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ON EDGE IRREGULARITY STRENGTH
OF TOEPLITZ GRAPHS

Ali Ahmad1, Martin Bača2, Muhammad Faisal Nadeem3

An edge irregular k-labeling of a graph G is a labeling of the vertices
of G with labels from the set {1, 2, . . . , k} in such a way that for any two
different edges xy and x′y′ their weights w(xy) and w(x′y′) are distinct. The
weight w(xy) of an edge xy in G is the sum of the labels of the end vertices
x and y. The minimum k for which the graph G has an edge irregular
k-labeling is called the edge irregularity strength of G, denoted by es(G).

In this paper, we study the edge irregular k-labeling for Toeplitz graphs
and determine the exact value for several classes of Toeplitz graphs.
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1. Introduction

Let G be a connected, simple and undirected graph with vertex set V
and edge set E. By a labeling we mean any mapping that maps a set of graph
elements to a set of numbers (usually positive integers), called labels. If the
domain is the vertex-set or the edge-set, the labelings are called respectively
vertex labelings or edge labelings. If the domain is V (G)∪E(G) then we call the
labeling total labeling. Thus, for an edge k-labeling δ : E(G) → {1, 2, . . . , k}
the associated weight of a vertex x ∈ V (G) is

wδ(x) =
∑

δ(xy),

where the sum is over all vertices y adjacent to x.
Chartrand et al. in [10] introduced edge k-labeling δ of a graph G such

that wδ(x) 6= wδ(y) for all vertices x, y ∈ V (G) with x 6= y. Such labelings
were called irregular assignments and the irregularity strength s(G) of a graph
G is known as the minimum k for which G has an irregular assignment using
labels at most k. The irregularity strength s(G) can be interpreted as the
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smallest integer k for which G can be turned into a multigraph G′ by replacing
each edge by a set of at most k parallel edges, such that the degrees of the
vertices in G′ are all different. This parameter has attracted much attention
[5, 6, 9, 16].

Motivated by these papers, Ahmad et al. in [1] started to investigate
an edge irregularity strength. A vertex k-labeling φ : V (G) → {1, 2, . . . , k}
is called an edge irregular k-labeling of the graph G if for every two different
edges xy and x′y′ there is wφ(xy) 6= wφ(x′y′), where the weight of an edge
xy ∈ E(G) is wφ(xy) = φ(x) + φ(y). The minimum k for which the graph G
has an edge irregular k-labeling is called the edge irregularity strength of G,
denoted by es(G). The notion of the edge irregularity strength was defined in
[1]. There is estimated the lower bound of the edge irregularity strength as
follows

Theorem 1.1. [1] Let G be a simple graph with maximum degree ∆ = ∆(G).
Then es(G) ≥ max {d(|E(G)|+ 1)/2e ,∆(G)} .

In [1] it is proved that for path Pn, n ≥ 2, es(Pn) = dn/2e, for star
K1,n, n ≥ 1, es(K1,n) = n, for double star Sm,n, 3 ≤ m ≤ n, es(Sm,n) = n
and for Cartesian product of two paths Pn and Pm, m,n ≥ 2, es(Pn�Pm) =
d(2mn−m− n+ 1)/2e. Al-Mushayt [4] determined the edge irregularity stre-
ngth of products of certain families of graphs with path P2.

2. Toeplitz graph

A simple undirected graph T of order p is called Toeplitz graph if its
adjacency matrix A(T ) is Toeplitz. A Toeplitz matrix A(T ) = (ai,j), is a (p×p)
symmetric matrix which has constant values along all diagonals parallel to
the main diagonal, i.e. ai,j = ai+1,j+1 for each i, j = 1, 2, . . . , p − 1. The
p distinct diagonals of a (p × p) symmetric Toeplitz adjacency matrix will
be labeled 0, 1, 2, . . . , p − 1. Diagonal 0 is the main diagonal and it contains
only zeros, i.e. aii = 0 for all i = 1, 2, . . . , p so that there are no loops in
the Toeplitz graph. A Toeplitz graph T is uniquely defined by the first row
of A(T ), a (0 − 1)-sequence. Let t1, t2, . . . , ts be the diagonals containing
ones, 0 < t1 < t2 < · · · < ts < p. Then, the corresponding Toeplitz graph
will be denoted by Tp〈t1, . . . , ts〉. That is, Tp〈t1, . . . , ts〉 is the graph with
the vertex set V (T ) = {vi : i = 1, 2, . . . , p} in which two vertices u, v of
T being connected by an edge if and only if |u− v| ∈ {t1, t2, . . . , ts}. If tj,
j = 1, 2, . . . , s, is the diagonal containing ones then the diagonal elements
ai,tj+i, i = 1, 2, . . . , p− tj, determine edges vivtj+i in the Toeplitz graph. Thus
the edge set is E(T ) =

⋃s
j=1{vivtj+i : i = 1, 2, . . . , p − tj}, |V (T )| = p and

|E(T )| = ps−
s∑
j=1

tj.

Toeplitz graphs have been introduced by Sierksma and first been in-
vestigated by van Dal et al. [11] with respect to their hamiltonicity. Later
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Heuberger [18] has extended this study in 2002. The properties of Toeplitz
graphs; such as bipartitness, planarity and colourability, have been studied in
[12, 13, 14, 15]. For more recent works on Toeplitz graphs see [8, 21, 22, 25].
A Toeplitz graph is not necessarily connected, see Figure 1.

v1 v2 3v 4v 5v 6v 7v v1 v2 3v 4v 5v 6v 7v

v1 v2 3v 4v 5v 6v 7v

Figure 1. Toeplitz graphs T7〈1, 2〉, T7〈2, 4〉 and T7〈1, 2, 3〉

The following result proved by van Dal et al. [11], provides a lower bound
on the number of components of a Toeplitz graph.

Theorem 2.1. [11] Tp〈t1, . . . , ts〉 has at least gcd(t1, . . . , ts) components.

In the paper we investigate the existence of the edge irregularity strength
for Toeplitz graphs.

3. Results

Next theorem gives the exact value of the edge irregularity strength of
Toeplitz graph Tn〈1, 2〉 which is bigger than the lower bound in Theorem 1.1.

Theorem 3.1. Let Tn〈1, 2〉 be a Toeplitz graph on n ≥ 3 vertices. Then
es(Tn〈1, 2〉) = n.

Proof. Let Tn〈1, 2〉 be a Toeplitz graph with the vertex set V (Tn〈1, 2〉) = {vi :
1 ≤ i ≤ n} and the edge set E(Tn〈1, 2〉) = {vivi+1 : 1 ≤ i ≤ n− 1} ∪ {vivi+2 :
1 ≤ i ≤ n− 2}. According to Theorem 1.1 we have that es(Tn〈1, 2〉) ≥ n− 1.
Since every two adjacent vertices in Tn〈1, 2〉 are a part of complete graph K3,
therefore under every edge irregular labeling the smallest edge weight has to be
at least 3 and the largest edge weight has to be at least 2n+2−t1−t2 = 2n−1.
Since the edge weight 2n− 1 is the sum of two labels, so at least one label is
at least d(2n− 1)/2e = n. Therefore es(Tn〈1, 2〉) ≥ n. To prove the equality,
it suffices to prove the existence of an optimal edge irregular n-labeling.

Let φ1 : V (Tn〈1, 2〉)→ {1, 2, . . . , n} be the vertex labeling such that

φ1(vi) = i, for 1 ≤ i ≤ n.

Since wφ1(vivi+1) = φ1(vi) + φ1(vi+1) = 2i + 1, for 1 ≤ i ≤ n − 1 and
wφ1(vivi+2) = φ1(vi) + φ1(vi+2) = 2i + 2, for 1 ≤ i ≤ n − 2 , so the edge
weights are distinct for all pairs of distinct edges. Thus, the vertex labeling φ1

is an optimal edge irregular n-labeling. This completes the proof. �
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Next theorem proves that the lower bound in Theorem 1.1 is tight.

Theorem 3.2. Let Tn〈1, 3〉 be a Toeplitz graph on n ≥ 4 vertices. Then
es(Tn〈1, 3〉) = n− 1.

Proof. Let Tn〈1, 3〉 be a Toeplitz graph with the vertex set V (Tn〈1, 3〉) = {vi :
1 ≤ i ≤ n} and the edge set E(Tn〈1, 3〉) = {vivi+1 : 1 ≤ i ≤ n− 1} ∪ {vivi+3 :
1 ≤ i ≤ n − 3}. According to Theorem 1.1 we have that es(Tn〈1, 3〉) ≥
d(2n+ 1− 4)/2e = n− 1. For the converse, we define a suitable edge irregular
labeling φ2 : V (Tn〈1, 3〉)→ {1, 2, . . . , n− 1} in the following way

For n ≡ 1 (mod 4)

φ2(vi) =



i, if i ≡ 1 (mod 4) and 1 ≤ i < n− 1

i− 1, if i ≡ 2, 3 (mod 4)

i− 1, if i ≡ 0 (mod 4) and 1 ≤ i ≤ n− 2

i, if i = n− 1

i− 2, if i = n

For n ≡ 0, 2, 3 (mod 4)

φ2(vi) =

{
i, if i ≡ 1 (mod 4)

i− 1, if i ≡ 0, 2, 3 (mod 4)

The edge weights are as follows
If n ≡ 1 (mod 4)

wφ2(vivi+1) =



2i, if i ≡ 0, 1 (mod 4) and 1 ≤ i < n− 2

2i− 1, if i ≡ 2, 3 (mod 4) and 1 ≤ i < n− 2

2i, if i = n− 2

2i− 1, if i = n− 1

If n ≡ 0, 2, 3 (mod 4)

wφ2(vivi+1) =

{
2i, if i ≡ 0, 1 (mod 4)

2i− 1, if i ≡ 2, 3 (mod 4)

If n ≡ 1 (mod 4)
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wφ2(vivi+3) =



2i+ 2, if i ≡ 1, 2 (mod 4) and i < n− 4

2i+ 1, if i ≡ 0, 3 (mod 4)

2i+ 3, if i = n− 4

2i, if i = n− 3

If n ≡ 0, 2, 3 (mod 4)

wφ2(vivi+3) =

{
2i+ 2, if i ≡ 1, 2 (mod 4)

2i+ 1, if i ≡ 0, 3 (mod 4).

Since, the edge weights are distinct for all pairs of distinct edges, the
vertex labeling φ2 is a suitable edge irregular (n− 1)-labeling. Hence, we have
es(Tn〈1, 3〉) = n− 1. �

Next theorem gives the exact value of the edge irregularity strength for
Tn〈2, 4〉 and show that this value is bigger than the lower bound in Theo-
rem 1.1.

Theorem 3.3. Let Tn〈2, 4〉, n ≥ 5, be a Toeplitz graph. Then es(Tn〈2, 4〉) =
n− 1.

Proof. Let Tn〈2, 4〉 be a Toeplitz graph with the vertex set V (Tn〈2, 4〉) = {vi :
1 ≤ i ≤ n} and the edge set E(Tn〈2, 4〉) = {vivi+2 : 1 ≤ i ≤ n− 2} ∪ {vivi+4 :
1 ≤ i ≤ n− 4}. Let φ3 : V (Tn〈2, 4〉)→ {1, 2, . . . , n− 1} be the vertex labeling
such that

φ3(vi) =

{
i+1
2
, if i is odd⌈

n+i−2
2

⌉
, if i is even.

The edge weights are as follows:

wφ3(vivi+2) =


i+ 2, if i is odd

n+ i− 1, if i and n are even

n+ i, if i is even and n is odd

wφ3(vivi+4) =


i+ 3, if i is odd

n+ i, if i and n are even

n+ i+ 1, if i is even and n is odd.

We can see that all vertex labels are at most n−1. The edge weights under
the labeling φ4 successively attain values 3, 4, . . . , n−1, n, n+2, n+3, . . . , 2n−3
for n odd and 3, 4, . . . , n − 2, n − 1, n + 1, n + 2, . . . , 2n − 3 for n even. Thus
the edge weights are distinct for all pairs of distinct edges and the labeling φ3

provides the upper bound on es(Tn〈2, 4〉), i.e es(Tn〈2, 4〉) ≤ n− 1.
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Since every edge of Tn〈2, 4〉 belongs toK3, then under every edge irregular
labeling the smallest possible edge weight is obtain as sum of the vertex labels 1
and 2. Then the largest edge weight has to be at least |E(Tn〈2, 4〉)|+2 = 2n−4
and obtained as the sum of different vertex labels. Thus the largest edge weight
is at least 2n − 3 and es(Tn〈2, 4〉) ≥ d(2n − 3)/2e = n − 1. This provides the
lower bound on es(Tn〈2, 4〉). Combining with previous upper bound, we get
that es(Tn〈2, 4〉) = n− 1. �

The following theorem gives the exact value of the edge irregularity
strength for Toeplitz graph Tn〈1, 2, 3〉 for n 6≡ 1 (mod 4).

Theorem 3.4. Let Tn〈1, 2, 3〉, n ≥ 4, be a Toeplitz graph. Then

es(Tn〈1, 2, 3〉) =

{
3n
2
− 1, if n is even

3n−3
2
, if n ≡ 3 (mod 4).

Proof. Let V (Tn〈1, 2, 3〉) = {vi : 1 ≤ i ≤ n} be the vertex set and E(Tn〈1, 2, 3〉)
= {vivi+1 : 1 ≤ i ≤ n− 1} ∪ {vivi+2 : 1 ≤ i ≤ n− 2} ∪ {vivi+3 : 1 ≤ i ≤ n− 3}
be the edge set of Tn〈1, 2, 3〉 with |E(Tn〈1, 2, 3〉)| = 3n − 6. According to
Theorem 1.1 we have es(Tn〈1, 2, 3〉) ≥ max{d(3n− 4)/2e , 6} = d(3n− 4)/2e.
Since every four consecutive vertices in Tn〈1, 2, 3〉 form a complete graph K4,
therefore under every edge irregular labeling no couple of adjacent vertices can
be assigned by the same label. This implies that the smallest edge weight 2 is
not possible. So if the smallest edge weight is 3 then the largest edge weight
is at least 3n − 4. Since each edge weight is a sum of two labels, at least one
label is at least d(3n− 4)/2e. Thus for n = 4t+ 3, t ≥ 1, we have

es(Tn〈1, 2, 3〉) ≥
⌈

3n− 4

2

⌉
=

⌈
6k + 2 +

1

2

⌉
=

3n− 3

2
. (1)

For n even the edge weight 3n− 4 is the sum of two the same labels 3n/2− 2
assigned to the adjacent vertices. Since it is not possible, then one label from
the sum 3n− 4 has to be at least d(3n− 3)/2e. Hence we have

es(Tn〈1, 2, 3〉) ≥
⌈

3n− 3

2

⌉
=

⌈
3n

2
− 1− 1

2

⌉
=

3n

2
− 1. (2)

For the converse, we define the vertex labeling φ4 as follows:

φ4(vi) =


3i−2
2
, if i is even

3i−1
2
, if i ≡ 1 (mod 4)

3i−3
2
, if i ≡ 3 (mod 4).

Observe that under the vertex labeling φ4 all vertex labels are at most 3n/2−1
for n even and (3n− 3)/2 for n ≡ 3 (mod 4). For n ≡ 0, 3 (mod 4) the edge
weights successively attain values 3, 4, . . . , 3n− 4 and for n ≡ 2 (mod 4) the
edges receive the weights 3, 4, . . . , 3n − 6, 3n − 5, 3n − 3. It means that the
edge weights are distinct for all pairs of distinct edges and the labeling φ4 is a



On edge irregularity strength of Toeplitz graphs 161

suitable edge irregular (3n/2− 1)-labeling, respectively ((3n− 3)/2)-labeling.
Thus the labeling φ4 provides the upper bound on es(Tn〈1, 2, 3〉). Combining
with the lower bounds given by (1) and (2), produces the desired result. �

The following theorem gives the upper bound of the edge irregularity
strength for Toeplitz graph Tn〈1, 2, 3〉 for n ≡ 1 (mod 4).

Theorem 3.5. Let Tn〈1, 2, 3〉, be a Toeplitz graph for n ≡ 1 (mod 4), n ≥ 5.
Then

es(Tn〈1, 2, 3〉) ≤
3n− 1

2
.

Proof. In view that (3n − 1)/2 is an upper bound on the edge irregularity
strength of graph Tn〈1, 2, 3〉 it suffices to prove the existence of a vertex labeling
φ5 : V (Tn) → {1, 2 . . . , (3n− 1)/2} with edge irregular properties. Define the
vertex labels as follows:

φ5(vi) = φ4(vi) for vi ∈ V (Tn〈1, 2, 3〉).
It is a routine matter to verify that all vertex labels are at most (3n − 1)/2
and the edge weights form the set of different integers, namely {3, 4, . . . , 3n−
6, 3n− 5, 3n− 3}. Thus the labeling φ5 is desired edge irregular ((3n− 1)/2)-
labeling. �

4. Conclusion

In this paper we delt the existence of the edge irregularity strength for
Toeplitz graphs. We determined the exact values of the edge irregularity
strength of Toeplitz graphs Tn〈1, 2〉, Tn〈1, 3〉 and Tn〈2, 4〉, namely we proved
that es(Tn〈1, 2〉) = n, es(Tn〈1, 3〉) = es(Tn〈2, 4〉) = n−1. Moreover we proved
that es(Tn〈1, 2, 3〉) = 3n/2 − 1 for n even and es(Tn〈1, 2, 3〉) = (3n − 3)/2
for n ≡ 3 (mod 4). For n ≡ 1 (mod 4) we showed that es(Tn〈1, 2, 3〉) ≤
(3n − 1)/2. We believe that this upper bound is the exact value therefore we
propose the following conjecture.

Conjecture 1. Let n ≡ 1 (mod 4), n ≥ 5. Then

es(Tn〈1, 2, 3〉) = (3n− 1)/2.
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