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HOW QUANTUM ALGORITHMS WORK 

Marcel POPESCU1, Constantin P. CRISTESCU 2 

Se prezintă informaţie esenţială asupra algoritmilor cuantici şi demonstrează 
cu ajutorul a două exemple că mediul computaţional MATLAB este foarte potrivit 
pentru simularea pe calculatoare clasice în scopul studierii capabilităţii acestora. 

The paper presents essential information on quantum algorithms and based 
on two examples demonstrates that the computational environment MATLAB is 
highly appropriate for classical implementation in order to test their capability.  
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1. Introduction 

In recent decades, starting with the ideas of P. Benioff (1980) and R. 
Feynman (1982) [1], quantum theory of information – information processing 
using quantum systems, has been developed. Besides the possibility to implement 
computing machines which can simulate in a precise and efficient manner 
quantum systems, this theory offers much simpler solutions for certain 
applications of modern communications and informatics. Until now, certain 
algorithms based on the principles of quantum physics, which elegantly solve 
tasks such as cryptography, searching in databases, finding the period of a 
function (Fourier transform), large numbers factorization, have been proven [2]. 

Superposition, entanglement and interference are the main characteristics 
of quantum world that make possible faster solving of certain problems that 
require exponential computing time with a classical computer [3]. 

Using superposition and interference a function f(x) can be evaluated 
simultaneously for all values of x. This property of quantum computers is called 
quantum parallelism. 

“The important property of an entangled pair is that as soon as the state of 
one particle is known, by the projection resulting from a measurement, the state of 
the other particle is known instantly, no matter the distance between the particles 
at the moment of the measurement” [3].  
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 Another important feature of quantum information is the measurement 
process which, in general, changes the state of the system being measured. Any 
quantum computation process ends with system measurement (Fig.1) [4].   
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Fig.1. Quantum Computation 
 

Before implementing quantum algorithms, the natural step is to simulate 
them on a classical computer. The two main reasons for this are finding design 
faults prior to manufacturing and better understanding of designs [5]. In this work 
we analyze 2 quantum algorithms by making their simulations using Matlab. 

The remaining part of the paper is organized as follows. Section 2 
provides the necessary background on quantum algorithms. In section 3 we 
describe how Matlab could be used to simulate quantum algorithms. Simulation 
results together with an analysis of Deutsch and Groover’s algorithms are given in 
sections 4 and 5. Finally, conclusions are presented. 

2. Qbits and quantum elementary operations 

The bit is the fundamental unit of classical information. It assumes two 
distinct values, "0" and "1" represented by two physical quantities such as two 
voltage values, two current values, etc. Quantum theory uses to represent 
information, quantum systems with two levels such as: two polarization states of 
photons, two energy levels of atoms, etc. The equivalent of a bit - a qbit can be 
defined as a quantum system in which the Boolean states are represented by two 
normalized and orthogonal states, denoted {| 0 >, | 1 >}. The two states form a 
basis in the complex 2-dimensional Hilbert space and any other pure state of a 
qbit can be written as a superposition: 

10 βα +=Ψ .                                              (1) 
Since the two numbers, {α, β} are subject to only one constraint –the sum 

of their absolute squares must be 1, the amount of information that can be 
represented seems to be infinite. However, nature allows extracting only a single 

value – a bit. The probability of the value being "1" is 2β  and being “0” 2α  [4]. 
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A quantum memory register is a physical system composed of n qbits. 
Any state vector of this system can be expressed as a superposition of the states 
that make up a base in the 2n - dimensional complex Hilbert space [6]. 

In the classical computer, information processing is done by logic gates. A 
logic gate changes the input bit value in accordance with a truth table. Unlike the 
classical logic gate, a quantum gate is a unitary transformation applied to the state 
vector of a qbit. This operation can be implemented by applying an external field 
on the system for a given period of time. A quantum algorithm is specified as a 
sequence of unitary transformations U1, U2, U3… which act on one or more qbits. 
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The most used quantum logic gates (illustrated in Fig.2) are: 
 - NOT gate is the same gate as in classical computation with the additional 
characteristic that it respects the superposition: 

01)10(X;01X;10X βαβα +=+==                     (3) 
 -  PHASE FLIP  gate changes the phase of the qbit conditional on its value: 

 10101100 βαβα −=+−== )(;; ZZZ                     (4) 
- HADAMARD gate maps the | 0 > and | 1 > in to a superposition: 

[ ] [ ];10
2

11H;10
2

10H −⋅=+⋅=                              (5) 

- CNOT (controlled - NOT) is a 2-qbits gate that applies the NOT gate to the 
second bit – the target bit, if the first bit - the control bit is”1”: 

;1011U;1110U

;0101U;0000U

CNOTCNOT

CNOTCNOT

==

==
                                    (6) 

Any unitary transformation applied to a set of qbits can be obtained the 1 
qbit gate and the CNOT gate [7]. 

 

i o inΨ outΨ

 

Fig.2. a) One qbit logic gate; b) two qbits logic gate 
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Before concluding this paragraph, we mention that in the quantum theory 
of information, making a copy of an unknown state is impossible. This is 
specified by the No-Cloning Theorem [2]. 

3. Simulating quantum algorithms with Matlab 

Matlab is a computing environment that is based on operations with 
matrices, which makes it a useful tool in simulating the matrix formalism of 
quantum processes. 

The representation of one qbit state in the simulation can be done using the 
standard base of a 2-dimensional Hilbert space: 

[ ] [ ]{ } [ ] ;; TTT 10101010 βαβ →+=Ψ⇒→→ α         (7) 
The state of a quantum register may be given, either specifying each qbit 

state, then making the tensor product using Matlab function kron, or specifying 
the 2n – dimensional column vector in which the element i+1 is the coefficient of 
the i state. (See equation 2): 
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An algorithm is given as a series of unitary transformations applied to the 
quantum register. These transformations are represented in a matrix form. 
Transformation matrices corresponding to he gates specified in section 2 are: 
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Starting with this representation of the quantum physics formalism, we 
simulate the algorithms that work with up to 12 qbits. For Groover  algorithm the 
simulation time is in the order of tens of seconds. Limitation to 12 qbits is 
imposed by the fact that a transformation of n qbits is implemented with a matrix 
having [2n x 2n] complex elements. Further improvement has been made by 
dynamically calculating the matrix of operators. This approach allows performing 
simulations on up to 24 qbits, but the simulation time grows exponentially.  

 
4. Deutsch algorithm 
 
A useful example for illustrating how quantum algorithms work is  

Deutsch algorithm, which determine if  f:{0,1}→{0,1}  is constant [2]. In spite of 
its simplicity, full use of the superposition and interference has been made here in 
order to characterize f  with only one evaluation. 
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For any function f:{0,1}n→{0,1}, a quantum circuit described by unitary 
operator can be build as shown by eq. (10). 
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where x Є {0,1}n and top bar means bit negation .Such a circuit is called the oracle 
of function  f. 

Consider an oracle for an unknown function f:{0,1}→{0,1}, which is a 
black box that inside can calculate a complex problem, and after a fixed period of 
time to give a Boolean answer. In order to determine if this function is constant, 
two evaluations are required using classical logic. It may be proven that using 
quantum information theory one evaluation is enough. The circuit which 
implements this quantum algorithm is given in Fig.3. 
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 Fig.3. Quantum circuit for Deutsch algorithm [2] 
The equations describing the circuit are given below; H is Hadamard 

transform (eq. 5): 

( )11100100
2
101HH

01

1

0

−+−=⊗=Ψ

=Ψ
                                       (11) 

( ))1(f1)1(f1)0(f0)0(f0
2
1

2 ⊗−⊗+⊗−⊗⋅=Ψ               (12) 

]))1(f)1(f)0(f)0(f(1

))1(f)1(f)0(f)0(f(0[
22

1IH 23

+−−⋅+

+−+−⋅⋅
⋅

=Ψ⊗=Ψ
         (13) 

⎪
⎪
⎩

⎪⎪
⎨

⎧

−⋅⋅=Ψ⇒≠

−⋅⋅=Ψ⇒=

))0(f)0(f(1
2

1)1(f)0(f

))0(f)0(f(0
2

1)1(f)0(f

3

3
                    (14) 

If the first qbit is found „0” after measurement, then f  is constant, 
otherwise it is not constant.  

 The simulation of this algorithm in Matlab may look like this: 
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- initialization of the quantum register containing the two qbits ( 0Ψ →  
psi_0): 
q1 = [1;0]; q2 = [0;1]; psi_0 = kron(q1,q2); 

- create the superposition of states by applying the Hadamard gate 
( 1Ψ →  psi_1): 
psi_1 = kron(H,H)*psi_0; 
 - in order to simulate the oracle, its matrix representation is necessary. Let 
this matrix be Uf  (corresponding to the operator from equation 10), then apply 
this ( 2Ψ →  psi_2): 
psi_2 = Uf*psi_1; 
 -  apply again the Hadamard gate to the first qbit while the second qbit is 
left unchanged (identity transform). In this way, interference is used to reduce the 
superposition of the states of the first qbit ( 3Ψ →  psi_3): 
psi_3 = kron(H, eye(2))*psi_2; 
 - the measurement process of the first qbit is simulated as the projection on 
one of the two base states. In this way one determines the probability amplitude of 
finding the qbit in one of the two states, and then the probability: 
 [prob_0] = measure(psi_3,1);  
 For a given oracle, the simulation results are represented in Fig.  4. On the 
x-axis is the value expressed in the decimal system (eq. 2) possible to be stored in 
the register, and on the y-axis the probability of finding that value. Each graph 
corresponds to the algorithm steps. It can be observed that psi_3 is a superposition 
of  |2 > = |10> and |3 > = | 11> with equal probability , 0.5, then the first qbit is 
“1” and for this simulation the oracle considered, implement a function which is 
not constant. 
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 Fig.4. Probability distribution of states on each step of Deutsch algorithm  
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5. Groover search algorithm 

Searching in a database with length N of one or more elements is a 
problem that a classical computer can solve in N/2 steps on average. The 
following algorithm can do this search in N  steps. 

Consider a quantum circuit – oracle, which implements a function              
f:{0,1}n→{0,1} , f(x) = 1 for x = t; and f(x) = 0 for x ≠ t. The scope of the 
algorithm is to find t. Classically, this can be achieved after 2n - 1 trials, in the 
worst case scenario. Finding t with a quantum algorithm uses three subroutines: 

- H  Hadamard transformation applied to n qbits: H....HHH ⊗⊗⊗=H  
- M (marking subroutine), which invoke oracle. This subroutine changes 

the sign of the coefficient of state |t >, leaving all other states unchanged. The 
operator that implements this subroutine is: M = I - 2·|t >< t|, where I is the 
identity transform. 

- B, changes the sign of the coefficients of all states except the „blank 
state” |0000...0>. 

The steps of the algorithm are: 
- register initialization to state |000...00>; 
- apply Hadamard gate to all qbits in order to achieve the superposition. 
- apply Groover iteration : M H B H for m = floor(π/4*2n/2) times; 
- with a probability very close to 1 (but not exactly 1), measuring the 

register after the quantum algorithm is finished we find the state |t >. 
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 Fig.5. Probability distribution of states on each Groover algorithm step (4 qbits) 
 
In Fig.5 the probability distribution of states after each step of the Groover 

search algorithm for n = 4 qbits is represented in the same way as in Fig.4 . The 
number of iterations required is m = floor(π/4*2n/2) = 3 which is optimal. After 3 
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iterations the probability of finding |t > by measuring the register, searched value 
is 0.9613. An additional iteration decreases this probability to: 0.5817. 

The explanation of how this algorithm works can be done by using a 
geometrical interpretation. In this way, each Groover iteration  is equivalent to a 
rotation of the quantum register state vector in the plane defined by |t > and 

∑
−

=
1N

i
i

N
1μ . Starting with μ , created after the Hadamard transform, 

minimum angle between the register vector state and |t > is obtained after m = 
floor(π/4*2n/2) iterations. Making one more iteration leads to a decrease of 
probability of finding the state |t > after measurement.  

Applying Groover algorithm with 12 qbits, the optimal number of 
iterations is m = 50. After 50 iterations, the probability to find state |t > is 
0.999945.  The probability then decreases and after 2m iterations the quantum 
register is in the state close to |μ >. 
 
 7. Conclusion 
 

The paper presents basic information on quantum algorithms and, using 
the powerful matrix formalism of the Matlab environment the Deutsch algorithm 
and the Groover search algorithm are simulated on a classical computer. Such 
simulation of quantum algorithms is useful both for better understanding of 
designs and for identifying accidental design faults prior to manufacturing.  
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