U.P.B. Sci. Bull., Series C, Vol. 69, No. 3, 2007 ISSN 1454-234x

TRAINING SPIKING NEURONS WITH ISOLATED SPIKES
CODING

B. PAVALOIU', P. CRISTEA?

Lucrarea prezintd structura §i functionarea retelelelor neurale cu impulsuri.
Sunt descrise principalele modele, precum §i modalitdtile in care se reprezintd §i
proceseazd datele. Pentru un neuron de tipul , integreazd si declanseaza” se
foloseste o codare a datelor de intrare bazatd pe temporizare. Este descrisd o
metodd de antrenare supervizatd pentru acest tip de neuron §i se demonstreazd cd
poate fi gdsit un echivalent de tipul perceptron/ invdtare perceptron.

The paper presents the structure and function of spiking neural networks.
There are described the main models, as well as the modalities of data
representation and processing. For an “Integrate-and-Fire” neuron, it is used a
timing coding of input data. It is described a method of supervised training for this
type of neuron and it is proved that an equivalent perceptron/ perceptron training
rule can be found.

Keywords: spiking neural network, integrate-and-fire, spiking response model,
coding, timing coding, supervised training, perceptron training rule

1. Introduction

In the general framework of Artificial Intelligence, the connectionist
systems play an important role. The term of Neural Network is used instead of
Artificial Neural Network (ANN), despite the fact that the biological start has
been mainly a source of inspiration than a model for the connectionist soft
computation. While a “natural” Neural Network is a group of biological neurons
acting together, an ANN is system that tries to perform intelligent calculus tasks,
emulating the structure and functions of real neurons. Unfortunately, even if the
quantity and the quality of the data about the structure and low-level functioning
of biological neural systems are increasing continuously, the knowledge about the
way information is represented and processed is still small and unconvincing.

A biological neuron receives action potential (spikes) from the afferent
neurons and, after their processing as inputs, it can issue a spike to participate at
the activation of the efferent neurons.

' Assist Prof,, Faculty of Engineering in Foreign Languages, University POLITEHNICA of
Bucharest, Romania
? Prof., Faculty of Electrical Engineering; University POLITEHNICA of Bucharest, Romania

94 B. Paviloiu, P. Cristea

Even if there are several thousands of neuron types, their structure is
essentially similar, designed to sum in soma the input information from other
neurons, whose axons are connected to its dendrites through synapses, and when
certain conditions are fulfilled, to trigger an action potential that will travel down
the axon to the synapses with other neurons.

efferent neurons

Fig. 1. Neuron structure and links

Wolfgang Maass [7] classifies ANNSs in three generations.

The first generation consists of networks that have as basic computation
element the McCulloch-Pitts neuron. Their outputs are binary, being “high” if the
sum of the weighted inputs exceeds a threshold and “low” otherwise. It has been
shown that the feed-forward networks from the first generation with at least two
layers (one “hidden” layer) can represent any boolean function, after it is written
in conjunctive/ disjunctive form [8]. Some prestidigious representatives of the
first generation are also the Hopfield networks and the Boltzmann machines.

The second generation is made of the networks that have as output a
continuous function. The most used are the feed forward, the recurrent and the
radial basis function networks. It was shown [3] that the feed-forward networks
from the second generation, with sigmoid activation function and at least two
layers can represent (approximate with any given precision) a continuous function
on a compact interval.

ANN from the second generation can store, in its nonlinear mapping
complex relations relating the output to the input. The back-propagation algorithm
is the most frequently used algorithm for ANN supervised learning and implicitly
for the second generation of NN. It has the advantages of parallel processing and
simple implementation and its association with the feed forward NNs constitutes
probably the most used paradigm in intelligent calculus.

The resemblance in the functioning of the first two generations of NN to
the biological ones resides in the activation of a unit when certain combinations of
its inputs exceed a given threshold. Neuron models of the first two generations do

Training spiking neurons with isolated spikes coding 95

not employ individual pulses, but their output signals typically lie between
0 and 1. These signals can be seen as normalized firing rates (frequencies) of the
neuron within a certain period of time. This is a so-called rate coding, where a
higher rate of firing correlates with a higher output signal. Rate coding implies an
averaging mechanism, as real spikes work binary: spike, or no spike, there is no
intermediate. Because of the averaging window mechanism the output value of a
neuron can be calculated iteratively. After each cycle involving all neurons, the
‘answer’ of the network to the input values is known. Real neurons have a base
firing-rate (an intermediate frequency of pulsing) and continuous activation
functions can model these intermediate output frequencies. Hence, neurons of the
second generation are more biologically realistic and powerful than neurons of the
first generation.

The third generation consists of the spiking neural networks, which are
closer to the biological model and more plausible from neuro-physiological point
of view. The computing elements of spiking NNs pass on temporal sequences of
pulses (spikes). If the incoming spikes to a neuron have a good timing, their
effects merge and a spike is emitted to the subsequent neurons. The spiking
neuron will remain in a refractory state for a certain amount of time. In Table I we
present some comparison terms with NN from the first generations.

Table 1
NN Generations comparison
Classical NN Spiking NN
Blunt biological plausibility Good biological plausibility
Rate coding Different time dependent codings
Relative simple models Complicated models
Concurrent and rarely recursive Time dependent, can be highly recursive
Small to medium size Small to large (10° elements) size
Unaltered data Randomness and noise in the system
Robust, but not for time dependent problems | More robust for all problems
Full connectivity between layers Small connectivity, full recurrence
Mainly supervised training Until now, mainly unsupervised training
Simple to simulate on computers Time-driven or event-driven difficult
simulation
Digital implementation on computers Simple analog VLSI implementation

The SNNs posses a level of recurrence higher than classical NN and they
are more suited for discrete problems due to their nature [2].

96 B. Paviloiu, P. Cristea

2. Spiking neural networks
2.1 Threshold-Fire Models

The threshold-fire models are based on the temporal summation of all
presynaptic neurons activities (called presynaptic potentials - PSP) to the
membrane potential u(7). If this potential exceeds a certain threshold 4, then the
neuron will fire, participating at the activation of the subsequent neurons. The
most known threshold-and-fire models are the integrate-and-fire and the spike
response model — SRM [5].

The integrate-and-fire neuron is perhaps the most used and well-known
example of a formal spiking neuron model. The basic model is also called leaky-
integrate-and-fire (LIF) because the membrane is assumed to be leaky due to ion
channels, such that after a PSP the membrane potential approaches again a reset
potential uOt. This model is also known as the linear integrate-and-fire neuron.

The equivalent circuit modeling the cellular body activity is presented in
Fig. 2 — an RC circuit is charged by the input current and if the voltage across the
capacitor C attains a threshold ¢, the circuit is shunted and a pulse is transmitted
through the axon to the efferent neurons.

0

oxt 8(t)
CT J_t.

m _R/

u

Fig. 2. Equivalent circuit for “Integrate and Fire” neuron model

The conservation of charge on soma leads to

du u(t)
C-—+——==1(t 1
= TR (0 ©)
The solution of this differential equation is:
T ?
ut)=u,.e ° + J.I(S)—eds 2)
T

Iy
The equation is easily dealt in finite difference form and is used for a time-
driven simulation, computing the values of each neuron potential for each time
step dt:

Training spiking neurons with isolated spikes coding 97

u(t+dt) = (I—Ij—é)-u(t)+%l(t+dt) 3)

Spiking Response Model (SRM)

In Fig. 3 is presented the equivalent circuit for inter-neural signal
conduction (low-pass filtering).

N

R

C
i

Fig. 3. Equivalent circuit for synapse

The spiking response model is defined in [6] and it describes the state of a
neuron by a single variable u, using kernel functions for different aspects of its
behavior. Its state is described as a summation of presynaptic pulse-response
functions, a self-spike response function and an external input function.

For 7, the last firing time of the neuron i , the evolution of the neuron is

given by:

u ()= =i)+ Yow, Y e e—ir—t)+ [Ea—i.)" (- s)ds ()
Jjel; t;-/) eF/ 0
The SRM can be simplified presuming that the external (analog) current is
0 and neglecting the third term (any problem specific input data will be introduced
by additional encoding neurons) and by neglecting the dependence of the &;; kernel
on the term #-¢; (the effect of the neuron’s last spike on the postsynaptic potential
function)
“,-(t)=77,-(t—f,-)+zwg ZEO(t—t;/)) (5)
Jjel; ti(]-/)eF/
This model is known as SRMO and it is used largely for simulation
purposes.

98 B. Paviloiu, P. Cristea

a0

=2 VI"ES‘

-100

Fig. 4. Spike Response Model
The neuron fires if u; reaches a threshold 9 from below. The firing time
. d
t,.”) is defined as the moment when u,(¢) = ¢ and ;ui (t)>0.
t
This model approach can be used to represent a large number of the other
models. Due to its dependence only of time, it is used to avoid integration
methods and time-driven simulation. Solving the kernel function equations that
determine the nearest threshold-crossing point, corresponding with the next firing
time, for each neuron, an event driven approach for the simulation can be applied.
Different functions are considered for ¢, from simple and easy to be
solved ones to others that are more plausible.

1 1
0.8 08
06 06
0.4 0.4
02 02
0 0
0 5 10 0 5 10
02
0.4
0.1
0.2
0 !
o —
o} 5 10 o1 0 5 10

t t

Fig. 5. PSP waveforms A- O(¢), B — square, C- exponential e, D- alpha te ©

Training spiking neurons with isolated spikes coding 99

3. Data representation in SNN

The way the data is encoded to enter the network plays a crucial role to the
system. This is the spot few things are known in neuroscience and any advance
here will push the things a lot further.

Rate code

This is the coding used by most of the neural system models and it
assumes that the information is encoded as the firing rate of the neurons. There is
a long history of this belief and there is evidence for it, starting with the
experiments of Adrian nearly a century ago, that shown an increased firing rate
for an increased intensity of the stimulus [1]. This experiments lead to the
supposition that an entire train of spikes can be represented by a single number,
representing the frequency of the spikes. Classical NN works with this numbers as
the natural way of data representation. If an input has a higher value, it will have a
higher “frequency” assigned and it will influence stronger the neuron.

Several methods data coding and representation in spiking NN are
proposed in literature, having features as plausibility and representability. A good
analysis is made in [10]. Each input neuron will fire at most one time.

Count code

Is a weaker version of rate coding. For a given time window and a number
of N inputs, the coded value is the number of neurons that fire in the defined
window. The number of states that can be defined is N+1.

Binary code

We separate the importance of the neurons from count code. A natural
choice is to consider the value encoded by each neuron with a double importance
than the precedent one. This way, the population of neurons works like a binary
encoder, with the number of states 2.

Timing code

This coding presumes that we can determine the precise time of spiking
for a neuron. If the number of “selecting” windows in the run interval is K, the
number of states encoded by a neuron is K. Using N input neurons the number of
states is K*N.

Synchrony based code

If consider the order of the input neurons, we take different significances
for the input neurons, like in the binary coding, we will have K" states. The spikes
emitted by input neurons in the same time window are considered to be
synchronic.

100 B. Paviloiu, P. Cristea

| O S R
U | I U
SRR

B C D

Fig. 6. Data representation of the number 2 using 3 input neurons. A — count code, B — binary
code, representation of binary 10, C — timing code, second interval, D- rank order code - the
second permutation 1-3-2

Rank order code

The code is given by the order the input neurons spikes. For N inputs,
there are perm(N) = N! sequences in which the neurons can fire.

Thorpe and Gautrais [9] propose a nice circuit sensitive to the rank order
activation of its inputs A-E. The neuron receives excitatory inputs from each of
the inputs and shunting inhibition from an inhibitory neuron whose activity
increases every time one of the inputs fires. As a result, only the first input to fire
is unaffected by the shunting inhibition, and the inhibition increases progressively
during the processing of a wave of spikes, each spike received by the neuron I
making all the weights to be decreased by 50%. Thus for initial weights of 5, 4, 3,
2, 1 the total activation for the order of the spikes A, B, C, D, E is
5+4%0.5+3%0.5%+ 2*0.5°+1%0.5"=8.06.

A -
"'__-‘ o
=
B “\ X

N —

Fig. 7. SNN sensitive to rank order coding, from [9]

The final activation of the output neuron will be maximal only when the
inputs are activated in the order of their weights and if the threshold is set to 8, the
neuron will fire only when the sequence ABCDE is presented.

Training spiking neurons with isolated spikes coding 101

To reject the sequences where one input will act more than once, we can
make the spike emitted from one input neuron to inhibit that neuron.

Delay coding

Because time is continuous and we have it included in the spike equation,
we can encode with a single spike any analog number x as a spiking time x-7,
where T is a given reference time. This version of timing coding, named in many
papers as “delay coding”, is used for problems addressed formerly by the NNs
from the second generation.

4. Spiking neurons with isolated spikes coding

Suppose we have N symbols S;, i=1:N. We want that each symbol to have
its proper code, considered as a specific delay from 0. We will take for the sake of
simplicity isolated spikes, i.e. spikes that have the PSPs non superposing for
encoding different symbols. Since we are interested only in the first emitted spike,
we will assume that the refractory period is very large, avoiding other spikes.
Because the PSPs are identical for the same symbol, their addition will be in fact a
weighted sum (corresponding to the number of occurrences) of the "basic" PSP,
delayed to encode different symbols. For this reason, the waveform of the PSP
doesn't matter, so it can be considered that ¢, is the § function - see (4) and Fig. 5.

A neuron will have R inputs py, p2, ps, ..., prand one output t.

We have a set of Q input vectors and a set of Q targets with symbols from
S, presented concurrently to the network. The input vectors Py, Py, ..., Pp, will
have length R, and a set of M targets Ty, To, ..., Tk, ..., Tg, TxeS

We will have to introduce for reference other N inputs to the network, each
one emitting a spike with a certain delay, corresponding to the symbol it
represents. The spiking neuron will have thus N+R inputs.

Fig. 8. Spike/PSPs coding the input data for symbols S1=A and S2=B; each box
represents an input example

102

B. Paviloiu, P. Cristea

For a given pattern j, the equation (4) leads to:

N+R
u; (= zwigy' (0 (6)
i=1
For p, =S§,, wehave ¢,(¢) =5(z,) and from there
N M
u;(0) =3 wot)=28) 3w, (7
i=1, k=1 il py=5;
If T, =S, , we have U () = 6(¢,) , such that we need:
dw =T (8)
il Dij =5
The threshold should not be reached before ¢, , so:
Z w, <T)
il py=S;.d<k

The weights will sum up independently, so we devise the following

algorithm:

For a given example, if the output is not the target symbol, increase all

the weights for the inputs where the symbol corresponding to the target is
present; if the output is a symbol with a prior time coding than the target
symbol, decrease all the weights for the inputs where that symbol is present.

For 2 symbols, regarded here as the binary logical values S1=0 and S$>=1,

we show the weight and threshold values obtained with the described training
algorithm for all the boolean functions of 2 variables.

Table 2
Weights and threshold for 2 inputs logical binary functions

Function W) W» W3 Wy T

0 1 1 1 0 1

AND(X,,X,) ! 1 0 0 1

AND(X,,X,) 1 -1 1 0 1

X, 1 0 0 0 1

AND(X,,X,) -1 1 1 0 1

X, 0 1 0 0 1
XOR(Xx,,X,) B

OR(X,,X,) 1 1 -1 1 1

AND(X,,X,) -1 2 3 1 1
XOR(X,,X,) -

Training spiking neurons with isolated spikes coding 103

Function W) W) W3 Wy T
X, 1 2 1 1 1
OR(X,,X,) 1 -1 0 1 1
X, -2 1 1 1 1
OR(X,,X,) -1 1 0 1 1
OR(X,,X,) -1 -1 1 2 1
1 0 0 0 1 1

The algorithm works, but we have to substantiate its behavior, including
its failure to solve nonlinear separable problems.

In matrix form, we will represent a symbol S; as the discrete set of

amplitudes in moments #, &=1,V, with an element being one and the other zeros.
k

S, =[0 - 1 0] (10)
Let us study again the example ;.
i 15
_ o - lo ... 1 0
by Sy
: : 1,(R)
[),: P _ Sf,.(R) 0 1 0 (11)
"] Pirayg Si 1 0 - 0
: : 0 1 0
| Prenyj | L Sy : :
0o 0 - 1]
N columns
The aggregate input Aj is:
i 15
o - 1 0
fi(R)
|
I R | 00 (12)
0 - 0
0 1 0
0o 0 - 1]

N columns

104 B. Paviloiu, P. Cristea

The output of the neuron will be represented by the index of the first
element in the vector Aj larger than the threshold 7.

O, =min(i| 4,()) >=T)

If T=S), min(i | 4;(i) >=T) = k and from here

A;(i) <T for i<k, A,(k)>=T and it doesn’t matter what happens for i>k.

For a perceptron with the same weights w;, i=1:R+N and the threshold 7,
this example is equivalent with the set of £ examples with inputs R=P;(:,i), i=1:k,
and the targets 7,=0, i=1:k-1, T)=1.

We proved thus that the computing power of a spiking neuron with
isolated spike codes is comparable with the one of a perceptron and determined
the equivalent training patterns.

5. Conclusions

We presented the main features of spiking neural networks and of
information encoding in SNNs. For a set S with N symbols S={S,, S, ..., Sy} we
presented an algorithm that will train a SNN with isolated spikes coding to
represent a mapping £:S"—S, whether it is possible. We show that finding the
appropriate weights is equivalent with a perceptron training problem and expose
the corresponding training patterns.

REFERENCES

[1] E. D. Adrian, The basis of sensation, Norton, New York, 1928

[2] Paul Dan Cristea, Bujor Pavaloiu, Discrete event dynamic systems modeling using artificial
neural networks, Rev. Roum. Sci. Techn. - Electrotechn et Energ., 45, p. 75-90, 2000

[3] G. Cybenko, Approximations by Superpositions of a Sigmoidal Function, Math. Cont. Signal
\& Systems, 2 (1989) 303-314

[4] Wulfram Gerstner, Time structure of the activity in neural network models. Phys. Rev. E,
51(1), pp. 738-758, 1995

[5] Wulfram Gerstner, What’s different with spiking neurons? in Henk Mastebroek and Hans Vos,
editors, Plausible Neural Networks for Biological Modelling, pages 23-48. Kluwer
Academic Publishers, 2001.

[6] Wulfram Gerstner and Werner M. Kistler, Spiking Neuron Models, Single Neurons,
Populations, Plasticity, Cambridge University Press, 2002

[7] Wolfgang Maass, Networks of spiking neurons: the third generation of neural network models,
Neural Networks, 10, pp. 1659-1671, 1997.

[8] W. S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity,
Bulletin of Mathematical Biophysics, 5, pp. 115-133, 1943

[9] S. Thorpe and J. Gautrais, Rank order coding, in Computational neuroscience: Trends in
research 1998 (pp. 113—118). New York: Plenum Press, 1998

[10] S. Thorpe, A. Delorme and R. VanRullen, Spike-based strategies for rapid processing, in
Neural Networks, 14(6-7), 715-726, 2001

