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VISCOUS FLOW IN A POROUS CHANNEL WITH
STRETCHING AND SHRINKING WALLS

Aamir ALIY, Dil Nawaz KHAN MARWAT?, Sagheer Ahmad SHAH?

In this paper Berman’s problem is modified by considering different
porosities and stretching/shrinking velocities at walls of the channel. The upper

(lower) wall has porous velocity vy, (uW) and upper (lower) wall is stretched /

shrunk with the velocity Ax(Bx) where A>O(< O), B>0(< 0) are the

stretching (shrinking) constants for the upper and lower plate, respectively and x is
the axial coordinate. The governing PDE’s with no slip conditions are simplified
and converted into boundary value ODE’s. Analytical solutions of the final problem
are obtained by using perturbation and asymptotic methods for small and large
values of the Reynolds number, respectively. For a range of parameter values, an
exact solution of the governing Navier-Stokes equation is also provided. Multiple
solutions are also presented for a single set of parameter values. The two analytical
and exact solutions are compared with the results given by the numerical method.

Berman’s results are recovered for A= B =0 and Viy = Uy

Keywords: Porous walls; stretched (shrunk); channel flow; asymptotic solution.
1. Introduction

In processes of extrusion and melt-spinning, the fluid motion is mostly
generated (near the material being extruded) by the moving surfaces. The same
phenomenon is also observed during the manufacturing of plastic and rubber
sheets. Further, stretching (shrinking) surfaces are using for blowing of a gaseous
medium through the material. The flow due to moving surfaces is also used for
the cleaning of a large metallic plate in bath. The fluid flow induced by the
shrinking (stretching) of the plates has applications in glass blowing, continuous
casting and the spinning of fibers. The first study on the boundary-layer adjacent
to a continuous moving surface was conducted by [1] and later on this model is
generalized and refined. The Falkner Skane flow models over a stretching sheet
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for a viscous fluid were examined by [2], with the boundary-layer
approximations. A flow model corresponding to two-dimensional flows in a
porous channel is developed by [3]. The governing equations are simplified by
introducing proper similarity transformation and solved by perturbation method
for small cross flow Reynolds number. Later on the Berman problem is solved for
large suction Reynolds (high injection Reynolds) number see [4].

The Berman problem is extended for uniform suction (injection) through
the upper wall, the lower wall being considered impermeable see [5]. They
discussed the similarity and steady state solutions numerically. The asymptotic
solutions are discussed in the limits of small wall suction (injection), large wall
injection (suction). Channel flow due to non-uniform suction (injection) through
its uniformly porous parallel walls is studied by [6]. The solutions are valid for
large suction (injection) velocities. The governing equations obtained after
similarity transformation are solved using the series method with polynomial
coefficients. Two different solutions of the Berman's problem are investigated,
one corresponding to injection and the other one to suction. They compared the
asymptotic and numerical results and found excellent agreement between them.
The viscous flow between a corrugated wall and the first liquid layer using slip
conditions is studied by [15]. They examined the periodic roughness on the slip
length which spans multiple length scales ranging from molecular to macroscopic
dimensions. The Berman’s problem with accelerating rigid porous walls is studied
by [7]. The upper wall of the channel is considered porous and having a uniform
stretching velocity. They discussed the existence of multiple solutions and found
conditions for exponential terms in matched asymptotic expansion. The analytical
predictions were verified by numerical results.

Recently the flow problem between parallel, porous and deforming walls
see [8] was solved by the homotopy analysis and homotopy perturbation methods
for small deformation rate and the results are confirmed by non-linear shooting
method in [9]. A model of mixed convective viscous fluid flow in a vertical
microchannel having parallel, porous and deforming walls is examined by [10].
Experimental study of transpiration cooling due to motion of heated fluid in
vertical parallel and porous plates is provided by [11]. The study is further
extended to hydromagnetic flow and heat transfer in a porous channel. The
effects of non-Darcy porous medium with convective cooling of the wall have
been analyzed by [12]. Effects of MHD flow on micropolar nanofluid flow inside
a porous channel with uniform injection have been presented by [13]. [14] studied
the heat transfer in a micropolar fluid over a porous channel and the results are
obtained by Akbari-Ganji’s Method (AGM).

In this paper a generalized form of Berman’s problem is investigated. The
sources considered here are: (i) the porous velocity at the upper wall, denoted by

V,,, and that at the lower wall, denoted by u,,, are not equal (ii) the upper (lower)
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wall is stretched (shrunk) with velocity AX(BX) where A>0(<O),

B > 0(< 0) are the stretching (shrinking) constants for the upper and lower plate,

respectively and Xis the axial coordinate. The problem is formulated as governing
equations and special boundary conditions. The PDE’s are converted into ODE’s
by using the similarity transformation. The solution of the non-dimensional ODE
with four boundary conditions is obtained by perturbation method for small values
of the parameters and asymptotic method for large values of the parameters. The
correctness of these two solutions is presented by a powerful numerical technique
given by [15]. The results obtained by the perturbation method and the numerical
method are compared. In most cases there is no error between the two solutions
up to five decimal places. Similarly, the asymptotic results are compared with
numerical results and excellent agreement between the two is found. Those values
of the unknown functions are taking into account in which error is significant. To
the best of author's knowledge, the idea presented in this paper has not been
discussed so far. Flows in a channel induced by different porosity at walls and
non-uniform stretching (shrinking) walls are known to have important relevance
for fluid transport in many biological and engineering systems. It is thus hoped
that the study may add some mathematical features to this important biological
and engineering problems. The classical Berman’s problem is a special case of the
current study.

2. Formulation of the Problem

Let us investigate the flow of viscous fluid in a two-dimensional channel.
The gap between the wall is 2h. Both walls of the channel are porous and have
different permeabilities. Each wall has its own stretching (shrinking) velocity. A
rectangular coordinate system is selected in such a way that x andy -axes lie
along and normal to the center line, respectively. The longitudinal and transversal
velocity components are denoted by u andv. The channel geometry is described
in Figure 1.

y-axs

y=-h ’ [ v=mn, e u=Bx
Fig. 1: Geometry of converging (diverging) channel under consideration
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The governing equations are composed of the continuity and Navier
Stokes equations as follow:

u 1 M)
X hen
u veu 1ép 0 1 (2)
U—+——:———+U[—2+—2—2],
ox hon  pox ox~ h°on
N Vv 1op 0 1% 3
U—t———=———t [+ —],
ox hon hp on ox~ h®on

in which n =y/h, is the dimensionless similarity variable, p is the pressure, pis
the constant and uniform fluid density and o is the kinematic viscosity. The
governing equations are only valid for laminar and incompressible flow in the
rectangular domain bounded by the two parallel permeable and stretching
(shrinking) surfaces. The appropriate boundary conditions are:

u(x,1)=Ax, u(x,—1)=Bx, v(x,1)=v,, v(x,-1)=u,, 4)

where Ax and Bx represent the stretching (shrinking) velocities of the upper and
lower wall respectively. Here, A>0 and B >0 correspond to stretching walls,

while A<0 and B<0 refer to shrinking walls. Similarly, v,and u, are the

injection (suction) velocities at the upper and lower wall, respectively. For two-
dimensional incompressible flows a stream function y exists which satisfy the

continuity Eq. (1) automatically such that the velocity v, at the upper wall and
the given boundary condition gives a possible choice for the stream function:

10 0 5
0t = 5 2 ) == S where y () =, 1 (). ©)

The governing equations in a channel with porous and stretching
(shrinking) walls are simplified by using a proper procedure. The velocities are
different at the walls, and the walls are stretching (shrinking) with different
velocities. The stream function in Eq. (6) may lead to an exact similarity solution
of the Navier-Stokes equations in rectangular channel with porous and stretching
walls. In view of Eq. (6), the velocity components emerge as:

u(x,77) ==v,xh ™ f'(n), v(x,n) =v, f (1), (6)

by substituting the expressions for u and v given in Eq. (6) into Egs. (2-3) we
get:
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where Re=hv, /v is the Reynolds number. Eliminating pressure from Eq. (7):
Re(ff"—ff")=—f" or (f?—ff")+ef"=k. (8)

The first part in Eq. (8) is divided by Re and integrating w. r. t n we get
the second part of it. Where ¢=1/Re and k is a subsidiary constant of
integration. The BC’s (4) are converted for f (77) as under:

fO)=1 t')=a, f'(-1)=a, f(-1)=d, ©)
where o, =—-Ah/v,, a,=-Bh/v,, d=u,/v,.

The normal and axial pressures are calculated form Eq. (7) as:
P _kXithy Ky fr g,
OX h oy h

(10)

where k; is a constant of integration appeared in Eq. (8) and x is the absolute

viscosity. The Eq. (10) is simply obtained by using Eq. (8) in Eq. (7). The shear
stress is obtained as:
ou ov (11)

— 4+ = f” ,

T,y = H( Y ax) 7, t"(n)
with u(x,n) from Eq. (6), we get: 7, =—xuv,, / h®. The parameter values subject
to certain range have the physical meanings. For o, =0 (a2 :0),

a, >0 (a,>0)and o, <0 (e, <0), the upper (lower) wall is fixed, stretching and

shrinking, respectively. Similarly for equal suction (injection) at both walls we
have d =-1 and Re<0 (> O)Whereas for equal top suction (injection) and lower

injection (suction), the parameters ranges are:d =1 and Re <0 (> O). Moreover,
for d <-1 and Re<0 (> O), the top suction (injection) is smaller than lower

suction (injection) and for d >1 and Re<0 (> O) the top suction (injection) is
greater (smaller) than the lower injection (suction). On the other hand, for
-1<d <0 and Re<0(>0), lower injection (suction) is smaller than top
injection (suction) and for 0<d <-1and Re<0(>0), the lower injection
(suction) is smaller than top suction (injection). Finally, for
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d=0and Re<0(>0), the lower wall is rigid (non-porous) and injection

(suction) is taking place in top wall. The ODE’s to be solved is Eq. (8) together
with the associated boundary conditions (9). This constitutes an exact similar
problem for the governing equations.

3. Solution to the Problem

Solution of Eq. (8) satisfying the boundary conditions in Eq. (9) is
attempted by three different methods. The first one is the numerical method
developed by [15], the second and third methods are the perturbation and
asymptotic methods, respectively. The perturbation results are accurate for small
values of the parameters and the asymptotic results are valid for large values of
the parameters. The asymptotic results are also checked for small values of the
parameters. The zeroth order perturbation solution is obtained when we put
Re=0 in Eqg. (8). Note that the order of equation is not changed by the
substitution while the nonlinear terms in the equation are eliminated. This
approximation (technique) can help us in simplifying the boundary value ODE in
Eq. (8). The function f can be easily obtained from the Egs. (8, 9) by this method.
An approximate solution of Eqgs. (8-9) is investigated for large value of Re. In Eq.
(8) Re=1/¢, and large Re means small ¢. The order of the equation is reduces
by unity if the terms do not have Reas a factor. Thus, we obtained a solution to
the unmodified equation for large Re.

3.1. Perturbation solution for small Re

Here we investigate the perturbation solution of the boundary value ODE
in Eq. (8, 9) for small values of the Reynolds number. Expanding the solution
f(n) of Eq. (8) in terms of Re, where Re is assumed a small quantity:

f (7) = f, () + Re f,(7) + O(Re?). (12)
Here the unknown functions f;, f, are taken to be independent of Re.

Substituting (12) into Egs. (8,9) and collecting like powers of Re leads to the
zeroth and first order equations in Re. The zeroth and first order boundary value
ODE's in Re have the following solutions.

fo= A+ An+An"+Ar’, (13)
f, =B, + By +B,n*+Bn*+B,n* + B +Bn® + By, (14)
where A =(2+2d-o,+a,)/4, A=0B-3d-o,-a,)/4 A =(-a,)/4
A =(-1+d+a, +a,)l 4, B, =(-5AA +15A A, —4A,A,) /60,
B, = (-7A?—6A%)/ 210, B, = (5A A, —15A A, +3A,A,) /30,
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B, =(14A7 +9A°)/ 210, B, = (-AA, +3A/A)/12, B,=—-A? /30, B,=—A,A,/30
and B, =—A?/70. The final perturbation solution can be obtained by substituting
the expressions for f, in Eq. (13), f, in Eq. (14) into Eq. (12). We get:
f (1) =(A+An+An*+ A’ (15)
+Re(B, + B +B,n* + B’ +B,n* + By’ + Bn® + B,p") + O(Re?).

3.2. Asymptotic solution for large Re

Asymptotic solution for large values of Reis also presented here. This
solution will satisfy some conditions on the parameters values. Only zeroth order
solution is obtained and this solution is valid for wide range of parameters values.

Moreover, the parameters ¢, and a,are depending on d. We expand the
function f and constant k of Eq. (12) in terms of ¢ as:

f =1f,+0(s), k=k,+O(e), (16)
where the unknown functions f,, f, are no longer dependent on ¢. Substituting
assumptions (16) for f and k into Egs. (8-9) and collecting like powers of ¢ :

(1,7 - 1,1, ) =k, f,M)=1f, O=a, f, (-)=a, f,(-1)=d, (17)
and solution of Eq. (17) is:
f0 =0, COS(?]) +4, Sin(ﬂ), (18)

where o, =(1-2d)z/e, a@,=(2-d)x/(3¢), 09,=d, g,=(2-d)/3,
ky=7"(9; +9;)/36 and 5 =x(n+1)/z Note that the solution in Eq. (18) is
valid for special values of «,, a, and dependent on parameter d .
3.3. Exact solution
The Eqgs. (11, 13) has the exact solution when ¢, =, and d +2¢, =1:
FOn)=A+An (19)

where A;=(1+d)/2 and A =(1-d)/2. The linear exact solution in Eq. (19) is

confirmed by the perturbation solution in Eq. (15) and numerical method. This
solution is independent of Re. The profiles are shown in different graphs by
straight lines. Further, for d =1, the exact solution is converted into a constant

solution and the constant has the value one.
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3.4. Multiple solution

Multiple solutions of Egs. (8, 9) are found by the modified shooting
method and the scheme is developed by [15]. Note that the method requires initial
guess for calculating the solution of any boundary value problem. Here we
consider only one case and assumed fixed values for the parameter

Re=5a,=a,=0and d =-1.6. For this set of parameters values, we obtained

three multiple solutions as shown in Fig 7. For —1<d <0, the initial guess has no
impact on the profiles. This means that the profiles are exactly the same for every
choice of the initial guess. For d <-1, the solution is strongly initial guess
dependent. For that choices of d, we may obtain multiple solutions. The cheep
solution which is obtained easily for this set of parameters values and presented in
Fig. 2 by pattern A. The solution in pattern B can be matched with the
perturbation solution. The solution in pattern A and C cannot be obtained from
perturbation solutions. All the patterns are uniformly changed with changing the
values of d for special values of initial guesses given in the legends of the figure.

08 06 04 0.2 0 02 04 0e 08 1

Fig. 2: Multiple solutions for f'(77) are plotted against » for «, =«, =0 and
Re=5, d=-16.

3.5. Comparison of analytical and numerical solutions

The perturbation solution in Eqg. (15) is compared with the numerical
solution of Egs. (8, 9). These two solutions are compared for certain range of
parameters values and matched. The perturbation results presented for the sake
comparison are accurate up to O(Re®). The two solutions agreed to reasonable

order of accuracy level. It is observe that for all sets of parameters values there are
no differences between two solutions near walls and center of the channel. The
solution in Eq. (17) is compared with numerical solutions of Egs. (8, 9) for large
values of parametersd, Reand compared the results. In most cases the results
obtained by these two methods are exactly the same. Again the solution in Eq.
(17) is compared with the numerical solution of Egs. (8, 9) for small value of
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d and Rein Table 1 and good agreement between the two is found. Although the
solution in Eq. (17) is obtained for large values of the parameters but it also
provides accurate results for small values of the parameters.

Table 1:
Comparison of asymptotic and numerical solutions for large d and Re _
Numeric | Analytic| Error Numeric | Analytic | Error
n (fn) (fa) |fn_ fa| n (fn) (fa) |fn_ fa|
Re=5d=-1 a, =a, =0.9069 Re=-5d =1 ¢, =, =0.3023
-0.9697 -0.9724 -0.9724 0.0000 -0.9798 | 1.0060 1.0061 0.0001

-0.8384 -0.8499 -0.8500 0.0001 -0.8586 | 1.0397 1.0400 0.0003

-0.7374 -0.7529 -0.7531 | 0.0002 -0.7980 | 1.0548 1.0554 0.0006

-0.6364 -0.6538 -0.6541 | 0.0003 -0.7172 | 1.0733 1.0742 0.0009
-0.6162 -0.6338 -0.6341 | 0.0003 -0.6364 | 1.0900 1.0912 0.0012
-0.1919 -0.2004 -0.2006 | 0.0002 -0.5758 | 1.1012 1.1026 0.0014
-0.1111 -0.1162 -0.1163 | 0.0001 -0.4747 | 1.1174 1.1192 0.0018
0.0000 0.0000 0.0000 0.0000 -0.3131 | 1.3272 1.3292 0.0020

0.0707 0.0739 0.0740 0.0001 -0.0707 | 1.1519 1.1539 0.0020

0.1717 0.1794 0.1796 0.0002 0.0909 | 1.1516 1.1534 0.0018

0.1818 0.1899 0.1901 0.0002 0.2525 | 1.1432 1.1446 0.0014

0.3232 0.3366 0.3369 0.0003 0.3535 | 1.1338 1.1350 0.0012

0.7576 0.7725 0.7727 0.0002 0.4545 | 1.1212 1.1222 0.0010
0.8485 0.8595 0.8596 0.0001 0.7374 | 1.0694 1.0697 0.0003
0.9697 0.9724 0.9724 0.0000 0.9798 | 1.0060 1.0061 0.0001

4. Results and Discussions

The governing PDE’s and boundary conditions are converted into
boundary value ODE by well established similarity transformations. As a result,
Eqgs. (8, 9) are formed and solved by perturbation method for small values of Re.

The perturbation solution is shown in Eqg. (15) and valid up to O(Re?). The
problem is also solved by the asymptotic method for large values of Re. The
solution is shown in Eq. (17). Note that the asymptotic solution is valid until and
unless, the parameters will fulfill a certain criteria and further conditions are used
for parameter values. For a set of parameter values, the exact solution to the
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problem is provided and the solution is independent of Re. The validity of the
two analytical solutions i.e. solution for small and large values of the parameters
and exact solution is also shown by a powerful numerical scheme developed by
[15]. Some highlights of the solutions for special values of emerging parameters
are discussed in details. Different cases are discussed and presented here. In Fig.
3, effects of different Re=20,10,5,0,—5,-10,-20, ¢, =0=a,and d =-lare
observed on the axial velocity component f'. This is the case of well-known
Berman’s problem [3] when o, =0 and d=-li.e. both the equation and

boundary conditions in Egs. (8, 9) are reduced to that of Berman Problem. For
these special values of the parameters, the perturbation solution in Eq. (15) is
reduced to the solution of [3]. It is observed that the shapes of f"are changed
smoothly over the wide range of Re. In case of equal suction (Re >0) at both
walls, the profiles corresponding to large suction are flatten and inclined toward
the walls. The same profiles for large injection have high peaks and escaping from
the walls. For large and positive values of Re the profiles are steeper and mounted
with small peaks. On the other hand for large negative values of Re the profiles
have highest peaks and slowest steep. Moreover, the profiles are symmetrical
about the centre line for all values of Re. For large values of Rethe solution is
similar to that of [4] obtained for [3]. In Fig. 4, f'is plotted against the similarity

variable 5 for the combination of equal suction (injection) at upper and lower
walls with shrinking parameters (o, <0and «a, <0). The profiles are symmetrical

about midway. For moderate values of suction and shrinking parameters, the
profiles have high peaks. For large suction and equal shrinking (o, =, <0), flat

profiles are tended toward the walls. In this figure the walls are shrunk and
stretched with equal rates.

nnnnnn

ahm i g

Fig. 3: f'(n) is plotted against 7, for Fig. 4: '(77) is plotted against 7 for

a, =0=a,,d =-1and different Re. a, =a, <0, d=-1 suction (injection).
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In Fig. 5, f'is plotted against » for equal suction and injection at both
walls. Both the walls are stretched with unit rates. In the current figure solid and
dotted lines are representing injection and suction cases respectively. All the
profiles are symmetrical about =0. For o, =a,=1and d =-1, we obtained

straight velocity profiles. These profiles are equal to a constant ¢, =, =1and do

not depend on Re. In other words, for this choice of parameters values the flow is
independent of Re. This means that, for equally stretched walls with unity,
whenever fluids enter (leave) through the walls with equal rates, the flow in
channel remain constant ( f'(r7) =1) axially. No changes in the pattern of f'(for

a,=a,=1, d=-1) are observed for different values of Re. Back flow is
observed for all other values except o, =a, =1d =-1. Back overflow is noted
for large injection. Further, for these values of Re, f'is increased near the walls
and decreasingly moved towards the centre. For suction, f'is uniformly
decreased. In Fig. 6 effects of different dare observed on f’. For d=1and
a, = a, =0the profile is linear and equal to zero everywhere in the domain. The
solution for this set of parameters values (independent of Re) is trivial and
confirmed by the numerical and perturbation methods. For d =-1, we got
symmetrical profile about the centre line. For d >1reverse flow phenomena is
observed. Back flow is dominant near the bottom wall and weak in the
surrounding the wall. For increasing d, back overflow is observed. As
d decreases from -1 to -5, the velocity profiles increase. For these choices of
d the axial velocity of the fluid is high near the top plate as compared to the lower

plate. For d =1, flow is purely one dimensional and the velocity is equal to a
constant. The normal velocity is equal to 1 and axial velocity is zero.

Rt svoommans T [ % o i &
= At Pt —
Fig. 5: f'(7) is plotted against 7 for o, =, , Fig. 6: f'(77) is plotted against 7 for
d = -1 and suction (injection). Re =-5,a, = a, <0 and different values of

d.
Effects of different d are found on f'against » in Fig. 7. In this figure,

we obtained two families of graphs. One family of profiles is above the constant
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profile (f'=0) and the other one is bellow it. The profiles corresponding to

d=0.7and d =1.3 are the mirror image of each other. Similar observations are
noted for other value of d and the results are shown in Fig. 7. In this figure the
profiles are decreasing with the increasing value of din the limit 0<d <1. In
addition, the two families of profiles are tending to a constant profile when d is

approaching either from 0.1 to 1 or from 2 to 1. Effects of different al(az)on

f' (for equal injection at both walls) are observed. The lower (upper) wall is
assumed fix. At the upper (lower) half of the channel f'is uniformly decreased as

the values of ¢, («,) are increased from -5 to 5. The values of f'shot the upper

(lower) plate according to the values of «,(«,). Effects of different o, (c,)on

f'is observed for equal suction at both walls and upper (lower) plate is fixed.
f'is decreased at upper (lower) half of the channel with the values of

a, (o) when increased from -5 to 5. Further, f’met the values of «, («,)at the
lower (upper) wall. f'is increased at the lower (upper) half of the channel with the
increase of a, (¢, ) when a, (¢, ) changed from -5 to 5.

Fig. 7: /() is plotted against 7 for Re = -5, &, = &, = 0 and different positive values of d .

For o, =a, =1and d =-1, we obtained a constant f'. This exact solution
(f =n) is confirmed by perturbation and numerical methods. This means that

both walls are stretched with equal rates of unity and equal suction or injection in
top and bottom walls is taken into account. In Table 1 the perturbation solution is
compared with the numerical solution for different values of parameters. For
small values of parameters the two solutions are exactly matched. In this table
those values of f are calculated for which we have noted some difference

between the two solutions. The two solutions are exactly the same up to the four
decimal places at all points except a few points between walls and the core of the
channel. The asymptotic results are compared with numerical results for large and
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small values of parameters respectively. For large values of the parameters the
two results are equal. For moderate and small values of parameters, we obtained
small errors between the two solutions at certain points. This error is shown in
table and arises at the points between centre and walls. The two solutions are
matched to the best accuracy level and the results are up to the mark. The non-

dimensionalized shear stress ?:r/rwz f”(n) is obtained from Eg. (11) and
f (7)may be obtained from Egs. (8, 9) by the methods in hand. The mean
pressure is obtained from Eq. (10) and has the form:

POGT) =2 TP0% )+ Pl ~1)+ 422 (x° — )

vi o1
B -0y (1) + (-4
The above expression is quadratic in #» and will not vary against » for d =1. The
exact solution is independent of Re and the stress will be zero in this case.

5. Conclusion

The paper is concluded with the remarks that the compatibility of the
different solutions is checked and responses of flow properties to the different
parameters by using these solutions are accurately found and calculated. Excellent
agreement between the perturbation and numerical solutions for f () was found.
Whereas the asymptotic solution was compared with the numerical solution for
large values of the parameters and the two results are matched to best accuracy
level. Moreover, the asymptotic results were also matched with numerical results
for small values of parameters in Table 1 and good agreement between the two is
found. Straight axial velocity profiles were obtained for a set of parameters value
(o =a,and 2, +d =1) and equal to constants (¢, = «,). These solutions include

a trivial axial profile (exact solution) for &, =, =0and d =1. In all these cases,

the flow is independent of Re when these special values are chosen. These are
exact solutions of the Navier-Stokes equations. These exact solutions are verified

by the numerical and perturbation methods. For d =-1, @, =0(a, =0), fixed
values of Reand different values of «,(«,), the profiles of f’were scaled on

n=1(-1) according to the values of «,(c,). All other changes in the profiles
corresponding to these two sets of parameters values were common. Three
different solutions were obtained for a single set of parameters values. The results
of [3] were recovered for the special values A=B=0and v,=-u,, or,

w!

equivalently, d =-1and o, =, =0.
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