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REAL-TIME MOVING TARGET TRACKING ALGORITHM
OF UAV/UGV HETEROGENEOUS COLLABORATIVE
SYSTEM IN COMPLEX BACKGROUND

Xiao LIANG!, Maoxian SHEN?, Guangxun DU?, Guodong CHEN*

Heterogeneous collaborative systems composed of UAV/UGV (Unmanned
Aerial Vehicle and Unmanned Ground Vehicle) can cooperate to accomplish many
complex tasks. The speed and accuracy of target tracking in UAV/UGV
heterogeneous collaborative system are the basis of relative positioning and
collaborative tasks. The correlation filter-based algorithm has achieved a
satisfactory performance in many different simulation and experiments. However,
the problems about occlusion, deformation and light changes limit its application.
Based on context-aware correlation, an improved filter model is studied, and it can
obtain different confidence maps by filtering different parts of the target. After the
comparison of confidence maps from the proposed model and context-aware
correlation filter, the maximum confidence is obtained. Simulation and experiment
results show that compared with other correlation filter-based algorithms, the
proposed method has a better performance in accuracy and success rate when
dealing with occlusion, deformation and light changes.

Keywords: UAV/UGV collaborative system, Complex background, Moving
target tracking, Correlation filter, Occlusion, deformation and light
changes

1. Introduction

By the mutual cooperation and assist from UAV (Unmanned Aerial
Vehicle) and UGV (Unmanned Ground Vehicle), UAV/UGV heterogeneous
collaborative system can accomplish many complex and high-level tasks
autonomously. The system uses the respective characteristics of UAV and UGV
to complete more complex collaborative tasks. UAV flies in three-dimensional
space and can detect a wide area. On the other hand, UGV moves in two-
dimensional space but can conduct complex interactive activities. UAV/UGV
heterogeneous collaborative system is a symbol that robots have higher autonomy
and intelligence and it also brings many challenges to some new problems.
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The speed and accuracy of target tracking in UAV/UGV heterogeneous
collaborative system are the basis of relative positioning and collaborative tasks.
The core function of collaborative positioning is target tracking which is an
important bridge connecting UAV and UGV. The main purpose of target tracking
is to determine the position of a selected target in a video. Based on the initial
state of a target in the first frame, target tracking algorithm estimates the position
of the target in subsequent frames. Many researchers have studied the problem of
target tracking for years and carried out many solutions. Nowadays, the main
challenge comes from illumination variations, occlusions, deformations, rotations
and so on.

Generally, target tracking methods can be divided into two major
categories: generative and discriminative method. Generative tracking learns a
generative model from a given initial condition and then target tracking becomes a
search problem which means it locates the target within the neighborhood of the
target in previous frame. Discriminative methods are often taken as a binary
classification problem [1]. The HOG [2] (Histogram of Oriented Gradient), haar
features and regional covariance [3] are mainly used as the target representation.
On the other hand, SVM (Support Vector Machine) [4], multi-instance learning
[5], random forest [6] and Ada-boost [7] are usually taken as a visual classifier.
The current mainstream algorithms are correlation filter tracking algorithm [8-14]
and convolutional neural networks algorithms [15-20]. Specially, the correlation
filter tracking algorithm has drawn much attention due to its better real-time
performance and it is mainly based on the framework of ridge regression. About
the framework of the correlation filter, Henriques transforms linear space to non-
linear space by kernel function and uses the gradient histogram feature of multi-
channel [2], the method improved the nonlinear tracking performance of
correlation filter. Learning from the random fern classifier in TLD (Tracking-
Learning-Detecting, TLD), Ma improves confidence filter by DSST (Accurate
Scale Estimation for Robust Visual Tracking, DSST) [8]. Li proposed an adaptive
scale kernel correlation filtering algorithm [10], which can solve the problem of
target scale change, but it is slightly insufficient for other situations (such as
occlusion and illumination). Based on correlation filter, Danelljan uses space
penalty to handle boundary effect. But the method breaks the closed-form solution
of ridge regression equation, so the equation can be only solved by Gauss-Seidel
iteration which will slow down the calculation [12]. The method aims at long-
term target tracking involving occlusion and it uses PSR (Peak SideLobe Ratio) to
determine whether the target is occluded. After occlusion, the random fern
classifier is used to reposition the target and the accuracy is greatly improved.
Since the random fern classifier needs to be trained in each frame, the speed is too
slow. In order to add more background information, Mueller proposes a new filter
framework (context-aware correlation filtering) which has closed-loop solution
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and better real-time capability [21], but the algorithm only eliminates background
interference. By extracting the depth features of the target, convolutional neural
network class target tracking has strong anti-interference ability. Therefore, target
tracking with depth features is more accurate, but convolutional neural network
depends on the performance of the hardware and it is insufficient in real time. In
summary, the improvement of related filtering algorithms mostly increases
accuracy by sacrificing real-time performance.

In this paper, a UAV/UGV heterogeneous collaborative system is
proposed. In the system, UAV can track UGV automatically. So a real-time
moving target tracking algorithm based on context-aware correlation filter is
studied. In order to reduce the influence of occlusion, deformation and light
changes, an improved filtering template is trained to filter two different
components of target. Compared with the result of context-aware correlation
filter, the maximum confidence can be obtained. By dividing the target into two
parts, it can improve the performance of blocking deformation. The two
components use different features and kernel functions to enhance the robustness.
Simulation and experiment results show that the proposed method has a better
performance in dealing with occlusion, deformation and light changes.
Furthermore, the algorithm performances well both on accuracy and real-time.

The structure of this paper is as follows: the first chapter introduces the
collaborative guidance system. The second chapter introduces the basic theory of
the relevant filtering algorithm. The third chapter is the improvement. The fourth
chapter is the simulation and experiment.

2. UAV/UGV Heterogeneous Collaborative System

The working process of the UAV/UGV heterogeneous collaborative
system described in this article is as follows: UAV flies ahead of UGV. By the
camera and other sensors, UAV can get a two-dimensional horizontal image of
the environment and the image will supplement the barrier information in front of
UGV. UAV can provide a global image and position information for the
avoidance of UGV. Inside the heterogeneous collaborative system, UAV and
UGV need collaborative positioning. Based on the collaborative awareness of the
UAV/UGV, the heterogeneous collaborative system can complete several
complex tasks such as cluster formation, collaborative avoidance and information
fusion (Fig. 1).
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Fig. 1. UAV/UGV heterogeneous collaborative system

3. Correlation Filter Tracking Algorithm

The general idea is that basing on ridge regression, a cyclic matrix is
calculated to train the classifier. By the classifier, the position of the target in new
frame can be got. In order to accelerate the calculation, the cyclic matrix is
transformed into the frequency domain.

3.1 Training Classifier

A ridge regression objective function from Reference [2] is

min > (f (x) = y,) + 2w, (1)

f(Xi):WTXi1 (2)
In Equations (1) and (2), w is filter template, y is ideal regression label (it
is in Gaussian type) and 2 is a regularization factor. When 2 tends to zero, the

model obtained will be complex and the model will be simple when 4 tends to 1.
x is the training sample and f(x;) is the actual regression value.

In Equation (1), calculate the derivative about w and let it equal to zero.

So the extreme value is:
w=(XTX+A)"'XTy, (3)
Here, X =(X;,X,---X,) is a cyclic matrix and X =Fdiag(X)F" where
x=F(x). F is a Fourier transform matrix and | is a unit matrix. The superscript
H denotes conjugate transpose. Combine cyclic matrix and Equation (3) and
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make Fourier transforms on both sides of the new equation, so there is Equation
(4):
X Oy
LOR+ A
In Equation (4), © represents the hadamard product.

W=

(4)

3.2 Nonlinear Classifier

The correlation filter uses linear regression and the linear input can be
mapped to the non-linear space of high dimension by kernel function method.
Filter template w is expressed as a linear combination of samples:

W:Zai‘//(xi)1 (5)

In Equation (5), « is the variable which needs to be optimized for dual
space, and w is the variable for original space optimization, and y( ) is the
mapping function for mapping x to the high-dimensional space.

Combine Equation (1), Equation (2) and Equation (5), then calculate the
derivative about « . Let the result equals to zero, so:

y
o= y (6)
y" (X (X)+ Al
By the kernel function K., =k(x,x)=w"(xw(x), Equation (6) can be

changed as:

y
_ | 7
ST 0

When X is a cyclic matrix, the Gaussian kernel function is also a cyclic
matrix and it has the following properties:
K = Fdiag(k)F", (8)
Combine Equations (7) and (8), then make Fourier transform on both sides
of the new equation. So Equation (9) is as follow.

A y
a == , 9
k™ + A4 ®)

3.3 Target Detection

When using linear filter template w, the detection function is:
f(z)=w'z, (10)
When using nonlinear filter template « , the detection function is:



124 Xiao Liang, Maoxian Shen, Guangxun Du, Guodong Chen

f(z)szz:iaik(z,xi), (11)

In the Equations (10) and (11), z is the target area where needs to be
detected. In order to accelerate the calculation, both of Equations (10) and (11)
can be transformed into frequency domain.

4. Improved Correlation Filter Tracking

In the case of occlusion and deformation, the filter template will update
error. In context-aware correlation filter, the robustness of filter template is
enhanced by adding more information around target (such as upper, lower, left
and right background information). In this paper, the target is divided into two
components which are equivalent to double the positive and negative samples.
Both of components with different features can be trained in a filter template.
Then, the two results are compared with that in context-aware correlation filter.
The confidence map with maximum confidence value is used to locate the
position of target.

In this section, two components are selected. It is because the related
filtering algorithm performs windowing on the target frame. The more the
components are, the smaller the size of the components. When the windowing
process is performed, the components of the true target are further reduced, which
is not conducive to tracking the target.

Suppose the two components of target are a, and a,, and their training

samples are A, and A,, respectively. y is the Gaussian regression label and the
target equation is:

f,(w,B) =[Bw -y, + A, (12)
Here B = mj y =[ﬂ and 4, €[04].

In Equation (12), calculate the derivative about w and let it equal to zero.
So there is Equation (13):

+
- Ay HAzy | (13)
ATA+ATA A
Equation (13) can be converted to the Fourier domain:
W— 4,0y +a,0y (14)

4,04 +4,048, +1,
After mapping to non-linear high-dimensional space, Equation (14) can be
rewritten as:
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— Kalaly + Kaza2 y
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a

(15)

In Equation (15), K is the inner product of a, or a, in high-dimensional
space. Equation (15) is transformed to the Fourier domain as:
k, . O+ Izazaz Q)%

&y

TR oK, K, 0K,
By Equations (10) and (13), the confidence map mapl can be got when
detecting the image in a new frame. Similarly, by Equation (11) and (15), there is
the confidence map map2. The confidence map map3 is obtained by context-
aware correlation filter.
The maximum confidence value M in the three-confidence map is:
m = max{max( mapl), max(map2), max(map3)}, @an
In Equation (17), the position of maximum confidence value is the target
position.

(16)

5. Simulation and Experiment
5.1 Simulation and Analysis

In simulation, several popular algorithms are selected to compare with the
proposed method: Context-Aware Correlation Filter (CA-CF) [21], Structured
Output Tracking with Kernels (struck) [22], Circulant Structure Kernel (CSK)
[23], Tracking-Learning-Detecting (TLD) [24], Locally Orderless Tracking
(LOT) [25] and Real-time Compressive Tracking (CT) [26].

Gradient histogram feature is taken as image feature. The test data are 50
groups of serial pictures from the common samples OTB-50 and OTB-100 and the
samples include light changes, occlusion and deformation. The main hardware of
simulation computer includes Intel Core i5-3230M CPU (2.60GHz) and 4GB
running memory. The software platform is MATLAB2017a in 64bit Windows10
operating system.

Fig. 2 shows the precision plot and success plot of overall results. By the
precision plot of each method, OPE (one-pass evaluation) robustness assessment
is used to evaluate the performance. OPE measures the European distance error
between the estimated and real center of target. In precision plots, the abscissa
shows different thresholds of distance (pixel unit) while the ordinate is the
percentage of qualified frames in total frames. Here, qualified frame means the
center error of estimated target is less than the threshold. The percentage of
threshold in 20 pixels is used as the evaluation score (CLE). The success plot
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shows the rate of overlap between the estimated rectangle and the real rectangle of
target. The calculation of success plot uses the area of the intersecting two
rectangles divided by that of the union. In success plots, the abscissa is a
continuous threshold from 0 to 1 while the ordinate is the percentage of qualified
frames in total frames. Here, qualified frame means the overlap rate is greater than
the threshold. The area below the curve represents the evaluation score.
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Fig. 2. Precision plot and success plot of overall results

Here, gray line represents the proposed method, green line represents CA-
CF, dark blue line represents struck, red line represents CSK, light blue line
represents TLD, black line represents LOT and purple line represents CT,
respectively. In Fig. 2(a), precision plots of OPE show that the algorithm has the
highest accuracy rate than others. Compared with CA-CF, struck, CSK, TLD,
LOT and CT, the accuracy rate increases by 5.4%, 12.6%, 18.1%, 20.4%, 33.4%
and 42.8%, respectively. In Fig. 2(b), success plots of OPE show that the
algorithm ranks first in success rate of all methods. Compared with CA-CF,
struck, CSK, TLD, LOT and CT, the success rate increases by 6.9%, 6.4%,
14.1%, 13.1%, 28.5% and 35%, respectively. Overall, the proposed method has a
better performance on accuracy and success rate.
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Precision plots of OPE - in-plane rotation
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Precision plots of OPE - illumination variation
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Success plots of OPE - occlusions
09

s OUP [0.580]
s CA-CF [0.447] []
m Siruck [0.436] ||
m— (5K [0.370]

06 TLD [0.394]
05 e 0T [0.349]
e T [0.255]

Success rate

04 06 08 1

Overlap threshold

(d)

Success plots of OPE - in-plane rotation

0 02

0.9 . .
s OUr [0.558]
08 s CA-CF 0.539] |
07  Sr1ick [0.556] |
o s CSK [0.471]
m 06 LD [0.461]
_
g 05 — | 0T [0.325]
s (T [0.220]
g 04
S5 03
n
01
0.1
0 ‘ ‘ . X
0 02 04 06 08 1
Overlap threshold

(f)

Success plots of OPE - illumination variations
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Fig. 3. Precision plot and success plot in different situations

The accuracy rate and success rate of out-plane rotation, occlusion, in-
plane rotation, illumination variation and deformation are shown by Fig. 3(a) and
(b), Fig. 3(c) and (d), Fig. 3(e) and (f), Fig. 3(g) and (h) and Fig. 3(i) and (j),
respectively. From Fig. 3(a)(c)(e)(g)(i) and Fig. 3(b)(d)(f)(h)(j), the proposed
method ranks first both on accuracy rate and success rate. In case of out-plane
rotation, occlusion, in-plane rotation, illumination variation and deformation, the
accuracy rate of the proposed method increases by 7.9%, 11.7%, 1.5%, 4.4% and
15.8% than CA_CF, respectively. In addition, the success rate of the proposed
method increases by 9.5%, 13.3%, 1.9%, 6.3% and 18.9% than original context
sensing correlation filter, respectively. Moreover, compared with the Dbest
performance among struck, CSK, TLD, LOT and CT, the accuracy rate increases
by 19.8%, 3.6%, 22.6%, 11.9% and 36.2%, respectively. The accuracy rate
increases by 13.3%, 0.2%, 14.4%, 5.3% and 36.1%, respectively.

Furthermore, four sets of data including occlusion, deformation, rotation
and light changes are used to test CA-CF, struck, CSK, TLD, LOT, CT and the
proposed method. The four sets are named by Woman, Girl, Basketball and
David3, respectively. Similar to Fig. 2 and Fig. 3, gray frame represents the
proposed method, green frame represents CA-CF, dark blue frame represents
struck, red frame represents CSK, light blue frame represents TLD, black frame
represents LOT and purple frame represents CT, respectively.
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Fig. 4. Results of moving target tracking in video

In woman dataset of Fig. 4(a), all algorithms can track a woman in initial
stage. Once the woman is blocked by a car, TLD and CT will lose target. When
occlusion lasts several frames, only struck and the proposed method can still track
the woman. In girl dataset of Fig. 4(b), CT and CSK will fail to track in the case
of rotation and deformation. In basketball dataset of Fig. 4(c), there is not only
occlusion and deformation but also similar moving target. However, the proposed
method still keeps tracking successfully. In David3 dataset of Fig. 4(d), occlusion,
deformation and light changes exist in the same video. After twice of occlusion, it
can be seen that struck and TLD lose the target. Then the target returns back, so it
goes through twice of occlusion again. Finally, only the proposed method and
LOT track the target successfully. From Fig. 4(a) to 4(d), the proposed method
shows a better tracking performance in complex background including occlusion,
deformation and light changes.
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5.2 Indoor Experiment

The UAV in collaborative system is DJI Matrice 100 with N1 flight
control module (Fig. 5). Matrice 100 is an open source flight platform developed
by DJI. The platform fully supports SDK and external devices. By flexible API
interface, custom commands can achieve autonomous flight.

N1 flight control module is a stand-alone component which also has
onboard SDK. Its core parts include flight computer, Inertial Measurement Unit
(IMU), gyroscope, accelerometer, barometer, GPS and so on.

Fig. 5. UAV in Collaborative System

The UGV in collaborative system is an omni-directional mobile robot
which can reach any position by its own motion mechanism. Omni-directional
mobile robots usually use Omni Wheel or Mecanum Wheel. The UGV in Fig. 6 is
equipped with Mecanum Wheels.

Fig. 6. UGV in Collaborative System

Basing on the kinematic analysis, the mathematical model of UGV s
established. Then a control law is designed and downloaded to a control chip. To
simplify the mathematical model, there are some assumptions:
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1. With enough friction, UGV will not skid.

2. Four wheels are mounted on each corner of UGV respectively and
parallel to each other.

3. The coordinates of UGV coincide with geographic coordinate.

Motor B Motor C

F—

Y+

N

Motor A Motor D

Fig. 7. Motion of UGV

According to Fig. 7, the motion of UGV can be linearly decomposed into
three components. V,, Vg, V. and V, represents the velocity of four wheels A,

B, C and D, respectively. V, is the velocity of UGV along X axis, V, is the

velocity of UGV along the Y axis and @ is the angular velocity around Z axis.
When UGV goes along X axis, there is

VA = _Vx 1VB = +Vx 1VC = _Vx 1VD = +Vx ’ (18)
When UGV goes along Y axis, there is
V=4V, Vg =+V, Ve =+V, V=4V | (19)

When UGV rotates around X axis, there is
V,=-w(a+b) V, =-w(a+b) V. =+a(a+b),V, =+w(a+b) ,(20)
Basing on Equation (18), (19) and (20), the velocity of four wheels can be
calculated according to the status of UGV.

Vy=-V, +V, —w(a+b)

Vg =4V, +V, —w(a+b) (21)

Ve =-V, +V, +w(a+b)

Vp =+, +V, +w(a+b)
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After the design of hardware and control law, a collaborative guidance
experiment is used to verify the proposed method as shown in Fig. 8.
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(c) deformation

Fig. 8. Collaborative guidance experiment

Fig. 8(a) shows that the proposed method can track the target when light
changes. In Fig. 8(b), the proposed method will not lose the target when occlusion
occurs. In Fig. 8(c), the target deforms first and then returns to initial state.
However, the proposed method still shows a better performance. The precision
plots of Fig. 8 correspond to Fig. 9(a), (b) and (c). When light changes in Fig. 8(a)
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or occlusion occurs in Fig. 8(b), the accuracy rate of the proposed method is
nearly 100% if the allowable error threshold is greater than 15 pixels.

1 1

08} 1 08f

5 30 3% 4 45 50 0 5 10 15 5% 0 5 10 15 2

0 % 0 %5 X
Threshold Threshold

Fig. 9. Precision plots of collaborative guidance experiment

When deformation occurs in Fig. 8(c), the accuracy rate of the proposed method is
nearly 100% if the allowable error threshold is greater than 5 pixels. In practical
application, the allowable error threshold of 5 pixels or 15 pixels almost has no
influence on tracking. The collaborative guidance experiment shows that the
proposed method fulfills the requirement of tracking a moving target (about
50fps).

6. Conclusions

This paper first introduces a UAV/UGV heterogeneous collaborative
system and then studies the method of tracking target for collaborative positioning
which is the key part of the system. Since complex environment such as
occlusion, deformation and light changes exists, the proposed method improves
correlation filter by dividing the target into two components. Then the
components are trained into a filter template so as to improve its robustness. In
simulation, compared with several popular algorithms, the proposed method
shows a better performance on both of accuracy and success rate. In indoor
experiment with occlusion, deformation and light changes, the proposed method
which is downloaded to a control chip can still track a moving target. The
simulation and experiment show that the proposed method is effective and
feasible for the UAV/UGV heterogeneous collaborative system. The real-time and
accuracy of the tracking algorithm is crucial to the heterogeneous collaborative
system, and the accuracy has a strong relationship with the feature extraction.
Therefore, further work is to extract better features to improve the accuracy.
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