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A FIXED POINT THEOREM FOR QUASI-CONTRACTION

MAPPINGS IN PARTIALLY ORDER MODULAR SPACES WITH

AN APPLICATION

M. Eshaghi Gordji1, F. Sajadian1, Y. J. Cho2, M. Ramezani 3

In this paper, we prove a new fixed point theorem for quasi-contraction
mappings in partially order modular spaces without the ∆2-condition. As an ap-
plication of the main result, we prove the generalized Hyers–Ulam stability of
Cauchy mappings in modular spaces endowed with the partial order without the
∆2-condition.
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1. Introduction and preliminaries

A problem that mathematicians has dealt with, for almost fifty years, is “how
to generalize the classical function space Lp”. A first attempt was made by Birnhaum
and Orlicz in 1931. This generalization found many applications in differential and
integral equations with kernels of nonpower types. The more abstract generalization
was given by Nakano [1] in 1950 based on replacing the particular integral form of the
functional by an abstract one that satisfies some good properties. This functional
was called modular. This idea, which was the basis of the theory of modular spaces
and initiated by Nakano in connection with the theory of the order space, was
refined and generalized by Musielak and Orlicz [2] in 1959. Modular spaces have
been studied for almost forty years and there is a large set of known applications of
them in various parts of analysis.

It is well known that fixed point theory is one of the powerful tools in solving
integral and differential equations. Banach’s contraction principle is one of the
pivotal results in fixed point theory and it has a board set of applications. Recently,
Khamsi et al. [3] investigated the fixed point results in modular function spaces.
Even though a metric is not defined, many problems in metric fixed point theory
can be reformulated and solved in modular spaces (see, for instance, [4], [5], [6], [7],
[8]).
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In [10], Khamsi proved the following theorem:

Theorem 1.1. Let (X, ρ) be a modular space such that ρ satisfies the Fatou property.
Let C be a ρ-complete nonempty subset of Xρ and let T : C → C be a quasi-
contraction. Let x ∈ C be such that δρ(x) < ∞. Then Tn(x) is ρ-converges to
ω ∈ C and, if ρ(ω − T (ω)) < ∞ and ρ(x − T (ω)) < ∞. Then ω is a unique fixed
point of T .

In this paper, we present a new extension of Theorem 1.1 to partially ordered
sets and, by using our fixed point theorem, we prove the generalized Hyers–Ulam
stability of Cauchy mappings in modular spaces endowed with partial order.

We begin by recalling some basic concepts of modular spaces. For more infor-
mation, we refer to the book by Musielak [9].

Definition 1.2. Let X be an arbitrary vector space over K (R or C).
(1) A function ρ : X → [0,+∞] is said to be modular if

(a) ρ(x) = 0 if and only if x = 0;
(b) ρ(αx) = ρ(x) for all scaler α with |α| = 1;
(c) for all x, y ∈ X, ρ(αx+ βy) ≤ ρ(x) + ρ(y) if α+ β = 1 for any α, β ≥ 0;

(2) If (c) is replaced by

(c’) ρ(αx+ βy) ≤ αρ(x) + βρ(y) if α+ β = 1 for any α, β ≥ 0,
then we say that ρ is convex modular;

(3) A modular ρ defines a corresponding modular space, i.e., the vector space
Xρ given by

Xρ = {x ∈ X : ρ(λx)→ 0 as λ→ 0}.

In general, the modular ρ does not behave as a norm or a distance because it
is not sub-additive. But one can associate to a modular the F -norm (see [9]).

Definition 1.3. The modular space Xρ can be equipped with the F−norm defined
by

|x|ρ = inf
{
α > 0 : ρ

(x
α

)
≤ α

}
.

Namely, if ρ be convex, then the functional

‖x‖ρ = inf
{
α > 0 : ρ

(x
α

)
≤ 1
}

is a norm, which is called the Luxemburg norm in Xρ. This is equivalent to the
F -norm | · |ρ.

Definition 1.4. Let Xρ be a modular space.
(1) A sequence {xn} in Xρ is said to be:

(a) ρ-convergent to a point x ∈ Xρ if ρ(xn − x)→ 0 as n→∞;
(b) a ρ-Cauchy sequence if ρ(xn − xm)→ 0 as n,m→∞;

(2) Xρ is said to be ρ−complete if every ρ-Cauchy sequence is ρ−convergent;
(3) A subset B ⊆ Xρ is said to be ρ-closed if, for any sequence {xn} ⊂ B with

xn → x, then x ∈ B;
(4) A subset B ⊆ Xρ is called ρ-bounded if

δρ(B) = sup{ρ(x− y) : x, y ∈ B} <∞,
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where δρ(B) is called the ρ−diameter of B;
(5) We say that ρ has the Fatou property if

ρ(x− y) ≤ lim
n→∞

ρ(xn − yn)

whenever ρ(xn − x)→ 0 and ρ(yn − y)→ 0 as n→∞;
(6) ρ is said to satisfy the 42-condition if

ρ(2xn)→ 0

as n→∞ whenever ρ(xn)→ 0 as n→∞.

It is easy to check that, for every modular ρ and x, y ∈ Xρ,
(1) ρ(αx) ≤ ρ(βx) for all α, β ∈ R+ with α ≤ β;
(2) ρ(x+ y) ≤ ρ(2x) + ρ(2y).

Example 1.5. (1) The Orlicz modular is defined for every measurable real function
f by the formula

ρ(f) =

∫
R
ϕ(|f(t)|)dµ(t),

where µ denotes the Lebesgue measure in R and ϕ : R → [0,∞) is continuous. We
also assume that ϕ(u) = 0 if and only if u = 0 and ϕ(t)→∞ as t→∞.

The modular space induced by the Orlicz modular is a modular function space,
which is called the Orlicz space.

(2) The Musielak–Orlicz modular spaces (see [2]). Let

ρ(f) =

∫
Ω
ϕ(ω, |f(ω)|)dµ(ω),

where µ is a σ−finite measure on Ω and ϕ : Ω × R → [0,∞) satisfy the following
conditions:

(a) ϕ(ω, u) is a continuous even function of u which is non-decreasing for
any u > 0 such that ϕ(ω, 0) = 0, ϕ(ω, u) > 0 for u 6= 0 and ϕ(ω, u)→∞ as u→∞;

(b) ϕ(ω, u) is a measurable function of ω for any u ∈ R;
(c) ϕ(ω, u) is a convex function of u for any ω ∈ Ω.

It is easy to check that ρ is a convex modular function and the corresponding
modular space is called the Musielak–Orlicz spaces, which is denoted by Lϕ.

Definition 1.6. Let (X, ρ) be a modular space and ≤ be a partial order on X.
Let C be a nonempty subset of Xρ. The self-mapping T : C → C is said to be an
ordered quasi-contraction if there exists k < 1 such that

ρ(T (x)− T (y))

≤ kmax{ρ(x− y), ρ(x− T (x)), ρ(T (y)− y), ρ(x− T (y)), ρ(T (x)− y)}

for all x, y ∈ C with x ≤ y.
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2. Main results

Our starting point is the following proposition:

For any x ∈ C, define the orbit O(x) = {x, T (x), T 2(x), · · · } and its ρ-diameter
by

δρ(x) = diamO(x) = sup{ρ(Tn(x)− Tm(x)) : n,m ∈ N}.

Lemma 2.1. Let (X, ρ) be a modular space and let ≤ be a partial order on X. Let
C be a nonempty subset of Xρ and T : C → C be a nondecreasing ordered quasi-
contraction. Let x ∈ C such that x ≤ T (x) and δρ(x) < ∞. Then, for any n ≥ 1,
one has

δρ(T
n(x)) ≤ knδρ(x),

where k is the constant associated with the ordered quasi-contraction definition of T .
Moreover, one has

ρ(Tn(x)− Tn+m(x)) ≤ knδρ(x),

for all n,m ∈ N.

Proof. Let n,m ∈ N. Since T is nondecreasing, we have Tn(x) ≤ Tm(x) or Tm(x) ≤
Tn(x) and

ρ(Tn(x)− Tm(y))

≤ kmax{ρ(Tn−1(x)− Tm−1(y)), ρ(Tn−1(x)− Tn(x)), ρ(Tm(y)− Tm−1(y)),

ρ(Tn−1(x)− Tm(y)), ρ(Tn(x)− Tm−1(y))}

for any x, y ∈ C with x ≤ y. This obviously implies that

δρ(T
n(x)) ≤ kδρ(Tn−1(x))

for all n ≥ 1. Hence, for all n ≥ 1, we have

δρ(T
n(x)) ≤ knδρ(x).

Moreover, for all n,m ∈ N, we have

ρ(Tn(x)− Tn+m(x)) ≤ δρ(Tn(x)) ≤ knδρ(x).

This completes the proof. �

The next lemma is helpful to prove the main result of this paper.

Lemma 2.2. Let (X, ρ) be a modular space such that ρ satisfies the Fatou property
and let ≤ be a partial order on X. Let C be a ρ-complete nonempty subset of Xρ
and let T : C → C be a nondecreasing and ordered quasi-contraction. Let x ∈ C be
such that x ≤ T (x) and δρ(x) < ∞. Then Tn(x) is ρ-converges to a point ω ∈ C.
Moreover, one has

ρ(Tn(x)− ω) ≤ knδρ(x)

for all n ≥ 1.



A fixed point theorem for quasi-contraction mappings in partially order modular spaces with an application139

Proof. From Lemma 2.1, we know that {Tn(x)} is nondecreasing and a ρ-Cauchy
sequence. Since C is ρ-complete, then there exists ω ∈ C such that {Tn(x)} is
ρ-converges to ω. Since

ρ(Tn(x)− Tn+m(x)) ≤ knδρ(x)

for all n,m ∈ N and ρ satisfies the Fatou property, letting m→∞, we have

ρ(Tn(x)− ω) ≤ knδρ(x).

This completes the proof. �

Theorem 2.3. Let C, T, ω and x be as in Lemma 2.2. If T is ρ-continuous, then T
has a fixed point.

Proof. Let ε > 0 be given. Since limn→∞ ρ(Tn(x) − ω) = 0 and T is ρ-continuous,
we have

lim
n→∞

ρ(Tn+1(x)− T (ω)) = 0.

Thus there exist N1, N2 ∈ N such that

ρ(Tn(x)− ω) <
ε

2
for all n > N1 and

ρ(Tn+1(x)− T (ω)) <
ε

2
for all n > N2. Let N = max{N1, N2}. Then, for all n > N , we have

ρ
(T (ω)− ω

2

)
≤ ρ(Tn+1(x)− T (ω)) + ρ(Tn+1(x)− ω) <

ε

2
+
ε

2
= ε

and so ρ(T (ω)−ω
2 ) = 0 and T (ω) = ω. This completes the proof. �

Theorem 2.4. Let C, T, and x be as in Lemma 2.2. Assume that ρ(ω−T (ω)) <∞
and ρ(x−T (ω)) <∞. If if {yn} is a nondecreasing sequence in C and ρ(yn−y)→ 0
as n→ 0, then yn ≤ y for all n ∈ N, then the ρ-limit of {Tn(x)} is a fixed point of
T , that is, T (ω) = ω.

Proof. Since T is nondecreasing, the sequence {Tn(x)} is nondecreasing and, by
hypothesis, Tn(x) ≤ ω for all n ∈ N. Also, we have

ρ(T (x)− T (ω))

≤ kmax{ρ(x− ω), ρ(x− T (x)), ρ(T (ω)− ω), ρ(x− T (ω)), ρ(T (x)− ω)}
and so

ρ(T (x)− T (ω)) ≤ kmax{δρ(x), ρ(T (ω)− ω), ρ(x− T (ω))}.
Assume that, for any n ≥ 1,

ρ(Tn(x)− T (ω)) ≤ max{knδρ(x), kρ(T (ω)− ω), knρ(x− T (ω))}.
Since T is a quasi-contraction, we have

ρ(Tn+1(x)− T (ω))

≤ kmax{ρ(Tn(x)− ω), ρ(Tn(x)− Tn+1(x)), ρ(T (ω)− ω),

ρ(Tn+1(x)− ω), ρ(Tn(x)− T (ω))}
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and so

ρ(Tn+1(x)− T (ω)) ≤ kmax{knδρ(x), ρ(T (ω)− ω), ρ(Tn(x)− T (ω))}.
Thus, by our assumption, we get

ρ(Tn+1(x)− T (ω)) ≤ max{kn+1δρ(x), kρ(T (ω)− ω), kn+1ρ(x− T (ω))}.
Therefore, by induction, we have

ρ(Tn(x)− T (ω)) ≤ max{knδρ(x), kρ(T (ω)− ω), knρ(x− T (ω))}
for all n ≥ 1. Thus it follows that

lim sup
n→∞

ρ(Tn(x)− T (ω)) ≤ kρ(T (ω)− ω).

Since ρ has the Fatou property, we get

ρ(T (ω)− ω) ≤ lim inf
n→∞

ρ(Tn(x)− T (ω)) ≤ kρ(T (ω)− ω).

Since k < 1, we have T (ω) = ω. This completes the proof. �

3. Applications

We say that a functional equation (ξ) is stable if any function g satisfying the
equation (ξ) approximately is near to a true solution of (ξ).

The stability of functional equations was first introduced by Ulam [11] in
1940. In 1941, Hyers [12] gave a partial solution of Ulam’s problem for the case of
approximate additive mappings in the context of Banach spaces. In 1978, Th.M.
Rassias [13] generalized the theorem of Hyers. The phenomenon of stability that
was introduced by Th.M. Rassias [13] is called the Hyers–Ulam–Rassias stability
or the generalized Hyers–Ulam stability (see also [14, 15]). In 1994, Gǎvruta [16]
generalized the Th.M. Rassias theorem by using a general control function.

Recently, Sadeghi [17] presented a fixed point method to prove the general-
ized Hyers–Ulam stability of functional equations in modular spaces with the ∆2-
condition.

In this section, by using our fixed point theorem in modular spaces, we prove
the generalized Hyers–Ulam stability of Cauchy mapping in modular spaces endowed
with partial order. It is very important to note that we remove the ∆2-condition in
this theorem.

From now on, we suppose that (E ,≤1) is a partially ordered real or complex
linear space with following conditions:

(a) if x ≤1 y for all x, y ∈ E , then rx ≤1 ry for all r ∈ R+;
(b) for all x, y ∈ E , there exists z ∈ E such that z is comparable to x and y.

From now on, we assume that ρ is a convex modular on X with the Fatou
property, X is endowed with the partial order ≤2 and satisfies the condition (a) and
the following conditions:

(c) for all x, y ∈ X , there exists z ∈ X such that z is an upper bound of {x, y};
(d) if {xn} is a nondecreasing sequence in X and xn → x, then x ≥ xn for all

n ∈ N.
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In this section, we consider 0×∞ = 0. Now, we prove our main theorem.

Theorem 3.1. Suppose that f : E → X is a mapping satisfying the following:

2f(x) ≤2 f(2x); (3.1)

ρ(2kf(2x)− 2k+1f(x)) ≤ 2kρ(f(2x)− 2f(x)); (3.2)

ρ(f(x+ z + y − w)− f(x)− f(z)− f(y) + f(w)) ≤ φ(x, z) + φ(y, w) (3.3)

for all k ∈ N and x, y, z, w ∈ E which x is comparable to z and y is comparable to
w, where φ : E × E → [0,∞) is a function satisfying φ(0, 0) = 0 and the following
condition:

φ(x, y) ≤ 2 L φ(
x

2
,
y

2
) (3.4)

for all x, y ∈ E with x comparable to y, where L ∈ (0, 1) is a constant. Then there
exists a unique additive mapping T : E → X such that

ρ(T (x)− f(x)) ≤ 1

2(1− L)
φ(x, x) (3.5)

for all x ∈ E.

Proof. We consider the set

M = {g : E → Xρ, g(0) = 0}
and introduce the convex modular ρ̃ on M as follows:

ρ̃(g) = inf{c > 0 : ρ(g(x)) ≤ cφ(x, x), ∀x ∈ E}.
Define the partial order ≤ on M as follows:

h, g ∈M, h ≤ g ⇐⇒ h(x) ≤2 g(x)

for all x ∈ E .
Now, we consider the function J :Mρ̃ →Mρ̃ defined by

J(g)(x) :=
1

2
g(2x).

Now, by several steps, we show that conditions of Theorem 2.3 hold.

Step 1: ρ̃ is a convex modular. It is sufficient to show that ρ̃ satisfies the
following condition:

ρ̃(αg + βh) ≤ αρ̃(g) + βρ̃(h)

if α+β = 1 for any α, β ≥ 0. For any ε > 0, there exist c1 > 0 and c2 > 0 such that

c1 ≤ ρ̃(g) + ε, ρ(g(x)) ≤ c1φ(x, x)

and

c2 ≤ ρ̃(h) + ε, ρ(h(x)) ≤ c2φ(x, x).

If α+ β = 1 and α, β ≥ 0, then we get

ρ(αg(x) + βh(x)) ≤ αρ(g(x)) + βρ(h(x)) ≤ (αc1 + βc2)φ(x, x),

whence

ρ̃(αg + βh) ≤ αρ̃(g) + βρ̃(h) + (α+ β)ε
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and so

ρ̃(αg + βh) ≤ αρ̃(g) + βρ̃(h).

Step 2: Mρ̃ is ρ̃–complete. Let {gn} be a ρ̃–Cauchy sequence in Mρ̃ and let
ε > 0 be given. Then there exists a positive integer n0 ∈ N such that ρ̃(gn−gm) ≤ ε
for all n,m ≥ n0. Now, by considering the definition of the modular ρ̃, we see that

ρ(gn(x)− gm(x)) ≤ εφ(x, x) (3.6)

for all x ∈ E and n,m ≥ n0. If x is any given point of E , (3.6) implies that {gn(x)}
is a ρ–Cauchy sequence in Xρ. Since Xρ is ρ–complete, it follows that {gn(x)} is
ρ–convergent to a point in Xρ for each x ∈ E . Hence we can define a function
g : E → Xρ by

g(x) := lim
n→∞

gn(x)

for all x ∈ E . Letting m→∞, (3.6) implies that

ρ̃(gn − g) ≤ ε

for all n ≥ n0. On the other hand ρ has the Fatou property. Then {gn} is a
ρ̃–convergent sequence in Mρ̃. Therefore, Mρ̃ is ρ̃–complete.

Step 3: J is a quasi-contraction. Let g, h ∈ Mρ̃, g ≤ h and let c ∈ [0,∞] be
a constant with ρ̃(g − h) ≤ c. From the definition of ρ̃, we have

ρ(g(x)− h(x)) ≤ cφ(x, x)

for all x ∈ E . By the assumption and the last inequality, we get

ρ

(
g(2x)

2
− h(2x)

2

)
≤ 1

2
ρ(g(2x)− h(2x)) ≤ 1

2
cφ(2x, 2x) ≤ Lcφ(x, x)

for all x ∈ E . Hence we have ρ̃(J(g) − J(h)) ≤ Lρ̃(g − h), that is, J is a ρ̃–strict
contraction.

Step 4: δρ̃(f) <∞. It is clear that f(0) = 0. Putting z := x and y = w := 0
in (3.3), we get

ρ(f(2 x)− 2 f(x)) ≤ φ(x, x) (3.7)

for all x ∈ E . Since ρ is convex, we have

ρ
(f(2 x)

2
− f(x)

)
≤ 1

2
ρ(f(2 x)− 2 f(x)) ≤ 1

2
φ(x, x) ≤ φ(x, x)

for all x ∈ E . Replacing 2nx in x in (3.2), it follows from (3.7) that

ρ(2kf(2n+1x)− 2k+1f(2nx)) ≤ 2kρ(f(2n+1x)− 2f(2nx))

≤ 2kφ(2nx, 2nx)

for all x ∈ E and n, k ∈ N. Since ρ is convex, we have

ρ
(

2k
f(2n+1x)

2n+1
− 2k

f(2nx)

2n

)
≤ 1

2n+1
ρ(2kf(2n+1x)− 2k+1f(2nx))

≤ 2k

2n+1
φ(2nx, 2nx)

≤ 2k Lnφ(x, x)
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for all x ∈ E and n, k ∈ N. This shows that

ρ(2kJn+1(f)(x)− 2kJn(f)(x)) ≤ 2k Lnφ(x, x)

for all x ∈ E and n, k ∈ N. This implies that

ρ̃(2kJn+1(f)− 2kJn(f)) ≤ 2k Lnφ(x, x) (3.8)

for all n, k ∈ N. From (3.8), we obtain

ρ̃(Jm(f)− Jn(f)) = ρ̃(
m−1∑
i=n

(J i+1(f)− J i(f))

≤
m−n∑
i=1

1

2i
ρ̃(2i(Jm−i+1(f)− Jm−i(f)))

≤
m−n∑
i=1

1

2i
2i Lm−i

≤
∞∑
i=1

Li =
L

1− L
<∞

for all m,n ∈ N with m ≥ n. This shows that δρ̃(f) <∞.

Step 5: ρ̃ satisfies the Fatou property. Let {gn} be ρ̃–convergent to a point
g ∈ Mρ̃. Suppose that lim infn→∞ ρ̃(gn) < ρ̃(g) and α = lim infn→∞ ρ̃(gn) < ∞.
Then there exists a subsequence {gni} in {gn} such that limi→∞ ρ̃(gni) = α. Let
ε > 0 be given. Then there exists i0 ∈ N such that ρ̃(gni) ≤ ε+α for all i ≥ i0. This
shows that

ρ(gni(x)) ≤ (ε+ α)φ(x, x)

for all i ≥ i0 and x ∈ E . Thus it follows that

lim inf
i→∞

ρ(gni(x)) ≤ αφ(x, x)

for all x ∈ E . On the other hands, for all x ∈ E , we have ρ(gni(x) − g(x)) → 0 as
i→∞. Since ρ satisfies the Fatou property, we have

ρ(g(x)) ≤ lim inf
i→∞

ρ(gni(x)) ≤ αφ(x, x)

for all x ∈ E . This shows that

ρ̃(g) ≤ α,
which is a contradiction. Therefore, it follows that ρ̃(g) ≤ lim infn→∞ ρ̃(gn).

Step 6: J is nondecreasing. By the definition of J and the condition (a), it
is clear that J is a nondecreasing mapping.

Step 7: J is ρ̃-continuous. Let {hn} be ρ̃–converges to a point h ∈ Mρ̃ and
ε > 0 be given. Then there exist C < ε and N ∈ N such that

ρ̃(hn − h) ≤ c < ε

for all n ≥ N . This shows that

ρ(hn(x)− h(x)) ≤ cφ(x, x)
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for all x ∈ E and n ≥ N . Since ρ is convex, we have

ρ
(hn(2x)

2
− h(2x)

2

)
≤ 1

2
ρ(hn(2x)− h(2x)) ≤ C

2
φ(2x, 2x) ≤ LCφ(x, x)

for all x ∈ E and n ≥ N . This shows that ρ̃(J(hn) − J(h)) < ε for all n ≥ N
and so J(hn) is ρ̃-convergent to J(h). It is obvious that f ≤ J(f). Now, by
applying Theorem 3.4, J has a fixed point. Let T be a fixed point of J . Then
limn→∞ ρ̃(Jn(f)− T ) = 0. This shows that

T (x) = lim
n→∞

f(2n x)

2n
(3.9)

for all x ∈ E . Since J is a nondecreasing mapping, for any x ∈ E , the sequence

{f(2n x)
2n } is a nondecreasing sequence in Xρ. Thus, by using the condition (d), we

see that f(2n x)
2n ≤2T (x) for all n ≥ 0. In particular, f(x)≤2T (x). This shows that

f ≤ T . Let x ∈ E be an arbitrary element. By using (3.9), we have T (2x) =

limn→∞
f(2n+1 x)

2n and, by Fatou property of ρ, we get

ρ(f(2x)− T (2x)) ≤ lim inf
k→∞

ρ(f(2x)− f(2k+1x)

2k
)

= lim inf
k→∞

ρ(2
f(2k+1x)

2k+1
− 2

f(2x)

2
)

≤ lim inf
k→∞

ρ(2(
k∑
i=1

f(2i+1x)

2i+1
− f(2ix)

2i
))

≤ lim inf
k→∞

k∑
i=1

1

2i
ρ(2i+1(

f(2i+1x)

2i+1
− f(2ix)

2i
))

≤
∞∑
i=1

1

22i
ρ(2i(f(2i+1x)− 2f(2ix)))

≤
∞∑
i=1

1

2i
φ(2ix, 2ix)

≤
∞∑
i=1

Liφ(x, x).

This shows that ρ̃(2J(f)−2J(T )) ≤ L
1−L . Therefore, By (3.7) and the last inequality,

we have

ρ̃(f − T ) ≤ 1

2
ρ̃(2f − 2J(f)) +

1

2
ρ̃(2J(f)− 2J(T )) ≤ 1

2
+

1

2

L

1− L
=

1

2(1− L)
.

This shows that the inequality (3.5) holds.
Now, we show that T is a additive mapping. To this end, let x, y ∈ E . By the

condition (b), there exists z ∈ E such that z is comparable to x and y. Thus 2nz is
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comparable to 2nx and 2ny for all n ∈ N. By using (3.3), we have

ρ(f(2nx+ 2ny)− f(2nx)− f(2ny))

= ρ(f(2nx+ 2nz + 2ny − 2nz)− f(2nx)− f(2nz)− f(2ny) + f(2nz))

≤ φ(2nx, 2nz) + φ(2ny, 2nz)

for all n ∈ N. Since ρ is convex, we have

ρ
(f(2nx+ 2ny)

2n
− f(2nx)

2n
− f(2ny)

2n

)
≤ 1

2n
φ(2nx, 2nz) +

1

2n
φ(2ny, 2nz)

≤ Lnφ(x, z) + Lnφ(y, z)

for all n ∈ N. On the other hands, the convexity of ρ shows that

ρ
( 1

24
T (x+ y)− 1

24
T (x)− 1

24
T (y)

)
≤ 1

24
ρ(T (x+ y)− 1

2n
f(2n (x+ y))) +

1

24
ρ(T (x)− 1

2n
f(2n x))

− 1

24
ρ(T (y)− 1

2n
f(2n y)) +

1

24
ρ(
f(2nx+ 2ny)

2n
− f(2nx)

2n
− f(2ny)

2n
)

for all n ∈ N. This implies that T is additive.
For the uniqueness property of T , let T1 : E → Xρ be another additive mapping

satisfying (3.5). It is easy to show that J(T1) = T1. For any x ∈ E , there exists
g(x) ∈ Xρ such that g(x) is an upper bound of {T (x), T1(x)}. This shows that
g ∈M and g is comparable to T and T1. Since ρ̃ is convex, we have g ∈Mρ̃ and so

ρ̃
(T − T1

2

)
≤ 1

2
ρ̃(Jn(T )− Jn(g)) +

1

2
ρ̃(Jn(T1)− Jn(g))

≤ 1

2
Ln ρ̃(T − g) +

1

2
Ln ρ̃(T1 − g).

Since L ∈ (0, 1), we have ρ̃(T−T12 ) = 0 and hence T = T1. This completes the
proof. �

Corollary 3.2. Let (E ,≤1) be a partially ordered normed space and let (F,≤2) be a
partially ordered Banach space. Suppose that f : E → F is a mapping with f(0) = 0
and there exist the constants ε, θ ≥ 0 and p ∈ [0, 1) such that

‖f(x+ z + y − w)− f(x)− f(z)− f(y) + f(w)‖ ≤ ε+ θ(‖x‖p + ‖y‖p)

for all x, y, z, w ∈ E which x is comparable to z and y is comparable to w. Then
there exists a unique additive mapping j : E → F such that

‖f(x)− j(x)‖ ≤ ε

2− 2p
+

2θ

2− 2p
‖x‖p

for all x ∈ E.

Proof. It is known that every normed space is a modular space with the modular
ρ(x) = ‖x‖. If we define φ(x, y) = ε+ θ(‖x‖p + ‖y‖p) and apply Theorem 3.1, then
the conclusion follows. �
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