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VISCOUS FLOW IN A POROUS CHANNEL WITH 
STRETCHING AND SHRINKING WALLS 

Aamir ALI1, Dil Nawaz KHAN MARWAT2, Sagheer Ahmad SHAH3 

In this paper Berman’s problem is modified by considering different 
porosities and stretching/shrinking velocities at walls of the channel. The upper 
(lower) wall has porous velocity ( )v uw w  and upper (lower) wall is stretched / 

shrunk with the velocity ( )Ax Bx  where ( )0 0 ,A > <  ( )0 0B > <
 

are the 
stretching (shrinking) constants for the upper and lower plate, respectively and x  is 
the axial coordinate. The governing PDE’s with no slip conditions are simplified 
and converted into boundary value ODE’s. Analytical solutions of the final problem 
are obtained by using perturbation and asymptotic methods for small and large 
values of the Reynolds number, respectively. For a range of parameter values, an 
exact solution of the governing Navier-Stokes equation is also provided. Multiple 
solutions are also presented for a single set of parameter values. The two analytical 
and exact solutions are compared with the results given by the numerical method. 
Berman’s results are recovered for 0A B= =  and .v uw w= −  

  
Keywords: Porous walls; stretched (shrunk); channel flow; asymptotic solution. 

1. Introduction 

In processes of extrusion and melt-spinning, the fluid motion is mostly 
generated (near the material being extruded) by the moving surfaces. The same 
phenomenon is also observed during the manufacturing of plastic and rubber 
sheets. Further, stretching (shrinking) surfaces are using for blowing of a gaseous 
medium through the material. The flow due to moving surfaces is also used for 
the cleaning of a large metallic plate in bath. The fluid flow induced by the 
shrinking (stretching) of the plates has applications in glass blowing, continuous 
casting and the spinning of fibers. The first study on the boundary-layer adjacent 
to a continuous moving surface was conducted by [1] and later on this model is 
generalized and refined. The Falkner Skane flow models over a stretching sheet 
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for a viscous fluid were examined by [2], with the boundary-layer 
approximations. A flow model corresponding to two-dimensional flows in a 
porous channel is developed by [3]. The governing equations are simplified by 
introducing proper similarity transformation and solved by perturbation method 
for small cross flow Reynolds number. Later on the Berman problem is solved for 
large suction Reynolds (high injection Reynolds) number see [4].  

The Berman problem is extended for uniform suction (injection) through 
the upper wall, the lower wall being considered impermeable see [5]. They 
discussed the similarity and steady state solutions numerically. The asymptotic 
solutions are discussed in the limits of small wall suction (injection), large wall 
injection (suction). Channel flow due to non-uniform suction (injection) through 
its uniformly porous parallel walls is studied by [6]. The solutions are valid for 
large suction (injection) velocities. The governing equations obtained after 
similarity transformation are solved using the series method with polynomial 
coefficients. Two different solutions of the Berman's problem are investigated, 
one corresponding to injection and the other one to suction. They compared the 
asymptotic and numerical results and found excellent agreement between them. 
The viscous flow between a corrugated wall and the first liquid layer using slip 
conditions is studied by [15]. They examined the periodic roughness on the slip 
length which spans multiple length scales ranging from molecular to macroscopic 
dimensions. The Berman’s problem with accelerating rigid porous walls is studied 
by [7]. The upper wall of the channel is considered porous and having a uniform 
stretching velocity. They discussed the existence of multiple solutions and found 
conditions for exponential terms in matched asymptotic expansion. The analytical 
predictions were verified by numerical results. 

Recently the flow problem between parallel, porous and deforming walls 
see [8] was solved by the homotopy analysis and homotopy perturbation methods 
for small deformation rate and the results are confirmed by non-linear shooting 
method in [9]. A model of mixed convective viscous fluid flow in a vertical 
microchannel having parallel, porous and deforming walls is examined by [10]. 
Experimental study of transpiration cooling due to motion of heated fluid in 
vertical parallel and porous plates is provided by [11]. The study is further 
extended to hydromagnetic flow and heat transfer in a porous channel.  The 
effects of non-Darcy porous medium with convective cooling of the wall have 
been analyzed by [12]. Effects of MHD flow on micropolar nanofluid flow inside 
a porous channel with uniform injection have been presented by [13]. [14] studied 
the heat transfer in a micropolar fluid over a porous channel and the results are 
obtained by Akbari-Ganji’s Method (AGM). 

In this paper a generalized form of Berman’s problem is investigated. The 
sources considered here are: (i) the porous velocity at the upper wall, denoted by 

wv , and that at the lower wall, denoted by wu , are not equal (ii) the upper (lower) 
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wall is stretched (shrunk) with velocity Ax ( Bx ) where ( )0 0 ,A > <  
0( 0)B > <  are the stretching (shrinking) constants for the upper and lower plate, 

respectively and x is the axial coordinate. The problem is formulated as governing 
equations and special boundary conditions. The PDE’s are converted into ODE’s 
by using the similarity transformation. The solution of the non-dimensional ODE 
with four boundary conditions is obtained by perturbation method for small values 
of the parameters and asymptotic method for large values of the parameters. The 
correctness of these two solutions is presented by a powerful numerical technique 
given by [15]. The results obtained by the perturbation method and the numerical 
method are compared. In most cases there is no error between the two solutions 
up to five decimal places. Similarly, the asymptotic results are compared with 
numerical results and excellent agreement between the two is found. Those values 
of the unknown functions are taking into account in which error is significant. To 
the best of author's knowledge, the idea presented in this paper has not been 
discussed so far. Flows in a channel induced by different porosity at walls and 
non-uniform stretching (shrinking) walls are known to have important relevance 
for fluid transport in many biological and engineering systems. It is thus hoped 
that the study may add some mathematical features to this important biological 
and engineering problems. The classical Berman’s problem is a special case of the 
current study. 

2. Formulation of the Problem 

Let us investigate the flow of viscous fluid in a two-dimensional channel. 
The gap between the wall is 2h . Both walls of the channel are porous and have 
different permeabilities. Each wall has its own stretching (shrinking) velocity. A 
rectangular coordinate system is selected in such a way that x  and y -axes lie 
along and normal to the center line, respectively. The longitudinal and transversal 
velocity components are denoted by u  and v . The channel geometry is described 
in Figure 1.  

 
Fig. 1: Geometry of converging (diverging) channel under consideration 
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The governing equations are composed of the continuity and Navier 
Stokes equations as follow: 
 1 0,u v

x h η
∂ ∂

+ =
∂ ∂

 (1) 

 2 2

2 2 2

1 1[ ],u v u p u uu
x h x x h

υ
η ρ η

∂ ∂ ∂ ∂ ∂
+ = − + +

∂ ∂ ∂ ∂ ∂
 

(2) 

 2 2

2 2 2

1 1[ ],v v v p v vu
x h h x h

υ
η ρ η η

∂ ∂ ∂ ∂ ∂
+ = − + +

∂ ∂ ∂ ∂ ∂
 

(3) 

in which /y hη = , is the dimensionless similarity variable, p  is the pressure, ρ is 
the constant and uniform fluid density and υ  is the kinematic viscosity. The 
governing equations are only valid for laminar and incompressible flow in the 
rectangular domain bounded by the two parallel permeable and stretching 
(shrinking) surfaces. The appropriate boundary conditions are: 
 ( ) ( ) ( ) ( ),1 , , 1 ,  ,1 , , 1 ,w wu x Ax u x Bx v x v v x u= − = = − =  (4) 

where Ax and Bx
 
represent the stretching (shrinking) velocities of the upper and 

lower wall respectively. Here, 0A   and 0B   correspond to stretching walls, 
while 0A  and 0B   refer to shrinking walls. Similarly, wv and wu

 
are the 

injection (suction) velocities at the upper and lower wall, respectively. For two-
dimensional incompressible flows a stream function ψ  exists which satisfy the 
continuity Eq. (1) automatically such that the velocity wv  at the upper wall and 
the given boundary condition gives a possible choice for the stream function: 
 1( , ) ,  ( , )  where ( , ) ( ).wu x v x x v xf

h x
ψ ψη η ψ η η
η

∂ ∂
= = − = −

∂ ∂
 (5) 

 The governing equations in a channel with porous and stretching 
(shrinking) walls are simplified by using a proper procedure. The velocities are 
different at the walls, and the walls are stretching (shrinking) with different 
velocities. The stream function in Eq. (6) may lead to an exact similarity solution 
of the Navier-Stokes equations in rectangular channel with porous and stretching 
walls. In view of Eq. (6), the velocity components emerge as:  
 1( , ) ( ),  ( , ) ( ),w wu x v xh f v x v fη η η η− ′= − =  (6) 

by substituting the expressions for u  and v  given in Eq. (6) into Eqs. (2-3) we 
get: 



Viscous flow in a porous channel with stretching and shrinking walls                    187 

 22
2
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1 1 and ,
Re

w
w

w

vh p pf ff f ff v f
xv x h h h

υ
ρ ρ η

∂ ∂′ ′′ ′′′ ′ ′′− = − − = − +
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(7) 

where Re /whv υ=  is the Reynolds number. Eliminating pressure from Eq. (7): 

( ) ( ) ( )2Re  or .ivf f ff f f ff f kε′ ′′ ′′′ ′ ′′ ′′′− = − − + =  (8) 

The first part in Eq. (8) is divided by Re  and integrating w. r. t η  we get 
the second part of it. Where 1/ Reε =  and k  is a subsidiary constant of 
integration. The BC’s (4) are converted for ( )f η as under: 

( ) ( ) ( ) ( )1 21 1, 1 , 1 , 1 ,f f f f dα α′ ′= = − = − =  (9) 

where 1 / ,wAh vα = −  2 / ,wBh vα = −
 

/ .w wd u v=  

The normal and axial pressures are calculated form Eq. (7) as: 
21

2 , ,w
w w

k x vp p v f v ff
x h y h

µ µ ρ∂ ∂ ′′ ′= = −
∂ ∂

 (10) 

where 1k  is a constant of integration appeared in Eq. (8) and µ  is the absolute 
viscosity. The Eq. (10) is simply obtained by using Eq. (8) in Eq. (7). The shear 
stress is obtained as: 

( ) ( ),xy w
u v f
y x

τ µ τ η∂ ∂ ′′= + =
∂ ∂

 (11) 

with ( , )u x η  from Eq. (6), we get: 3/ .w wx v hτ µ= −  The parameter values subject 
to certain range have the physical meanings. For ( )1 20 0α α= = , 

( )1 20 0α α> > and ( )1 20 0α α< < , the upper (lower) wall is fixed, stretching and 
shrinking, respectively. Similarly for equal suction (injection) at both walls we 
have ( )1 and Re 0 0d = − < > whereas for equal top suction (injection) and lower 

injection (suction), the parameters ranges are: ( )1 and Re 0 0d = < > . Moreover, 

for ( )1 and Re 0 0d < − < > , the top suction (injection) is smaller than lower 

suction (injection) and for ( )1 and Re 0 0d > < >  the top suction (injection) is 
greater (smaller) than the lower injection (suction). On the other hand, for 

( )1 0  and Re 0 0d− < < < > , lower injection (suction) is smaller than top 

injection (suction) and for ( )0 1 and Re 0 0d< < − < > , the lower injection 
(suction) is smaller than top suction (injection). Finally, for 



188                      Aamir Ali, Dil Nawaz Khan Marwat, Sagheer Ahmed Shah 

( )0  and Re 0 0d = < > , the lower wall is rigid (non-porous) and injection 
(suction) is taking place in top wall. The ODE’s to be solved is Eq. (8) together 
with the associated boundary conditions (9). This constitutes an exact similar 
problem for the governing equations. 

3. Solution to the Problem 

Solution of Eq. (8) satisfying the boundary conditions in Eq. (9) is 
attempted by three different methods. The first one is the numerical method 
developed by [15], the second and third methods are the perturbation and 
asymptotic methods, respectively. The perturbation results are accurate for small 
values of the parameters and the asymptotic results are valid for large values of 
the parameters. The asymptotic results are also checked for small values of the 
parameters. The zeroth order perturbation solution is obtained when we put 
Re 0=  in Eq. (8). Note that the order of equation is not changed by the 
substitution while the nonlinear terms in the equation are eliminated. This 
approximation (technique) can help us in simplifying the boundary value ODE in 
Eq. (8). The function f can be easily obtained from the Eqs. (8, 9) by this method. 
An approximate solution of Eqs. (8-9) is investigated for large value of Re . In Eq. 
(8) Re 1/ ,ε=  and large Re  means small ε . The order of the equation is reduces 
by unity if the terms do not have Re as a factor. Thus, we obtained a solution to 
the unmodified equation for large Re. 

3.1. Perturbation solution for small Re 

Here we investigate the perturbation solution of the boundary value ODE 
in Eq. (8, 9) for small values of the Reynolds number. Expanding the solution 

( )f η  of Eq. (8) in terms of Re , where Re  is assumed a small quantity: 
2

0 1( ) ( ) Re ( ) (Re ).f f f Oη η η= + +  (12) 

Here the unknown functions 0 1,f f  are taken to be independent of Re . 
Substituting (12) into Eqs. (8,9) and collecting like powers of Re  leads to the 
zeroth and first order equations in Re. The zeroth and first order boundary value 
ODE's in Re have the following solutions. 

2 3
0 0 1 2 3 ,f A A A Aη η η= + + +  (13) 

2 3 4 5 6 7
1 0 1 2 3 4 5 6 7 ,f B B B B B B B Bη η η η η η η= + + + + + + +  (14) 

where 0 1 2(2 2 ) / 4,A d α α= + − +
 

1 1 2(3 3 ) / 4,A d α α= − − −
 

2 1 2( ) / 4,A α α= −
 

3 1 2( 1 ) / 4,A d α α= − + + + 0 1 2 0 3 2 3( 5 15 4 ) / 60,B A A A A A A= − + −
2 2

1 2 3( 7 6 ) / 210,B A A= − − 2 1 2 0 3 2 3(5 15 3 ) / 30,B A A A A A A= − +
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2 3
3 2 2(14 9 ) / 210,B A A= + 4 1 2 0 3( 3 ) /12,B A A A A= − + 2

5 2 / 30,B A= −
 

6 2 3 / 30B A A= −
 and 2

7 3 / 70.B A= −
 
The final perturbation solution can be obtained by substituting 

the expressions for 0f  in Eq. (13), 1f  in Eq. (14) into Eq. (12). We get: 
2 3

0 1 2 3
2 3 4 5 6 7 2

0 1 2 3 4 5 6 7

( ) ( )
Re( ) (Re ).

f A A A A
B B B B B B B B O

η η η η

η η η η η η η

= + + +

+ + + + + + + + +
 

(15) 

3.2. Asymptotic solution for large Re 

Asymptotic solution for large values of Re is also presented here. This 
solution will satisfy some conditions on the parameters values. Only zeroth order 
solution is obtained and this solution is valid for wide range of parameters values. 
Moreover, the parameters 1α  and 2α are depending on d . We expand the 
function f and constant k of Eq. (12) in terms of ε as: 

0 0( ), ( ),f f O k k Oε ε= + = +  (16) 
where the unknown functions 0 1,f f  are no longer dependent on ε . Substituting 
assumptions (16) for f  and k  into Eqs. (8-9) and collecting like powers of ε : 

2
0 0 0 0 0 0 1 0 2 0( ) , (1) 1, (1) , ( 1) , ( 1) ,f f f k f f f f dα α′ ′′ ′ ′− = = = − = − =  (17) 

and solution of Eq. (17) is: 
0 1 2cos( ) sin( ),f g gη η= +  (18) 

where ( )1 1 2 / ,dα π ε= −
 

( )2 2 / ( 3 ),dα π ε= −
 

1 ,g d=  2 (2 ) / 3,g d= −
 ( )2 2 2

0 1 2 / 36k g gπ= +
 
and ( 1) / .η π η ε= +

 
Note that the solution in Eq. (18) is 

valid for special values of 1 2,α α  and dependent on parameter d .  

3.3. Exact solution 

The Eqs. (11, 13) has the exact solution when 1 2α α=  and 12 1:d α+ =  
0 1( )f A Aη η= +  (19) 

where 0 (1 ) / 2A d= +  and 1 (1 ) / 2.A d= −  The linear exact solution in Eq. (19) is 
confirmed by the perturbation solution in Eq. (15) and numerical method. This 
solution is independent of Re. The profiles are shown in different graphs by 
straight lines. Further, for 1,d =  the exact solution is converted into a constant 
solution and the constant has the value one. 
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3.4. Multiple solution 
Multiple solutions of Eqs. (8, 9) are found by the modified shooting 

method and the scheme is developed by [15]. Note that the method requires initial 
guess for calculating the solution of any boundary value problem. Here we 
consider only one case and assumed fixed values for the parameter 
Re 5,= 1 2 0α α= = and 1.6d = − . For this set of parameters values, we obtained 
three multiple solutions as shown in Fig 7. For 1 0d− ≤ ≤ , the initial guess has no 
impact on the profiles. This means that the profiles are exactly the same for every 
choice of the initial guess. For 1d < − , the solution is strongly initial guess 
dependent. For that choices of d , we may obtain multiple solutions. The cheep 
solution which is obtained easily for this set of parameters values and presented in 
Fig. 2 by pattern A. The solution in pattern B can be matched with the 
perturbation solution. The solution in pattern A and C cannot be obtained from 
perturbation solutions. All the patterns are uniformly changed with changing the 
values of d for special values of initial guesses given in the legends of the figure. 

 
Fig. 2: Multiple solutions for ( )f η′ are plotted against η  for 1 2 0α α ==  and 

Re 5= , 1.6d = − . 

3.5. Comparison of analytical and numerical solutions 

The perturbation solution in Eq. (15) is compared with the numerical 
solution of Eqs. (8, 9). These two solutions are compared for certain range of 
parameters values and matched. The perturbation results presented for the sake 
comparison are accurate up to 6(Re )O . The two solutions agreed to reasonable 
order of accuracy level. It is observe that for all sets of parameters values there are 
no differences between two solutions near walls and center of the channel. The 
solution in Eq. (17) is compared with numerical solutions of Eqs. (8, 9) for large 
values of parameters d , Re and compared the results. In most cases the results 
obtained by these two methods are exactly the same. Again the solution in Eq. 
(17) is compared with the numerical solution of Eqs. (8, 9) for small value of 
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d and Re in Table 1 and good agreement between the two is found. Although the 
solution in Eq. (17) is obtained for large values of the parameters but it also 
provides accurate results for small values of the parameters. 

Table 1:  
Comparison of asymptotic and numerical solutions for large d and Re . 

 
   η  

Numeric
   ( )nf
 

Analytic
( )af

 

  Error

n af f−
 

 
   η  

Numeric
   ( )nf
 

Analytic
( )af

 
  Error

n af f−
 

1 2Re 5, 1, 0.9069d α α= = − = =  1 2Re 5, 1, 0.3023d α α= − = = =  

-0.9697 -0.9724 -0.9724 0.0000 -0.9798 1.0060 1.0061 0.0001 

-0.8384 -0.8499 -0.8500 0.0001 -0.8586 1.0397 1.0400 0.0003 

-0.7374 -0.7529 -0.7531 0.0002 -0.7980 1.0548 1.0554 0.0006 

-0.6364 -0.6538 -0.6541 0.0003 -0.7172 1.0733 1.0742 0.0009 

-0.6162 -0.6338 -0.6341 0.0003 -0.6364 1.0900 1.0912 0.0012 

-0.1919 -0.2004 -0.2006 0.0002 -0.5758 1.1012 1.1026 0.0014 

-0.1111 -0.1162 -0.1163 0.0001 -0.4747 1.1174 1.1192 0.0018 

 0.0000   0.0000  0.0000 0.0000 -0.3131 1.3272 1.3292 0.0020 

 0.0707  0.0739  0.0740 0.0001 -0.0707 1.1519 1.1539 0.0020 

 0.1717  0.1794  0.1796 0.0002  0.0909 1.1516 1.1534 0.0018 

 0.1818  0.1899  0.1901 0.0002  0.2525 1.1432 1.1446 0.0014 

 0.3232  0.3366  0.3369 0.0003  0.3535 1.1338 1.1350 0.0012 

 0.7576  0.7725  0.7727 0.0002  0.4545 1.1212 1.1222 0.0010 

 0.8485  0.8595  0.8596 0.0001  0.7374 1.0694 1.0697 0.0003 

 0.9697  0.9724  0.9724 0.0000  0.9798 1.0060 1.0061 0.0001 

4. Results and Discussions 

The governing PDE’s and boundary conditions are converted into 
boundary value ODE by well established similarity transformations. As a result, 
Eqs. (8, 9) are formed and solved by perturbation method for small values of Re. 
The perturbation solution is shown in Eq. (15) and valid up to 2(Re ).O  The 
problem is also solved by the asymptotic method for large values of Re . The 
solution is shown in Eq. (17). Note that the asymptotic solution is valid until and 
unless, the parameters will fulfill a certain criteria and further conditions are used 
for parameter values. For a set of parameter values, the exact solution to the 
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problem is provided and the solution is independent of Re. The validity of the 
two analytical solutions i.e. solution for small and large values of the parameters 
and exact solution is also shown by a powerful numerical scheme developed by 
[15]. Some highlights of the solutions for special values of emerging parameters 
are discussed in details. Different cases are discussed and presented here. In Fig. 
3, effects of different Re 20,10,5,0, 5, 10, 20,= − − − 1 20α α= = and 1d = − are 
observed on the axial velocity component f ′ . This is the case of well-known 
Berman’s problem [3] when 1 0α =  and 1d = − i.e. both the equation and 
boundary conditions in Eqs. (8, 9) are reduced to that of Berman Problem. For 
these special values of the parameters, the perturbation solution in Eq. (15) is 
reduced to the solution of [3]. It is observed that the shapes of f ′ are changed 
smoothly over the wide range of Re . In case of equal suction ( Re 0> ) at both 
walls, the profiles corresponding to large suction are flatten and inclined toward 
the walls. The same profiles for large injection have high peaks and escaping from 
the walls. For large and positive values of Re the profiles are steeper and mounted 
with small peaks. On the other hand for large negative values of Re  the profiles 
have highest peaks and slowest steep. Moreover, the profiles are symmetrical 
about the centre line for all values of Re . For large values of Re the solution is 
similar to that of [4] obtained for [3]. In Fig. 4, f ′ is plotted against the similarity 
variable η  for the combination of equal suction (injection) at upper and lower 
walls with shrinking parameters ( 1 0α < and 2 0α < ). The profiles are symmetrical 
about midway. For moderate values of suction and shrinking parameters, the 
profiles have high peaks. For large suction and equal shrinking ( 1 2 0α α= < ), flat 
profiles are tended toward the walls. In this figure the walls are shrunk and 
stretched with equal rates. 

 

 
 

Fig. 3: ( )f η′ is plotted againstη for 

1 20α α= = , 1d = − and different Re . 

Fig. 4: ( )f η′  is plotted against η  for 

1 2 0α α <= , 1d = −  suction (injection). 
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In Fig. 5, f ′ is plotted against η  for equal suction and injection at both 
walls. Both the walls are stretched with unit rates. In the current figure solid and 
dotted lines are representing injection and suction cases respectively. All the 
profiles are symmetrical about 0η = . For 1 2 1α α= = and 1d = − , we obtained 
straight velocity profiles. These profiles are equal to a constant 1 2 1α α= = and do 
not depend on Re . In other words, for this choice of parameters values the flow is 
independent of Re . This means that, for equally stretched walls with unity, 
whenever fluids enter (leave) through the walls with equal rates, the flow in 
channel remain constant ( ( ) 1f η′ = ) axially. No changes in the pattern of f ′ (for 

1 2 1α α= = , 1d = − ) are observed for different values of Re . Back flow is 
observed for all other values except 1 2 1α α= = 1d = − . Back overflow is noted 
for large injection. Further, for these values of Re , f ′ is increased near the walls 
and decreasingly moved towards the centre. For suction, f ′ is uniformly 
decreased. In Fig. 6 effects of different d are observed on f ′ . For 1d = and 

1 2 0α α= = the profile is linear and equal to zero everywhere in the domain. The 
solution for this set of parameters values (independent of Re ) is trivial and 
confirmed by the numerical and perturbation methods. For 1d = − , we got 
symmetrical profile about the centre line. For 1d > reverse flow phenomena is 
observed. Back flow is dominant near the bottom wall and weak in the 
surrounding the wall. For increasing d , back overflow is observed. As 
d decreases from -1 to -5, the velocity profiles increase. For these choices of 
d the axial velocity of the fluid is high near the top plate as compared to the lower 
plate. For 1d = , flow is purely one dimensional and the velocity is equal to a 
constant. The normal velocity is equal to 1 and axial velocity is zero. 

  
Fig. 5: ( )f η′  is plotted against η  for 1 2α α= , 

1d = −  and suction (injection). 

Fig. 6: ( )f η′  is plotted against η  for 

5Re = − , 1 2 0α α <=  and different values of 
d . 

Effects of different d are found on f ′ against η  in Fig. 7. In this figure, 
we obtained two families of graphs. One family of profiles is above the constant 
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profile ( 0f ′ = ) and the other one is bellow it. The profiles corresponding to 
0.7d = and 1.3d =  are the mirror image of each other. Similar observations are 

noted for other value of d  and the results are shown in Fig. 7. In this figure the 
profiles are decreasing with the increasing value of d in the limit 0 1d  . In 
addition, the two families of profiles are tending to a constant profile when d  is 
approaching either from 0.1 to 1 or from 2 to 1. Effects of different ( )1 2α α on 
f ′ (for equal injection at both walls) are observed. The lower (upper) wall is 

assumed fix. At the upper (lower) half of the channel f ′ is uniformly decreased as 
the values of ( )1 2α α  are increased from -5 to 5. The values of f ′ shot the upper 

(lower) plate according to the values of ( )1 2α α . Effects of different ( )1 2α α on 
f ′ is observed for equal suction at both walls and upper (lower) plate is fixed. 
f ′ is decreased at upper (lower) half of the channel with the values of 
( )2 1α α when increased from -5 to 5. Further, f ′met the values of ( )2 1α α at the 

lower (upper) wall. f ′ is increased at the lower (upper) half of the channel with the 
increase of ( )2 1α α when ( )2 1α α changed from -5 to 5. 

 
Fig. 7: ( )f η′  is plotted againstη  for 5Re = − , 1 2 0α α == and different positive values of d . 

 
For 1 2 1α α= = and 1d = − , we obtained a constant f ′ . This exact solution 

( f η= ) is confirmed by perturbation and numerical methods. This means that 
both walls are stretched with equal rates of unity and equal suction or injection in 
top and bottom walls is taken into account. In Table 1 the perturbation solution is 
compared with the numerical solution for different values of parameters. For 
small values of parameters the two solutions are exactly matched. In this table 
those values of f are calculated for which we have noted some difference 
between the two solutions. The two solutions are exactly the same up to the four 
decimal places at all points except a few points between walls and the core of the 
channel. The asymptotic results are compared with numerical results for large and 



Viscous flow in a porous channel with stretching and shrinking walls                    195 

small values of parameters respectively. For large values of the parameters the 
two results are equal. For moderate and small values of parameters, we obtained 
small errors between the two solutions at certain points. This error is shown in 
table and arises at the points between centre and walls. The two solutions are 
matched to the best accuracy level and the results are up to the mark. The non-
dimensionalized shear stress ( )/ w fτ τ τ η′′= =  is obtained from Eq. (11) and 

( )f η may be obtained from Eqs. (8, 9) by the methods in hand. The mean 
pressure is obtained from Eq. (10) and has the form: 

( )

2 2
0 0 03

2
2 2 2

1( , ) [ ( ,1) ( , 1) ( )
2 4

1{ (1 ) 1 (1 ) }].
4 2

w

w

vp x p x p x x x
h

v d d

µη

ρ η η

= + − + −

− − − − + −  

The above expression is quadratic in η  and will not vary against η  for 1.d =  The 
exact solution is independent of Re  and the stress will be zero in this case.  

5. Conclusion 

The paper is concluded with the remarks that the compatibility of the 
different solutions is checked and responses of flow properties to the different 
parameters by using these solutions are accurately found and calculated. Excellent 
agreement between the perturbation and numerical solutions for ( )f η  was found. 
Whereas the asymptotic solution was compared with the numerical solution for 
large values of the parameters and the two results are matched to best accuracy 
level. Moreover, the asymptotic results were also matched with numerical results 
for small values of parameters in Table 1 and good agreement between the two is 
found. Straight axial velocity profiles were obtained for a set of parameters value 
( 1 2α α= and 12 1dα + = ) and equal to constants ( 1 2α α= ). These solutions include 
a trivial axial profile (exact solution) for 1 2 0α α= = and 1d = . In all these cases, 
the flow is independent of Re  when these special values are chosen. These are 
exact solutions of the Navier-Stokes equations. These exact solutions are verified 
by the numerical and perturbation methods. For 1d = − , ( )2 10 0α α= = , fixed 

values of Re and different values of ( )1 2α α , the profiles of f ′were scaled on 

( )1 1η = −  according to the values of ( )1 2α α . All other changes in the profiles 
corresponding to these two sets of parameters values were common. Three 
different solutions were obtained for a single set of parameters values. The results 
of [3] were recovered for the special values 0A B= = and w wv u= − , or, 
equivalently, 1d = − and 1 2 0α α= = . 
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