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TRAINING SPIKING NEURONS WITH ISOLATED SPIKES 
CODING 

B. PǍVǍLOIU1, P. CRISTEA2 

Lucrarea prezintǎ structura şi funcţionarea reţelelelor neurale cu impulsuri. 
Sunt descrise principalele modele, precum şi modalitǎţile în care se reprezintǎ şi 
proceseazǎ datele. Pentru un neuron de tipul „integreazǎ şi declanşează” se 
foloseşte o codare a datelor de intrare bazatǎ pe temporizare. Este descrisǎ o 
metodǎ de antrenare supervizatǎ pentru acest tip de neuron şi se demonstreazǎ cǎ 
poate fi gǎsit un  echivalent  de tipul perceptron/ învǎţare perceptron. 

 
The paper presents the structure and function of spiking neural networks. 

There are described the main models, as well as the modalities of data 
representation and processing. For an “Integrate-and-Fire” neuron, it is used a 
timing coding of input data.  It is described a method of supervised training for this 
type of neuron and  it is proved that an equivalent perceptron/ perceptron training 
rule can be found. 

Keywords: spiking neural network, integrate-and-fire, spiking response model, 
coding, timing coding, supervised training, perceptron training rule  

1. Introduction 

In the general framework of Artificial Intelligence, the connectionist 
systems play an important role. The term of Neural Network is used instead of 
Artificial Neural Network (ANN), despite the fact that the biological start has 
been mainly a source of inspiration than a model for the connectionist soft 
computation. While a ”natural” Neural Network is a group of biological neurons 
acting together, an ANN is system that tries to perform intelligent calculus tasks, 
emulating the structure and functions of real neurons. Unfortunately, even if the 
quantity and the quality of the data about the structure and low-level functioning 
of biological neural systems are increasing continuously, the knowledge about the 
way information is represented and processed is still small and unconvincing. 

A biological neuron receives action potential (spikes) from the afferent 
neurons and, after their processing as inputs, it can issue a spike to participate at 
the activation of the efferent neurons.  
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Even if there are several thousands of neuron types, their structure is 
essentially similar, designed to sum in soma the input information from other 
neurons, whose axons are connected to its dendrites through synapses, and when 
certain conditions are fulfilled, to trigger an action potential that will travel down 
the axon to the synapses with other neurons.  

 
 

 
 
 
 
 
 
 
 
 
 

Fig. 1. Neuron structure and links 
 

Wolfgang Maass [7] classifies ANNs in three generations. 
The first generation consists of networks that have as basic computation 

element the McCulloch-Pitts neuron. Their outputs are binary, being “high” if the 
sum of the weighted inputs exceeds a threshold and “low” otherwise. It has been 
shown that the feed-forward networks from the first generation with at least two 
layers (one “hidden” layer) can represent any boolean function, after it is written 
in conjunctive/ disjunctive form [8]. Some prestidigious representatives of the 
first generation are also the Hopfield networks and the Boltzmann machines. 

The second generation is made of the networks that have as output a 
continuous function. The most used are the feed forward, the recurrent and the 
radial basis function networks. It was shown [3] that the feed-forward networks 
from the second generation, with sigmoid activation function and at least two 
layers can represent (approximate with any given precision) a continuous function 
on a compact interval. 

ANN from the second generation can store, in its nonlinear mapping 
complex relations relating the output to the input. The back-propagation algorithm 
is the most frequently used algorithm for ANN supervised learning and implicitly 
for the second generation of NN. It has the advantages of parallel processing and 
simple implementation and its association with the feed forward NNs constitutes 
probably the most used paradigm in intelligent calculus. 

The resemblance in the functioning of the first two generations of NN to 
the biological ones resides in the activation of a unit when certain combinations of 
its inputs exceed a given threshold. Neuron models of the first two generations do 
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not employ individual pulses, but their output signals typically lie between               
0 and 1. These signals can be seen as normalized firing rates (frequencies) of the 
neuron within a certain period of time. This is a so-called rate coding, where a 
higher rate of firing correlates with a higher output signal. Rate coding implies an 
averaging mechanism, as real spikes work binary: spike, or no spike, there is no 
intermediate. Because of the averaging window mechanism the output value of a 
neuron can be calculated iteratively. After each cycle involving all neurons, the 
‘answer’ of the network to the input values is known. Real neurons have a base 
firing-rate (an intermediate frequency of pulsing) and continuous activation 
functions can model these intermediate output frequencies. Hence, neurons of the 
second generation are more biologically realistic and powerful than neurons of the 
first generation.  

The third generation consists of the spiking neural networks, which are 
closer to the biological model and more plausible from neuro-physiological point 
of view. The computing elements of spiking NNs pass on temporal sequences of 
pulses (spikes). If the incoming spikes to a neuron have a good timing, their 
effects merge and a spike is emitted to the subsequent neurons. The spiking 
neuron will remain in a refractory state for a certain amount of time. In Table I we 
present some comparison terms with NN from the first generations. 

Table 1 
NN Generations comparison 

Classical NN Spiking NN 
Blunt biological plausibility  Good biological plausibility 
Rate coding Different time dependent codings 
Relative simple models Complicated models 
Concurrent and rarely recursive Time dependent, can be highly recursive 
Small to medium size Small to large (106 elements) size 
Unaltered data Randomness and noise in the system 
Robust, but not for time dependent problems More robust for all problems 
Full connectivity between layers Small connectivity, full recurrence 
Mainly supervised training Until now, mainly unsupervised training  
Simple to simulate on computers Time-driven or event-driven difficult 

simulation 
Digital implementation on computers Simple analog VLSI implementation 

 

The SNNs posses a level of recurrence higher than classical NN and they 
are more suited for discrete problems due to their nature [2]. 
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2. Spiking neural networks 
2.1 Threshold-Fire Models 
 
The threshold-fire models are based on the temporal summation of all 

presynaptic neurons activities (called presynaptic potentials - PSP) to the 
membrane potential u(t). If this potential exceeds a certain threshold ϑ , then the 
neuron will fire, participating at the activation of the subsequent neurons. The 
most known threshold-and-fire models are the integrate-and-fire and the spike 
response model – SRM [5].  

The integrate-and-fire neuron is perhaps the most used and well-known 
example of a formal spiking neuron model. The basic model is also called leaky-
integrate-and-fire (LIF) because the membrane is assumed to be leaky due to ion 
channels, such that after a PSP the membrane potential approaches again a reset 
potential u0t. This model is also known as the linear integrate-and-fire neuron.  

The equivalent circuit modeling the cellular body activity is presented in 
Fig. 2 – an RC circuit is charged by the input current and if the voltage across the 
capacitor C attains a threshold ϑ , the circuit is shunted and a pulse is transmitted 
through the axon to the efferent neurons. 
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Fig. 2. Equivalent circuit for “Integrate and Fire” neuron model  
 
The conservation of charge on soma leads to  
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The equation is easily dealt in finite difference form and is used for a time-
driven simulation, computing the values of each neuron potential for each time 
step dt: 
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Spiking Response Model (SRM) 
 
In Fig. 3 is presented the equivalent circuit for inter-neural signal 

conduction (low-pass filtering). 
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Fig. 3. Equivalent circuit for synapse  
 

The spiking response model is defined in [6] and it describes the state of a 
neuron by a single variable u, using kernel functions for different aspects of its 
behavior. Its state is described as a summation of presynaptic pulse-response 
functions, a self-spike response function and an external input function. 

For it̂ the last firing time of the neuron i , the evolution of the neuron is 
given by: 
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The SRM can be simplified presuming that the external (analog) current is 
0 and neglecting the third term (any problem specific input data will be introduced 
by additional encoding neurons) and by neglecting the dependence of the εij kernel 
on the term t-ti (the effect of the neuron’s last spike on the postsynaptic potential 
function) 
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This model is known as SRM0 and it is used largely for simulation 
purposes.  
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Fig. 4. Spike Response Model 

 

The neuron fires if ui reaches a threshold ϑ from below. The firing time 
)( f

it is defined as the moment when ϑ=)(tui  and 0)( >tu
dt
d

i . 

This model approach can be used to represent a large number of the other 
models. Due to its dependence only of time, it is used to avoid integration 
methods and time-driven simulation. Solving the kernel function equations that 
determine the nearest threshold-crossing point, corresponding with the next firing 
time, for each neuron, an event driven approach for the simulation can be applied. 

Different functions are considered for ε , from simple and easy to be 
solved ones to others that are more plausible. 
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3. Data representation in SNN 

The way the data is encoded to enter the network plays a crucial role to the 
system. This is the spot few things are known in neuroscience and any advance 
here will push the things a lot further. 

Rate code 
This is the coding used by most of the neural system models and it 

assumes that the information is encoded as the firing rate of the neurons. There is 
a long history of this belief and there is evidence for it, starting with the 
experiments of Adrian nearly a century ago, that shown an increased firing rate 
for an increased intensity of the stimulus [1]. This experiments lead to the 
supposition that an entire train of spikes can be represented by a single number, 
representing the frequency of the spikes. Classical NN works with this numbers as 
the natural way of data representation. If an input has a higher value, it will have a 
higher “frequency” assigned and it will influence stronger the neuron.  

Several methods data coding and representation in spiking NN are 
proposed in literature, having features as plausibility and representability. A good 
analysis is made in [10]. Each input neuron will fire at most one time. 

Count code  
Is a weaker version of rate coding. For a given time window and a number 

of N inputs, the coded value is the number of neurons that fire in the defined 
window. The number of states that can be defined is N+1. 

Binary code 
We separate the importance of the neurons from count code. A natural 

choice is to consider the value encoded by each neuron with a double importance 
than the precedent one. This way, the population of neurons works like a binary 
encoder, with the number of states 2N. 

Timing code 
This coding presumes that we can determine the precise time of spiking 

for a neuron. If the number of “selecting” windows in the run interval is K, the 
number of states encoded by a neuron is K. Using N input neurons the number of 
states is K*N.  

Synchrony based code 
If consider the order of the input neurons, we take different significances 

for the input neurons, like in the binary coding, we will have KN states. The spikes 
emitted by input neurons in the same time window are considered to be 
synchronic.  
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Fig. 6. Data representation of the number 2 using 3 input neurons. A – count code, B – binary 
code, representation of binary 10, C – timing code, second interval, D- rank order code - the 

second permutation 1-3-2 
Rank order code 
The code is given by the order the input neurons spikes. For N inputs, 

there are perm(N) = N! sequences in which the neurons can fire. 
Thorpe and Gautrais [9] propose a nice circuit sensitive to the rank order 

activation of its inputs A-E. The neuron receives excitatory inputs from each of 
the inputs and shunting inhibition from an inhibitory neuron whose activity 
increases every time one of the inputs fires. As a result, only the first input to fire 
is unaffected by the shunting inhibition, and the inhibition increases progressively 
during the processing of a wave of spikes, each spike received by the neuron I 
making all the weights to be decreased by 50%. Thus for initial weights of 5, 4, 3, 
2, 1 the total activation for the order of the spikes A, B, C, D, E is 
5+4*0.5+3*0.52+ 2*0.53+1*0.54=8.06.  

 
Fig. 7. SNN sensitive to rank order coding, from [9] 

 
The final activation of the output neuron will be maximal only when the 

inputs are activated in the order of their weights and if the threshold is set to 8, the 
neuron will fire only when the sequence ABCDE is presented.  
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To reject the sequences where one input will act more than once, we can 
make the spike emitted from one input neuron to inhibit that neuron. 

Delay coding 
Because time is continuous and we have it included in the spike equation, 

we can encode with a single spike any analog number x as a spiking time x-T, 
where T is a given reference time. This version of timing coding, named in many 
papers as “delay coding”, is used for problems addressed formerly by the NNs 
from the second generation. 

4. Spiking neurons with isolated spikes coding 

Suppose we have N symbols Si, i=1:N. We want that each symbol to have 
its proper code, considered as a specific delay from 0. We will take for the sake of 
simplicity isolated spikes, i.e. spikes that have the PSPs non superposing for 
encoding different symbols. Since we are interested only in the first emitted spike, 
we will assume that the refractory period is very large, avoiding other spikes. 
Because the PSPs are identical for the same symbol, their addition will be in fact a 
weighted sum (corresponding to the number of occurrences) of the "basic" PSP, 
delayed to encode different symbols. For this reason, the waveform of the PSP 
doesn't matter, so it can be considered that 0ε is theδ function - see (4) and Fig. 5. 

A neuron will have R inputs pl, p2, p3, …, pR and one output t.  
We have a set of Q input vectors and a set of Q targets with symbols from 

S, presented concurrently to the network. The input vectors P1, P2, …, PQ, will 
have length R, and a set of M targets T1, T2, …, Tk, …, TQ, Tk∈S  

We will have to introduce for reference other N inputs to the network, each 
one emitting a spike with a certain delay, corresponding to the symbol it 
represents. The spiking neuron will have thus N+R inputs. 

 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Spike/PSPs coding the input data for symbols S1=A and S2=B; each box  
represents an input example 
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For a given pattern j, the equation (4) leads to: 
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The weights will sum up independently, so we devise the following 
algorithm: 

 
For a given example, if the output is not the target symbol, increase all 

the weights for the inputs where the symbol corresponding to the target is 
present; if the output is a symbol with a prior time coding than the target 
symbol, decrease all the weights for the inputs where that symbol is present. 

 
For 2 symbols, regarded here as the binary logical values S1=0 and S2=1, 

we show the weight and threshold values obtained with the described training 
algorithm for all the boolean functions of 2 variables. 

Table 2 
Weights and threshold for 2 inputs logical binary functions 

Function w1 w2 w3 w4 T 
0 1 1 1 0 1 

AND( 21, xx ) 1 1 0 0 1 

AND( 21 , xx ) 1 -1 1 0 1 

1x  1 0 0 0 1 

AND( 21, xx ) -1 1 1 0 1 

2x  0 1 0 0 1 

XOR( 21, xx ) - 

OR( 21, xx ) 1 1 -1 1 1 

AND( 21 , xx ) -1 -2 3 1 1 

XOR( 21, xx ) - 
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Function w1 w2 w3 w4 T 

2x  1 -2 1 1 1 

OR( 21, xx ) 1 -1 0 1 1 

1x  -2 1 1 1 1 

OR( 21, xx ) -1 1 0 1 1 

OR( 21, xx ) -1 -1 1 2 1 

1 0 0 0 1 1 
 
The algorithm works, but we have to substantiate its behavior, including 

its failure to solve nonlinear separable problems. 
 

In matrix form, we will represent a symbol Sk as the discrete set of 
amplitudes in moments tk, k=1,N, with an element being one and the other zeros. 
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The aggregate input Aj is: 
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The output of the neuron will be represented by the index of the first 
element in the vector Aj larger than the threshold T. 

))(|min( TiAiO jj >==  
If Tj=Sk, kTiAi j =>= ))(|min( and from here 

TiAj <)(  for i<k, TkAj >=)(  and it doesn’t matter what happens for i>k. 
 

For a perceptron with the same weights wi, i=1:R+N and the threshold T, 
this example is equivalent with the set of k examples with inputs Ri=Pj(:,i), i=1:k, 
and the targets Ti=0, i=1:k-1, Tk=1. 

 
We proved thus that the computing power of a spiking neuron with 

isolated spike codes is comparable with the one of a perceptron and determined 
the equivalent training patterns. 

5. Conclusions 

We presented the main features of spiking neural networks and of 
information encoding in SNNs. For a set S with N symbols S={S1, S2, …, SN} we 
presented an algorithm that will train a SNN with isolated spikes coding to 
represent a mapping f:SN→S, whether it is possible. We show that finding the 
appropriate weights is equivalent with a perceptron training problem and expose 
the corresponding training patterns. 
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