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VERIFICATION DE SYSTEMES GALS EN COMBINANT
LANGAGES SYNCHRONES ET ALGEBRES DE PROCESSUS

Damien THIVOLLE!

Un sistem GALS (Globally Asynchronous Locally Synchronous) este
constituit dintr-o colecfie de componente secvenfiale i deterministe care se executd
in mod concurent si care comunicd utilizind canale lente sau defectuoase. Acest
articol propune o metodologie generald pentru modelizarea si verificarea sistemelor
GALS utilizand o combinafie de limbaje sincrone (pentru componentele secventiale)
si calcule de procese (pentru canalele de comunicafie si concurenfd asincrona).
Aceasta metodologie este ilustratd cu ajutorul unui studiu de caz industrial furnizat
de Airbus: un protocol de comunicatie TFTP/UDP intre un avion si baza terestrd,
modelizat cu atelierul Eclipse/TOPCASED pentru ingineria dirijatd de modele, si
apoi analizat formal cu package-ul CADP pentru verificare si evaluarea
performantelor.

A Gals (Globally Asynchronous Locally Synchronous) system typically
consists of a collection of sequential, deterministic components that execute
concurrently and communicate using slow or unreliable channels. This paper
proposes a general approach for modelling and verifying Gals systems using a
combination of synchronous languages (for the sequential components) and process
calculi (for communication channels and asynchronous concurrency). This
approach is illustrated with an industrial case-study provided by Airbus: a Tftp/Udp
communication protocol between a plane and the ground, which is modelled using
the Eclipse/Topcased workbench for model-driven engineering and then analysed
formally using the Cadp verification and performance evaluation toolbox.

Un systeme GALS (Globalement Asynchrone Localement Synchrone) est
normalement constitué d’une collection de composants séquentiels et déterministes
qui s exécutent de fagon concurrente et communiquent au moyen de canaux lents et
non surs. Cet article propose une approche genérale pour la modélisation et la
verification des systemes GALS en utilisant une combinaison de langages
synchrones (pour les composants séquentiels) et d’algebres de processus (pour les
canaux de communication et le parallélisme asynchrone). Cette approche est
illustrée par une étude de cas industrielle fournie par Airbus : une variante du
protocole TFTP pour les communications entre un avion et le sol, qui est modélisée
a l'aide de la plateforme Eclipse/TOPCASED puis analysée formellement au moyen
de la boite a outils de vérification et d’évaluation de performances CADP.
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1. Introduction

Dans le domaine de I’électronique, la conception de circuits synchrones
(i.e., circuits dont la logique est gouvernée par une horloge centrale) est depuis
longtemps 1’approche de choix. Dans le domaine du logiciel, les langages
synchrones sont définis sur des concepts similaires. Quelque soit leur syntaxe
concrete (flux de données ou formalisme d’automates), ces langages partagent un
paradigme commun : un programme synchrone est formé de composants qui
évoluent par des étapes discrétes et une horloge centrale garantit que tous les
composants évoluent simultanément. Chaque composant est normalement
déterministe, tout comme la composition de tous les composants. Cette hypothése
simplifie grandement la simulation, le test et la vérification des systémes
synchrones.

Ces vingt derniéres années, les langages synchrones sont devenus la norme
pour la programmation de systémes critiques embarqués comme les controleurs
que l’on peut trouver dans les avions, les voitures, les trains ou encore les
centrales nucléaires. Ces langages ont aussi trouvé une place dans la conception
des circuits électroniques. Comme exemples de langages synchrones, nous
pouvons citer ESTEREL [1], LUSTRE/SCADE [2], SIGNAL/SILDEX [3] et
ARGOS [4] . Nous invitons le lecteur a se référer a [5] pour une liste de succes
récents dans I’application des techniques de vérification formelle a des systémes
avioniques complexes.

De plus en plus, les systémes embarqués ne satisfont plus les propriétés
des systémes synchrones. Les approches récentes (modular avionics, X-by-wire...)
introduisent un degré croissant d’asynchronisme et de non déterminisme. Cette
situation est connue depuis longtemps dans 1’industrie des circuits €lectroniques
ou le terme GALS (Globalement Asynchrone Localement Synchrone) est
employé pour désigner les circuits qui consistent en un ensemble de composants
synchrones (gouvernés par leur propre horloge) qui communiquent de fagon
asynchrone. Ces évolutions remettent en cause la position bien établie des
langages synchrones dans I’industrie. En effet, I’introduction d’asynchronisme
invalide les propriétés de non déterminisme et d’instantanéité des systémes
réactifs et rend donc caduques les techniques de vérification efficaces qui existent
pour ces systémes. Il devient alors nécessaire d’adapter les techniques de
vérification existantes au cas des systémes GALS.

Nous avons trouvé dans la littérature diverses tentatives visant a repousser
les limites des langages synchrones pour les appliquer a 1’étude des systémes
GALS. Suivant les résultats de Milner [6] qui ont montré que 1’asynchronisme
peut étre encodé dans le modele de calcul synchrone, nombre d’auteurs [7] [8] [9]
[10] se sont efforcés de décrire les systemes GALS a I’aide de langages
synchrones ; par exemple, le non déterminisme est exprimé par 1’ajout d’entrées
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auxiliaires (oracles) dont la valeur est indéfinie. Le désavantage principal de ces
approches est que I’asynchronisme et le non déterminisme ne sont pas reconnus
comme des concepts de premiere classe donc les outils de vérification des
langages synchrones n’ont pas d’optimisations spécifiques au parallélisme
asynchrone (ordres partiels, minimisation compositionnelle...). D’autres
approches étendent les langages synchrones pour permettre un certain degré
d’asynchronisme, comme dans CRP [11], CRSM [12] ou encore multiclock
ESTEREL [13], mais, & notre connaissance, de telles extensions ne sont pas
(encore) utilisées dans 1’industrie. Enfin, nous pouvons mentionner les approches
[14] [15] dans lesquelles les langages synchrones sont compilés et distribués
automatiquement sur un ensemble de processeurs s’exécutant en paralléle. Bien
que ces approches permettent de générer directement des implémentations de
systemes GALS, elles ne traitent pas de la mod¢lisation et de la vérification de ces
systemes.

Une approche totalement différente serait d’ignorer les langages
synchrones et d’adopter des langages spécifiquement congus pour modéliser le
parallélisme asynchrone et le non déterminisme, et équipés de puissants outils de
vérification formelle comme les algeébres de processus : CSP [16] , LOTOS [17]
ou PROMELA [18]. Un tel changement de paradigme est aujourd’hui impensable
pour des entreprises qui ont investi massivement dans les langages synchrones et
dont les produits a cycles de vie extrémement longs demandent une certaine
stabilit¢ en termes de langages de programmation et d’environnements de
développement.

Dans cet article, nous proposons une approche intermédiaire qui combine
les langages synchrones et les algébres de processus pour modéliser, vérifier et
simuler les systémes GALS. Notre approche essaie de retenir le meilleur des deux
paradigmes :

e Nous continuons a utiliser les langages synchrones et leurs outils pour
spécifier et vérifier les composants synchrones d’un systéme GALS.

e Nous introduisons les algebres de processus pour : (1) encapsuler ces
composants synchrones ; (2) modéliser des composants additionnels dont
le comportement est non déterministe, comme par exemple des canaux de
communications non sdrs qui peuvent perdre, dupliquer et/ou permuter des
messages ; (3) interconnecter tous ces composants d’un méme systeme
GALS grace au parallélisme asynchrone. La spécification qui résulte est
asynchrone et peut étre analysée par les outils accompagnant 1’algebre de
processus considérée.

Nous avons trouvé dans la littérature deux approches qui suivent une
direction similaire. Dans [19], des spécifications CRSM [12] sont
automatiquement traduites en PROMELA pour vérifier grace au model checker
SPIN des propriétés exprimées comme un ensemble d’observateurs. Notre
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approche est différente car nous réutilisons les langages synchrones tels qu’ils
sont, sans qu’il soit nécessaire d’introduire un nouveau langage
synchrone/asynchrone comme CRSM.

Dans [20], plus similaire & notre approche, le compilateur SIGNAL est
utilisé pour générer du code C a partir de programmes synchrones écrits en
SIGNAL. Ce code est ensuite encapsulé dans des processus PROMELA qui
communiquent par une abstraction d’un bus matériel. Enfin, le model checker
SPIN est utilis¢é pour vérifier des formules de logique temporelle sur la
spécification obtenue. L approche que nous proposons suit le méme principe mais
présente des différences clés avec [20] dans la facon d’intégrer les programmes
synchrones dans un environnement asynchrone:

e Le protocole de communication qui relie les deux programmes synchrones
présentés dans [20] est implémenté dans [21] en LUSTRE et SIGNAL. Ce
protocole présente un degré faible d’asynchronisme et aucun non
déterminisme. Il est d’ailleurs prouvé que ce protocole équivaut a un canal
FIFO sans perte a un ¢élément. Notre approche est plus générale car la
communication entre le programme synchrone et son environnement peut
se faire soit directement a I’aide d’un canal de communication, soit par
I’intermédiaire d’un processus asynchrone auxiliaire qui implémente un
protocole donné.

e Le degré d’asynchronisme est encore limité par 1’utilisation de la directive
“atomic” de PROMELA qui assure le non entrelacement de la séquence
d’actions qu’elle englobe avec les actions de 1’environnement. Dans leur
approche, cette directive englobe la totalité des actions de chacun des deux
processus asynchrones qui encapsulent les deux programmes synchrones.
De cette fagon, la réception des entrées dans I'un des processus
asynchrones, I’appel de la fonction C encodant le programme synchrone et
I’envoi des sorties a 1’environnement sont une séquence atomique
d’actions. Les deux programmes synchrones ne peuvent donc pas
s’exécuter de fagon concurrente ce qui, pour nous, ne constitue pas un vrai
exemple de systtme GALS. Au contraire, notre approche est
complétement asynchrone et les exécutions des processus asynchrones qui
encapsulent les programmes synchrones peuvent s’entrelacer. Notre
approche est donc plus générale car : (1) elle permet une modélisation plus
réaliste de la sémantique des systemes GALS (elle ne requiert pas I’arrét
du systeme tout entier durant le calcul de la réaction de I'un des
programmes synchrones) et (2) elle est applicable a un large panel
d’algébres de processus dont la plupart (contrairement 8 PROMELA) ne
posséde pas de directive “atomic” ; les seules contraintes pour ces algébres
de processus sont de permettre a I'utilisateur de définir des types et des
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fonctions ainsi que d’avoir les primitives classiques pour exprimer le

parallélisme asynchrone.

e Dans leur approche, les processus asynchrones qui encapsulent les
programmes synchrones sont vides et ne font que transmettre les valeurs
recues par I’environnement au programme synchrone. Dans la réalité, ce
schéma de systémes GALS est trop restrictif car il arrive que des
programmes synchrones ne spécifient que la partie “contréle” d’une
application et que ce soit les programmes asynchrones qui définissent le
flux de données. Dans notre approche, nous prenons cela en compte et le
degré de complexité du processus asynchrone encapsulateur peut varier
selon le systéme GALS a modéliser.

Nous illustrons notre approche par une étude de cas industrielle fournie
par Airbus dans le contexte du projet TOPCASED”® : un protocole de
communication entre un avion et le sol qui consiste en deux entités TFTP (7Trivial
File Transfer Protocol) qui s’exécutent en paralléle et qui communiquent par un
canal UDP (User Datagram Protocol). Comme langage synchrone, nous
considérons SAM [22], (similaire 8 ARGOS [4]) qui a été congu par Airbus et qui
est utilisé au sein de cette entreprise. Une suite logicielle pour SAM est distribuée
avec la plateforme open-source TOPCASED basée sur Eclipse. Comme algebre
de processus, nous considérons LOTOS NT [23], une version simplifiée de la
norme internationale E-LOTOS [24]. Un traducteur automatique qui transforme
des spécifications LOTOS NT en spécifications LOTOS est développé au sein de
la boite a outils CADP [25]. Ces spécifications LOTOS générées peuvent alors
étre vérifiées et leurs performances évaluées.

Ce document est organisé comme suit. La section 2 explique les principes
de notre approche et illustre son application aux langages SAM et LOTOS NT. La
section 3 détaille 1’étude de cas industrielle. La section 4 traite de la modélisation
formelle de 1I’étude de cas en LOTOS NT. La section 5 détaille les techniques que
nous avons employées pour générer les espaces d’états de nos spécifications et
expose nos résultats de vérification. Enfin, la section 6 donne des remarques
conclusives et nos perspectives concernant ces travaux.

2. Approche proposée

Dans cette section, nous détaillons notre approche pour la modélisation
des systémes GALS a l’aide des langages synchrones et des algébres de
processus. Nous présentons ensuite I’application de cette méthode aux langages
SAM et LOTOS NT.

% http://www.topcased.org
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2.1. Les programmes synchrones vus comme des fonctions de Mealy.
Un programme synchrone est la composition synchrone d’un ou plusieurs
composants synchrones. Un composant synchrone effectue une séquence
d’itérations discrétes et maintient un état interne s. A chaque itération, il regoit un
ensemble de m valeurs d’entrée 1i;..1, de son environnement, calcule
instantanément une réaction, renvoie un ensemble de n valeurs 04...0, 4 son
environnement et se positionne sur son nouvel état syg. Autrement dit, il peut étre
représenté par une machine de Mealy [26] qui est un quintuplet (S, sy, I, O, f) ou :

e S estun ensemble fini d’états,

Sp est I’état initial,
I est un alphabet fini d’entrée,
O est un alphabet fini de sortie,
f1SxIT— S x O estune fonction de transition (aussi appelée une
fonction de Mealy) qui associe a 1’état courant et un symbole de 1’alphabet
d’entrée, I’état pour la réaction suivante ainsi qu’un symbole de 1’alphabet
de sortie : f(s, i;...im) = (S0, 01...0p).
Lorsqu’un programme synchrone a plusieurs composants, ces composants
peuvent communiquer les uns avec les autres grace a des connexions entre les
sorties de certains composants et les entrées d’autres composants. Par définition
du parallélisme synchrone, a chaque itération, tous les composants réagissent
simultanément. Par conséquent, la composition de plusieurs composants peut
aussi étre représentée par une machine de Mealy. Pour les langages synchrones
ESTEREL et LUSTRE, un format intermédiare commun OC (Object Code) a été
proposé pour représenter ces machines de Mealy.

2.2. Le langage SAM. Pour illustrer notre approche, nous considérons le
cas du langage SAM, défini par Airbus et dont une description formelle est
donnée dans [22]. Un composant synchrone en SAM est un automate qui a un
ensemble de ports d’entrée et un ensemble de ports de sortie. Chaque port
correspond a une variable booléenne. Un composant SAM est trés proche d’une
machine de Mealy. La seule différence réside dans le fait que les transitions
sortant d’un méme état ont des indices de priorité qui leur sont associés. Cela est
nécessaire car en SAM, plusieurs transitions peuvent étre activées par une méme
série de valeurs d’entrée.
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Fig. 1. Exemple d’automate SAM

La Figure 1 illustre I’exemple d’un composant SAM. Un point
d’interrogation précede la condition F de chaque transition tandis qu’un point
d’exclamation précede la liste G de variables de sortie auxquelles la valeur vrai
doit étre affectée. Les indices de priorité sont situés a la source des transitions.

La composition de composants SAM suit la sémantique classique de la
composition des programmes synchrones. Les communications entre les différents
programmes sont exprimées par la connexion graphique de ports de sortie et de
ports d’entrée, en respectant les régles suivantes:

e Les ports d’entrée d’'une composition peuvent étre connectés aux ports de
sortie de la composition ou bien aux ports d’entrée des sous-programmes
(i.e., les programmes qui participent a la composition).

e Les ports de sortie d’un sous-programme peuvent étre connectés aux ports
d’entrée d’autres sous-programmes ou bien aux ports de sortie de la
composition.

e Les dépendances cycliques sont interdites : il est interdit de connecter le
port de sortie d’un sous-programme au port d’entrée du méme sous-
programme, que ce soit directement ou par transitivité, au moyen d’un ou
plusieurs sous-programmes intermédiaires.

2.3. Traduction de SAM en LOTOS NT. Dans cette section, nous
illustrons la facon dont un automate SAM peut &tre représenté par sa fonction de
Mealy encodée en LOTOS NT. Par exemple, I’automate de la figure 1 peut étre
encodé comme suit en LOTOS NT :

type State is
So, Si1, S; -- c’est un type enumere
end type
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function Transition (in CurrentState:State, in A:Bool, in B:Bool
out NextState:State, out C:Bool, out D:Bool)

NextState := CurrentState; C := false ; D := false ;
case CurrentState in
So ->

if A then

NextState := S;; D = true

end if
|S: —>
if A and B then

NextState := Sy; C = true; D := true
elsif B then
NextState := S;; C = true
endif
1S —>
if A and not (B) then
NextState := Sp; C = true
elsif B then
NextState := Sp; D = true
end if
end case
end function
.-/J.- _.' - - "'\. - S ..x\"'.
/ Entréesde /" Sorfiesdela
. lafonction ", . fonction de
| de Mealy L Mealy
M, i N . 1 ] b .
. o Fonction | N )
ly..1 s | traiternent VoV ) VNV i 0.0
1 mf, B i | rg de Meaw: #1 tralte.ment 1
etat c:laurant procheldn etat

\ valeurs sauvegardées pour la stimulation suivante
.. A

Fig. 2. Processus asynchrone encapsulateur (wrapper) général

Un systtme SAM comprenant plusieurs automates SAM se traduit
aisément en LOTOS NT. Comme les dépendances cycliques sont interdites, il est
possible d’effectuer un tri topologique des composants en fonction de leurs
dépendances les uns aux autres. A partir de ’ordre obtenu par ce tri, le systeme
SAM peut étre encodé en LOTOS NT comme la composition séquentielle des
fonctions de Mealy de ses composants, c’est-a-dire en appelant les fonctions de
Mealy des composants dans 1’ordre induit par le tri, de telle sorte que lors de
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I’appel de la fonction de Mealy d’un composant donné, les valeurs de toutes ses
variables d’entrée sont connues.

Une approche alternative a la traduction d’un langage synchrone L vers
LOTOS NT serait, si il existe un générateur de code de L vers le langage C,
d’invoquer directement la fonction de Mealy (générée en C) depuis un programme
LOTOS NT, comme une fonction externe (une fonctionnalité supportée par
CADP). De cette facon, notre approche pourrait méme permettre le mélange de
composants écrits dans différents langages synchrones.

2.4. Encapsulation de fonctions de Mealy dans des processus LOTOS
NT. A la différence des programmes synchrones, les composants de programmes
asynchrones évoluent en paralléle, a leur propre rythme et se synchronisent
ponctuellement & 1’aide de canaux de communication. Notre approche pour la
modélisation des systémes GALS dans des langages asynchrones consiste a
encoder un programme synchrone comme un ensemble de types et fonctions
natifs dans 1’algébre de processus considérée. Mais, la fonction de Mealy d’un
programme synchrone, seule, ne peut interagir avec un environnement
asynchrone. Elle doit étre encapsulée dans un wrapper, c’est-a-dire un processus
asynchrone qui fait I’interface entre I’environnement asynchrone et la fonction de
Mealy. Ce wrapper transforme la fonction deMealy en STE (Systeme de
Transitions Etiquetées). Dans notre cas, la fonction deMealy est une fonction
LOTOS NT tandis que le wrapper est un processus LOTOS NT.

La quantité de traitement qu'un wrapper peut faire dépend du systéme
GALS a modéliser. La Figure 2 montre le fonctionnement de général d’un
wrapper : réception des entrées, envoi des sorties et sauvegarde de certaines
valeurs pour les réutiliser a 1’itération suivante. Dans certains cas, le wrapper peut
aussi implémenter des comportements additionnels, non spécifiés par la fonction
de Mealy.

Une fois que la fonction de Mealy est encapsulée dans un wrapper, elle
peut se synchroniser et communiquer avec les autres processus asynchrones grace
a ’opérateur de composition paralléle de LOTOS NT.

3. Description de I’étude de cas

Cette ¢étude de cas a été distribuée par Airbus aux participants du projet
TOPCASED pour illustrer un systéme embarqué avionique typique. Dans cette
section, nous commencgons par présenter les principes du protocole TFTP avant de
décrire les changements effectués sur ce protocole par Airbus pour permettre la
communication entre un avion et le sol.
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3.1. Protocole TFTP. TFTP [27] est I’acronyme de Trivial File Transfer
Protocol. 11 s’agit d’un protocole client/serveur grace auquel plusieurs clients
peuvent écrire (resp. lire) un fichier sur (resp. depuis) un serveur. Pour des raisons
de vitesse de transmission, TFTP utilise UDP (User Datagram Protocol) de
transport et doit donc implémenter un mécanisme de controle du flux des
messages afin de pallier les éventuelles erreurs se produisant dans la couche de
transport UDP. Pour permettre au serveur de différencier les clients qu’il sert,
chaque transfert de fichier s’effectue sur un port UDP différent.

Le protocole TFTP définit 5 types de message :

e RRQ (Read ReQuest) pour demander a lire un fichier depuis le
serveur,

o WRQ (Write ReQuest) pour demander a écrire un fichier sur le
serveur,

e DATA qui contient un fragment de fichier numéroté de 512 octets ;
Le dernier fragment est celui dont la taille est différente de 512,

e ACK qui contient le numéro du fragment acquitté,

e ERROR pour indiquer qu’une erreur s’est produite.

Le protocole est robuste : un message perdu (RRQ, WRQ, DATA ou ACK)
peut étre retransmis aprés un timeout. Les acquittements dupliqués (renvoyés a
cause d’un fimeout par exemple) doivent étre ignorés afin d’éviter le bogue de
I’apprenti sorcier [28].

En cas d’erreur (épuisement de la mémoire disponible, erreur du
systéme...), un message ERROR est envoyé pour annuler le transfert.

3.2. Variante AIRBUS du protocole TFTP. Lorsqu’un avion atteint sa
position finale dans ’aéroport, il est connecté au réseau informatique de cet
aéroport. A I’heure actuelle, les communications qui se déroulent entre 1’avion et
les serveurs de I’aéroport sont régies par un protocole de communication trés
simple et certifié correct. Airbus nous a demandé d’étudier un protocole plus
complexe, une variante du protocole TFTP qui pourrait étre d’intérét pour de
nouvelles générations d’avions. Les principales différences entre ce protocole et le
protocole TFTP classique sont :

e Dans la pile de protocoles considérée par Airbus, la variante du protocole
TFTP repose toujours sur le protocole UDP pour la transmission des
messages. Cependant, ce ne sont plus des fichiers qui sont transportés mais
les trames d’un protocole de communication de plus haut niveau dédi¢ a
I’avionique (comme ARINC 615a).
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e Chaque entit¢ communicante de cette variante du protocole TFTP a la
faculté d’étre a la fois client ou serveur, selon ce que requiert le protocole
de communication de plus haut niveau.

e Chaque entit¢ ne communique qu’avec une seule autre entité. En effet,
pour chaque avion qui se connecte, il y a dans les serveurs de 1’aéroport
une entité TFTP qui lui est réservée. Cela nous permet de ne pas modéliser
le fait qu’une entité peut transférer plusieurs fichiers simultanément sur
des ports UDP différents. Dans le reste de ce document, 1’abréviation
TFTP désigne (sauf mention contraire) la variante du protocole TFTP
définie par Airbus.

Les entités TFTP ont été spécifiées par Airbus au moyen d’un automate
SAM de 7 états, 39 transitions, 15 ports d’entrée et 11 ports de sortie.

SEMD_A [ UDP MEDIUNM |BRECEIVE_B
“., h__Instancel | .7

(TETP WRAPFER| . o (TFTF WHRAPFER
) Instance A ) ‘Canaux de _Instance B
(" fonction de communication / fonction da ™
| Mealy | azynchrones | IMealy |
| A_TFTP__ /| . \ . TFTP  J )
RECEIVE_Ag( UDP MEDIUM ) ‘*--, SEND_B
. Instance 2 |

Fig. 3. Connexion asynchrone de deux processus TFTP via deux média UDP

Dans la suite de ce document, nous désignons cet automate par
I’appellation “automate TFTP SAM”. Airbus était intéress¢ par 1’étude du
comportement de deux entités TFTP (dont le comportement est régi par
I’automate TFTP SAM) communiquant par un médium non sir comme UDP
(c’est-a-dire avec des pertes, des duplications et des permutations de messages).

4. Modélisation en LOTOS NT

Nous avons modélisé une spécification qui comporte deux entités TFTP
connectées par deux média UDP. Comme illustré en figure 3, les entités TFTP
sont deux instances du méme processus LOTOS NT qui lui-méme encapsule la
fonction de Mealy de I’automate TFTP SAM. Cet automate a été traduit
manuellement en 215 lignes de code LOTOS NT (ce nombre inclut la fonction de
Mealy et le type énuméré qui encode les états). Les média sont deux instances du
méme processus LOTOS NT qui reproduit les propriétés (perte, duplication et
permutation de messages) du protocole de transport UDP.
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4.2. Modélisation d’entités TFTP. Le processus TETP recoit et envoie
des messages TFTP tels que définis dans la norme. Sa définition en LOTOS NT
est longue de 670 lignes de code.

Afin de modéliser fidélement les messages du protocole TFTP, nous
devons modéliser les fichiers et leurs fragments. Pour ce faire, nous considérons
qu’a chaque entité TFTP est associé un répertoire de fichiers et que chaque entité
TFTP est instanciée avec les paramétres suivants :

e une liste de fichiers, parmi ceux du répertoire, a écrire sur 1’autre entité ;
nous désignons cette liste de fichiers par “liste de fichiers a écrire”,
e une liste de fichiers, parmi ceux du répertoire de 1’autre entité, a lire depuis

I’autre entité ; nous désignons cette liste de fichiers par “liste de fichiers a

lire”.

Lorsqu’il n’y a pas de transfert en cours, I'une des entités peut choisir, de
fagon non déterministe, un fichier parmi sa liste de fichiers a lire ou a écrire et
commencer le transfert de ce fichier.

Le type de données que nous utilisons pour représenter les fichiers est une
liste de fragments (dans notre modele, le fichier est donc déja fragmenté). Les
noms des fichiers sont représentés par un entier naturel unique associé au fichier
dans le répertoire qui le contient. Chaque fragment de fichier est représenté par un
caractere différent.

En plus de I’état courant de I’automate TFTP SAM, d’autres valeurs
doivent étre sauvegardées entre deux stimulations comme par exemple le nom du
fichier en cours de transfert, ’indice du dernier fragment (ou acquittement) recu
ou envoyé¢, le nombre de renvois du dernier message...

Les listes de fichiers et le contenu de chaque fichier sont des parameétres
modifiables auxquels s’ajoute la possibilité de spécifier le nombre maximal de
renvois des messages. Ces paramétres nous permettent d’explorer différents
scénarios dans la section 5. En jouant sur les valeurs de ces paramétres, nous
pouvons aussi contrdler, dans une certaine mesure, la taille de ’espace d’états de
notre spécification.

4.3. Modélisation des liens de communication. Les deux processus
LOTOS NT décrivant les média UDP n’ont pas été dérivés d’une spécification
SAM mais écrits directement, par nos soins, en LOTOS NT.

Ces processus reproduisent de fagon précise la couche de transport UDP
mise en ceuvre dans le réseau informatique reliant le sol et 1’avion. UDP est un
protocole dit non connecté, c’est-a-dire que chaque message est envoyé sans que
les mécanismes du protocole ne permettent de déterminer qu’il a bien été regu. Ce
protocole ne détecte pas, ni ne répare les erreurs survenant dans les
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communications. Ces erreurs, lorsqu’elles se produisent, doivent donc &tre gérées
par les applications qui utilisent le protocole UDP pour communiquer (les entités
TFTP dans notre cas). Ces erreurs peuvent étre des pertes, des permutations ou
des duplications de messages.

Nous avons choisi de modéliser le médium UDP de deux fagons
différentes, au moyen de deux processus LOTOS NT différents afin de nous
assurer que les entités TFTP se comportent correctement, indépendamment du
médium choisi. Ces deux processus LOTOS NT peuvent perdre les messages et
ont une mémoire tampon dans laquelle les messages recus non perdus sont
enregistrés dans D’attente de leur acheminement. Nous ne modélisons pas
explicitement les duplications de messages causées par le médium UDP car
chaque entité TFTP peut déja renvoyer un méme message un nombre borné de
fois (borne qui peut d’ailleurs étre différente pour chaque entit¢ TFTP).

Le premier processus modélise le cas ou les permutations de messages ne
se produisent pas. Il utilise une FIFO comme mémoire tampon : les messages
sont acheminés dans le méme ordre que celui dans lequel ils arrivent. Le second
processus modélise le cas ou les permutations de messages se produisent. 11 utilise
un bag comme mémoire tampon. Dans la suite du document, nous notons
FIFOm) (resp. BAGM)) un médium “FIFO” (resp. “bag”) dont la mémoire
tampon a une taille de n. FIFO(1) et BAG(1) sont identiques.

4.4. Composition parallele des liens de communication et des entités
TFTP. Afin de composer, de fagon asynchrone, les entités TFTP et les média
UDP comme illustré par la figure 3, nous utilisons 1’opérateur paralléle de

LOTOS NT :
par RECEIVE_A, SEND_A -> TFTP_WRAPPER [RECEIVE_A, SEND_A]
Il RECEIVE_B, SEND_B -> TFTP_WRAPPER [RECEIVE_B, SEND_B]
|| SEND_A, RECEIVE_B -> UDP_MEDIUM [SEND_A, RECEIVE_B
|| SEND_B, RECEIVE_A -> UDP_MEDIUM [SEND_B, RECEIVE_A]
end par

Comme nous deux média différents, nous obtenons deux spécifications
différentes a vérifier, selon que le médium utilisé est “FIFO” ou “BAG”.

5. Vérification fonctionnelle des modéles

Dans cette section, nous discutons des difficultés liées a la génération des
espaces d’états des spécifications pour 1’étude de cas TFTP et nous présentons les
résultats de vérification obtenus a 1’aide de CADP.

Les spécifications LOTOS NT sont automatiquement traduites en
spécifications LOTOS (par le traducteur “LOTOS NT to LOTOS” [23]) qui sont,
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a leur tour, compilées en STE en utilisant les compilateurs CESAR.ADT et
CZASAR de CADP.

Un probléme récurrent en model checking est le phénomeéne de 1’explosion
de I’espace d’états. Dans notre cas, ce phénoméne peut survenir soit durant la
génération de I’espace d’états (quand le STE devient trop large pour étre généré
dans sa totalité) soit durant la vérification des formules de logique temporelle
(quand le model checker épuise la mémoire disponible durant I’évaluation d’une
formule sur un STE).

Pour lutter contre ce phénoméne, nous restreignons la taille de la mémoire
tampon des média UDP a de petites valeurs (i.e., n = 1, 2, 3...). Nous limitons
aussi la taille de chaque fichier a deux fragments puisque nous avons observé que
c¢’était suffisant pour exercer toutes les transitions de 1’automate TFTP SAM. De
plus, nous avons remarqué que 1’'utilisation de plus de deux fragments par fichier
n’entraine pas I’invocation de la fonction de Mealy de 1’automate TFTP SAM
avec un ensemble de valeurs d’entrée qui n’existait pas déja lors de 1’utilisation de
seulement deux fragments. Nous contraignons aussi le nombre de fichiers
échangés par les deux entités TFTP en bornant la taille des listes de fichiers a lire
et a écrire. Pour couvrir toutes les possibilités d’échanges, nous considérons les
cing scénarios suivants :

e Scénario A: I’entité TFTP A écrit un fichier ;

e Scénario B: I’entité TFTP A lit un fichier ;

e Scénario C: les deux entités TFTP A et B écrivent un fichier ;

e Scénario D: I’entité TFTP A écrit un fichier et I’entit¢ TFTP B écrit un
fichier ;

e Scénario E: les deux entités TFTP A et B lisent un fichier.

Nous avons écrit 29 formules de logiques temporelles que nous avons
vérifiées pour chacun des cing scénarios en faisant varier la taille des média. Pour
donner un ordre d’idée, sur une machine équipée de deux processeurs Intel Xeon
2 Ghz et de 7 Go de RAM, il a fallu 182 secondes pour générer la spécification
correspondant au scénario D avec un médium BAG(2) (16 687 096 états et 83 289
158 transitions) et 17 707 secondes pour vérifier sur cette spécification les 29
propriétés.

La vérification des propriétés nous a permis de découvrir 19 erreurs dans la
variante TFTP d’Airbus. Ces erreurs ont été confirmées par Airbus comme étant
de réelles erreurs. Nous avons suggéré, pour chacune, un correctif a appliquer sur
I’automate SAM TFTP.

6. Conclusion

Dans cet article, nous avons proposé une approche simple et élégante pour
la modé¢lisation et 1’analyse des systémes comprenant des composants synchrones
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interagissant de facon asynchrone et que 1’on appelle couramment GALS
(Globalement Asynchrone Localement Synchrone).

Contrairement aux autres approches qui étendent le paradigme synchrone
pour modéliser 1’asynchronisme, notre approche préserve la sémantique origi-
nale des langages synchrones ainsi que la sémantique asynchrone des algebres de
processus. Notre approche nous permet de réutiliser, sans la moindre modi-
fication les compilateurs des langages synchrones avec les outils de vérification et
les compilateurs des algébres de processus.

Nous avons démontré la faisabilité de notre approche sur une étude de cas
industrielle, une variante du protocole TFTP/UDP dont nous avons vérifi¢ le bon
comportement et évalué les performances au moyen de la plateforme TOPCASED
et des outils de CADP. Bien que nous ayons illustré notre approche par le langage
synchrone SAM et les algébres de processus LOTOS et LOTOS NT, nous
pensons qu’elle est généralisable a d’autres langages synchrones dont le
compilateur est capable de traduire des programmes synchrones en machines de
Mealy (ce qui est normalement toujours le cas) et a toute algebre de processus qui
permet le parallélisme asynchrone et la définition de types et fonctions.

En ce qui concerne les perspectives de recherche sur ce travail, nous avons
recu un fort soutien d’Airbus. Nous travaillons a 1’heure actuelle sur la
vérification d’autres systémes embarqués avioniques. Nous aimerions aussi
appliquer notre approche a d’autres langages synchrones que SAM.
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