir, M. F. Nadeem, A. Shabbir*, On super edge-antimagic total labeling of Toeplitz graphs, Mathematics in the 21st Century Springer Proceedings in Mathematics & Statistics, **98**(2015) 1-10.

[9] *T. Bohman and D. Kravitz*, On the irregularity strength of trees, J. Graph Theory **45**(2004) 241-254.

[10] *G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba*, Irregular networks, Congr. Numer. **64**(1988) 187-192.

[11] *R. van Dal, G. Tijssen, Z. Tuza, J. van der Veen, C.H. Zamfirescu, and T. Zamfirescu*, Hamiltonian properties of Toeplitz graphs, Discrete Math. **159**(1996) 69-81.

[12] *R. Euler, H. LeVerge and T. Zamfirescu*, A characterization of infinite, bipartite Toeplitz graphs, In: Ku Tung-Hsin (Ed.), Combinatorics and Graph Theory 95, vol. 1, Academia Sinica, World Scientific, Singapore, 1995, 119-130.

[13] *R. Euler*, Characterizing bipartite Toeplitz graphs, Theoretical Computer Science **263**(2001) 47-58.

[14] *R. Euler*, Coloring planar Toeplitz graphs and the stable set polytope, Discrete Math. **276**(2004) 183-200.

[15] *R. Euler and T. Zamfirescu*, On planar Toeplitz graphs, Graphs and Combinatorics **29**(2013) No. 5 1311-1327 (DOI: 10.1007/s00373-012-1185-8).

[16] *A. Frieze, R.J. Gould, M. Karonski, and F. Pfender*, On graph irregularity strength, J. Graph Theory **41**(2002) 120-137.

[17] *J.A. Gallian*, A Dynamic Survey Graph labeling, Electron. J. Combin. **18**(2011), # DS6.

[18] *C. Heuberger*, On hamiltonian Toeplitz graphs, Discrete Math. **245**(2002) 107-125.

[19] *J. Ivančo and S. Jendrol*, Total edge irregularity strength of trees, Discussiones Math. Graph Theory **26**(2006) 449-456.

[20] *S. Jendrol, J. Miškuf and R. Soták*, Total edge irregularity strength of complete graphs and complete bipartite graphs, Discrete Math. **310**(2010) 400-407.

[21] *S. Malik and A.M. Qureshi*, Hamiltonian cycles in directed Toeplitz graphs, Ars Combin. **109**(2013) 511-526.

[22] *S. Malik and T. Zamfirescu*, Hamiltonian connectedness in directed Toeplitz graphs, Bull. Math. Soc. Sci. Math. Roum. **53**(2010) No.2 145-156.

[23] *C.C. Marzuki, A.N.M. Salman and M. Miller*, On the total irregularity strength on cycles and paths, Far East J. Math. Sci. **82**(2013) No.1 121.

[24] *K.M. Mominul Haque*, Irregular total labellings of generalized Petersen graphs, Theory Comput. Syst. **50**(2012) 537-544.

[25] *S. Nicoloso and U. Pietropaoli*, On the chromatic number of Toeplitz graphs, Discrete Appl. Math. (DOI:10.1016/j.dam.2011.07.012 (2012)).

[26] *Nurdin, E.T. Baskoro, A.N.M. Salman and N.N. Gaos*, On the total vertex irregularity strength of trees, Discrete Math. **310**(2010) 3043-3048.

[27] *J. Przybylo*, Linear bound on the irregularity strength and the total vertex irregularity strength of graphs, SIAM J. Discrete Math. **23**(2009), 511-516.