

A NOTE ON "ORDERED SEMIGROUPS CHARACTERIZED BY THEIR $(\in, \in \vee q)$ -FUZZY BI-IDEALS"

S. Abdullah¹, M. Aslam¹, B. Davvaz², M. Naeem³

This paper is a short note on the paper [1, Y.B. Jun et al., Ordered semigroups characterized by their $(\in, \in \vee q)$ -fuzzy bi-ideals, Bull. Malays. Math. Sci. (2) 32(3) (2008) 391-408]. We show that Theorem 4.3 does not hold in general. Then, we discuss more update result than Theorem 4.3.

Keywords: Ordered semigroup, $(\in, \in \vee q)$ -fuzzy bi-ideal, regular ordered semigroup

MSC2010: 20N99, 20M99

1. Introduction

Jun et al., [1] introduced the concept of $(\in, \in \vee q)$ -fuzzy bi-ideals of ordered semigroup, and gave some characterization theorems. In [1, Theorem 4.3], they proved that an ordered semigroup S is regular if and only if for every $(\in, \in \vee q)$ -fuzzy bi-ideal λ of S we have $\lambda \circ_{0.5} 1 \circ_{0.5} \lambda = \lambda$. We note that Theorem 4.3 in [1] is not true for all $(\in, \in \vee q)$ -fuzzy bi-ideals λ of S .

The first aim of this paper is to show that [1, Theorem 4.3] is not true by giving an Example. The second purpose of this article is to verify Theorem 4.3 in [1] by an Example. We discuss more updated results than Theorem 4.3 in [1].

2. Preliminaries

By an *ordered semigroup* we mean an ordered set S at the same time a semi-group such that $x, y \in S$, $x \leq y$ implies $zx \leq zy$ and $xz \leq yz$ for all $z \in S$. Let S be an ordered semigroup. Then, for $A \subseteq S$, we denote $(A) := \{a \in S : a \leq b \text{ for some } b \in A\}$.

For $A, B \subseteq S$, we denote, $AB := \{ab : a \in A, b \in B\}$. Let $A, B \subseteq S$. Then, $A \subseteq (A)$, $(A)(B) \subseteq (AB)$, and $((A)) = (A)$. Let S be an ordered semigroup and $\emptyset \neq B \subseteq S$. Then, B is called a *subsemigroup* of S if for all $x, y \in B$ implies that $xy \in B$ or $B^2 \subseteq B$. A subsemigroup B of an ordered semigroup S is called a *bi-ideal* of S if

$$(1), \ BSB \subseteq B \quad (2) \ (\forall x \in S) (\forall y \in B), (x \leq y \Rightarrow x \in B).$$

An element x of an ordered semigroup S is called *regular* if there exists $a \in S$ such that $x \leq xax$. An ordered semigroup is called *regular* if every element of S is regular.

¹PhD Scholar, Department of Mathematics, Quaid-i-Azam University 45320 Islamabad 44000, Pakistan, e-mail: saleemabdullah81@yahoo.com, saleem@math.qau.edu.pk

² Department of Mathematics, Quaid-i-Azam University 45320 Islamabad 44000, Pakistan,

³ Department of Mathematics, Yazd University, Yazd, Iran

⁴ Deanship of Preparatory Year, Umm Al Qura University, Makkah, Saudi Arabia

Equivalently, if $(\forall x \in S) (x \in (xSx])$ or $(\forall A \subseteq S) (A \subseteq (ASA])$. For $a \in S$, define $A_a := \{(y, z) \in S_1 \times S_2 : a \leq yz\}$.

For a set S , let $\mathcal{F}(S) := \{\lambda : \lambda : S \longrightarrow [0, 1]\}$. Elements of $\mathcal{F}(S)$ are called *fuzzy subsets of S* . For any $\lambda \in \mathcal{F}(S)$ and $t \in [0, 1]$, the set $U(\lambda; t) = \{x \in S : \lambda(x) \geq t\}$ is called a level subset of λ . The product $\lambda \circ_{0.5} \mu$ of two fuzzy subsets λ and μ defined as:

$$(\lambda \circ_{0.5} \mu)(1) = \begin{cases} \bigvee_{(y,z) \in A_x} \{(\lambda)(y) \wedge \mu(z) \wedge 0.5\} & \text{if } A_x \neq \emptyset \\ 0 & \text{if } A_x = \emptyset \end{cases}$$

Given an element $x \in S$, consider a mapping

$$\lambda : S \longrightarrow [0, 1], \quad y \longrightarrow \begin{cases} t \in (0, 1] & \text{if } y = x, \\ 0 & \text{if } y \neq x. \end{cases}$$

Then, $\lambda \in \mathcal{F}(S)$, and it is said to be a *fuzzy point* with support x , and value t , is denoted by x_t .

For fuzzy point x_t and fuzzy subset λ of a set S , Pu and Liu [2] introduced the symbol $x_t \alpha \lambda$, where $\alpha \in \{\in, q, \in \vee q, \in \wedge q\}$. To say that $x_t \in \lambda$ (resp. $x_t q \lambda$), we mean $\lambda(x) \geq t$ (resp. $\lambda(x) + t > 1$), and this case, x_t is said to be *belong to* (resp. *be quasi-coincident with*) a fuzzy subset λ . To say $x_t \in \vee q \lambda$ (resp. $x_t \in \wedge q \lambda$), we mean $x_t \in \lambda$ or $x_t q \lambda$ (resp. $x_t \in \lambda$ and $x_t q \lambda$), and $x_t \in \overline{\vee q \lambda}$ mean that $x_t \in \vee q \lambda$ does not hold.

A fuzzy subset λ of an ordered semigroup S is called a *fuzzy subsemigroup* of S if for all $x, y \in S$, (B1) $\lambda(xy) \geq \min\{\lambda(x), \lambda(y)\}$.

A fuzzy subsemigroup λ of an ordered semigroup S is called a *fuzzy bi-ideal* of S if for all $x, y, z \in S$, (B2) $(\forall x \in S)(x \leq y \Rightarrow \lambda(x) \geq \lambda(y))$, and (B3) $\lambda(xyz) \geq \min\{\lambda(x), \lambda(z)\}$.

A fuzzy subset λ of an ordered semigroup S is called an $(\in, \in \vee q)$ -*fuzzy bi-ideal* of S if it satisfies:

- (1) $(\forall x, y \in S)(x \leq y, y_t \in \lambda \Rightarrow x_t \in \vee q \lambda)$,
- (2) $(\forall x, y \in S)(x_{t_1}, y_{t_2} \in \lambda \Rightarrow (xy)_{t_1 \wedge t_2} \in \vee q \lambda)$,
- (3) $(\forall x, y, z \in S)(x_{t_1}, z_{t_2} \in \lambda \Rightarrow (xyz)_{t_1 \wedge t_2} \in \vee q \lambda)$.

3. Note on " Ordered semigroups characterized by their $(\in, \in \vee q)$ -fuzzy bi-ideals"

In what follows, let S denote an ordered semigroup. For any fuzzy subset λ and $t \in (0, 1]$, we consider two subsets: $Q(\lambda; t) = \{x \in S : x_t q \lambda\}$ and $[\lambda]_t = \{x \in S : x_t \in \vee q \lambda\}$. It is clear that $[\lambda]_t = U(\lambda; t) \cup Q(\lambda; t)$. In [1], Jun et al. discussed the following theorem.

Theorem 3.1. [1, Theorem 4.3] *An ordered semigroup S is regular if and only if for every $(\in, \in \vee q)$ -fuzzy bi-ideal λ of S we have $\lambda \circ_{0.5} 1 \circ_{0.5} \lambda = \lambda$.*

Example 3.1. Consider a set $S = \{0, 1, 2, 3, 4\}$ with the following multiplication \cdot and ordered relation " \leq :

*	0	1	2	3	4
0	0	3	0	3	3
1	0	1	0	3	3
2	0	3	2	3	4
3	0	3	0	3	3
4	0	3	2	3	4

$$\leq := \{(0,0), (0,2), (0,3), (0,4), (1,1), (1,3), (1,4), (2,2), (2,4), (3,3), (3,4), (4,4)\}.$$

Then, (S, \cdot, \leq) is a regular ordered semigroup, i.e $0 \leq 0 \cdot 1 \cdot 0$, $1 \leq 1 \cdot 0 \cdot 1$, $2 \leq 2 \cdot 4 \cdot 2$, $3 \leq 3 \cdot 0 \cdot 3$ and $4 \leq 4 \cdot 2 \cdot 4$. We define a fuzzy subset λ of S by $\lambda(0) = 0.9$, $\lambda(1) = 0.8$, $\lambda(4) = 0.6$, $\lambda(3) = 0.8$, $\lambda(2) = 0.6$. Then, $U(\lambda; t) = \begin{cases} S & \text{if } t \in (0, 0.6], \\ \{0, 1, 3\} & \text{if } t \in (0.6, 0.8], \\ \{0\} & \text{if } t \in (0.8, 0.9], \\ \emptyset & \text{if } t \in (0.9, 1]. \end{cases}$ Clearly, λ is an $(\in, \in \vee q)$ -fuzzy bi-ideal of S .

Now, we check Theorem 3.1 and let $1 \in S$. Then, the only possible case is $1 = 1 \cdot 1$.

$$\begin{aligned} (\lambda \circ_{0.5} 1 \circ_{0.5} \lambda)(1) &= \bigvee_{1=1 \cdot 1} \{(\lambda \circ_{0.5} 1)(1) \wedge \lambda(1) \wedge 0.5\} \\ &= \bigvee_{1=1 \cdot 1} \left\{ \bigvee_{1=1 \cdot 1} \{\lambda(1) \wedge 1(1) \wedge 0.5\} \wedge \lambda(1) \wedge 0.5 \right\} = \bigvee_{1=1 \cdot 1} \{\{0.9 \wedge 1 \wedge 0.5\} \wedge 0.9 \wedge 0.5\} \\ &= \bigvee_{1=1 \cdot 1} \{0.5 \wedge 0.9 \wedge 0.5\} = 0.5 (\lambda \circ_{0.5} 1 \circ_{0.5} \lambda)(1) < \lambda(1). \end{aligned}$$

So, $\lambda \circ_{0.5} 1 \circ_{0.5} \lambda \neq \lambda$. This Example shows that Theorem 3.1, does not hold.

Definition 3.1. [3] Let λ be a fuzzy subset of an ordered semigroup S . We define the upper part λ^+ and the lower part λ^- of λ as follows, $\lambda^+(x) = \lambda(x) \vee 0.5$ and $\lambda^-(x) = \lambda(x) \wedge 0.5$.

Definition 3.2. [3] Let A be a non-empty subset of an ordered semigroup S . Then, the lower and upper parts of the characteristic function are $C_A^-(x) = \begin{cases} 0.5 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$ and $C_A^+(x) = \begin{cases} 1 & \text{if } x \in A \\ 0.5 & \text{if } x \notin A \end{cases}$

Lemma 3.1. [3] Let A and B be non-empty subsets of an ordered semigroup S . Then, the following properties hold.

- (1) $(C_A \wedge C_B)^- = C_{A \cap B}^-$, (2) $(C_A \vee C_B)^- = C_{A \cup B}^-$,
- (3) $(C_A \circ C_B)^- = C_{(AB)}^-$ or $(C_A \circ_{0.5} C_B)^- = C_{(AB)}^-$.

Lemma 3.2. The lower part of characteristic function C_B^- is an $(\in, \in \vee q)$ -fuzzy bi-ideal of S if and only if B is a bi-ideal of S .

We present a new statement which is more general than [1, Theorem 4.3].

Theorem 3.2. An ordered semigroup S is regular if and only if for every $(\in, \in \vee q)$ -fuzzy bi-ideal λ of S , we have $\lambda \circ_{0.5} 1 \circ_{0.5} \lambda = \lambda^-$ or $(\lambda \circ 1 \circ \lambda)^- = \lambda^-$.

Proof. Assume that S is a regular ordered semigroup and let $x \in S$. Since S is regular, so there exists $a \in S$ such that $x \leq xax$. Then, $(xa, x) \in A_x$,

$$\begin{aligned}
 (\lambda \circ_{0.5} 1 \circ_{0.5} \lambda)(x) &= \bigvee_{(y,z) \in A_x} \min \{(\lambda \circ_{0.5} 1)(y), \lambda(z), 0.5\} \\
 &\geq \min \{(\lambda \circ_{0.5} 1)(xa), \lambda(x), 0.5\} \\
 &= \min \left\{ \bigvee_{(p,q) \in A_{xa}} \min \{\lambda(p), 1(q), 0.5\}, \lambda(x), 0.5 \right\} \\
 &\geq \min \{\min \{\lambda(x), 1(a), 0.5\}, \lambda(x), 0.5\} \\
 &= \min \{\min \{\lambda(x), 1, 0.5\}, \lambda(x), 0.5\} = \min \{\lambda(x), 0.5\} \\
 &= \lambda(x) \wedge 0.5 = \lambda^-(x) (\lambda \circ_{0.5} 1 \circ_{0.5} \lambda)(x) \geq \lambda^-(x)
 \end{aligned}$$

Thus, $\lambda \circ_{0.5} 1 \circ_{0.5} \lambda \geq \lambda^-$. Since λ is an $(\in, \in \vee q)$ -fuzzy bi-ideal of S , so, we have

$$\begin{aligned}
 (\lambda \circ_{0.5} 1 \circ_{0.5} \lambda)(x) &= \bigvee_{(y,z) \in A_x} \min \{(\lambda \circ_{0.5} 1)(y), \lambda(z), 0.5\} \\
 &= \bigvee_{(y,z) \in A_x} \min \left\{ \bigvee_{(p,q) \in A_y} \min \{\lambda(p), 1(q)\}, \lambda(z), 0.5 \right\} \\
 &= \bigvee_{(y,z) \in A_x} \min \left\{ \bigvee_{(p,q) \in A_y} \min \{\lambda(p), 1\}, \lambda(z), 0.5 \right\} \\
 &= \bigvee_{(pq,z) \in A_x} \min \{\lambda(p), \lambda(z), 0.5\} = \bigvee_{(pq,z) \in A_x} \min \{\lambda(p), \lambda(z), 0.5, 0.5\} \\
 &= \bigvee_{(pq,z) \in A_x} \min \{\lambda(p), \lambda(z), 0.5\} \wedge 0.5 \\
 &\leq \bigvee_{(pq,z) \in A_x} \min \{\lambda(pqz)\} \wedge 0.5 \quad \left(\begin{array}{l} \text{because } \lambda \text{ is an } (\in, \in \vee q) \\ \text{-fuzzy bi-ideal of } S. \end{array} \right) \\
 &= \lambda(x) \wedge 0.5 = \lambda^-(x) (\lambda \circ_{0.5} 1 \circ_{0.5} \lambda)(x) \leq \lambda^-(x).
 \end{aligned}$$

Thus, $(\lambda \circ_{0.5} 1 \circ_{0.5} \lambda) \leq \lambda^-$. Therefore $(\lambda \circ_{0.5} 1 \circ_{0.5} \lambda) = \lambda^-$.

Conversely, Let B be a bi-ideal of S . Then $(BSB] \subseteq B$. Let $x \in B$. Then, by Lemma 3.2, C_B^- is an $(\in, \in \vee q)$ -fuzzy bi-ideal of S . So, we have $C_B^-(x) = (C_B^- \circ_{0.5} 1 \circ_{0.5} C_B^-)(x) = C_{(BSB]}^-(x)$ by Lemma 3.1 (3). So, $x \in B$. Then, $C_B^-(x) = 0.5 \Rightarrow C_{(BSB]}^-(x) = 0.5 \Rightarrow x \in (BSB]$. Thus, $B \subseteq (BSB]$. Therefore, $B = (BSB]$, so S is regular. This completes the proof. \square

REFERENCES

- [1] Y. B. Jun, A. Khan and M. Shabir, Ordered semigroups characterized by their $(\in, \in \vee q)$ -fuzzy bi-ideals, Bull. Malays. Math. Sci. Soc., **32**(2009), No. 3, 391-408.
- [2] P. M. Pu and M. Liu, Fuzzy topology I: neighbourhood structure of a fuzzy point and moore-smith convergence, J. Math. Anal. Appl. **76**(1980), 571-599.
- [3] M. Shabir, Y. B. Jun and Y. Nawaz, Characterizations of regular semigroups by (α, β) -fuzzy ideals, Comput. Math. Appl., **59**(2010), 161-175.