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In this paper, we consider the generating functions of the complete and el-

ementary symmetric functions and provide a new generalization of these classical sym-
metric functions. Some classical relationships involving the complete and elementary

symmetric functions are reformulated in a more general context.
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1. Introduction

A formal power series in the variables x1, x2, . . . , xn is called symmetric if it is in-
variant under any permutation of the variables. These symmetric formal power series are
traditionally called symmetric functions. A symmetric function is homogeneous of degree k
if every monomial in it has total degree k. Symmetric functions are ubiquitous in mathemat-
ics and mathematical physics. For example, they appear in elementary algebra (e.g. Viete’s
Theorem), representation theories of symmetric groups and general linear groups over C or
finite fields. They are also important objects to study in algebraic combinatorics.

A partition λ = [λ1, λ2, . . . , λk] of a positive integer n is a weakly decreasing sequence
of positive integers whose sum is n, i.e.,

λ1 + λ2 + · · ·+ λk = n and λ1 ≥ λ2 ≥ · · · ≥ λk > 0.

The positive integers in the sequence are called parts [1]. The multiplicity of the part i in
λ, denoted by ti, is the number of parts of λ equal to i. We denote by l(λ) the number of
parts of λ. In order to indicate that λ = [λ1, λ2, . . . , λk] or λ = [1t12t2 . . . ntn ] is a partition
of n, we use the notation λ ` n.

We recall some basic facts about monomial symmetric functions. Proofs and details
can be found in Macdonald’s book [6]. If λ = [λ1, λ2, . . . , λk] is an integer partition with
k ≤ n then, the monomial symmetric function

mλ(x1, x2, . . . , xn) = m[λ1,λ2,...,λk](x1, x2, . . . , xn)

is the sum of the monomial xλ1
1 xλ2

2 · · ·x
λk

k and all distinct monomials obtained from it by a
permutation of variables. For instance, with λ = [2, 1, 1] and n = 4, we have:

m[2,1,1](x1, x2, x3, x4) = x21x2x3 + x1x
2
2x3 + x1x2x

2
3 + x21x2x4 + x1x

2
2x4

+ x1x2x
2
4 + x21x3x4 + x1x

2
3x4 + x1x3x

2
4 + x22x3x4 + x2x

2
3x4 + x2x3x

2
4.

1Associate Professor, Department of Mathematics, Mohamed Seddik Benyahia University, Jijel, LMAM
laboratory, BP 98 Ouled Aissa Jijel 18000, Algeria, e-mail: moussa.ahmia@univ-jijel.dz

2Associate Professor, Department of Mathematical Methods and Models, Fundamental Sciences Applied
in Engineering Research Center, University Politehnica of Bucharest, RO-060042 Bucharest, Romania, e-
mail: mircea.merca@upb.ro (corresponding author)

119



120 Moussa Ahmia, Mircea Merca

The kth complete homogeneous symmetric function hk is the sum of all monomials
of total degree k in these variables, i.e.,

hk(x1, x2, . . . , xn) =
∑
λ`k

mλ(x1, x2, . . . , xn) =
∑

1≤i1≤i2≤···≤ik≤n

xi1xi2 · · ·xik ,

and the kth elementary symmetric function is defined by

ek(x1, x2, . . . , xn) = m[1k](x1, x2, . . . , xn) =
∑

1≤i1<i2<···<ik≤n

xi1xi2 · · ·xik ,

where e0(x1, x2, . . . , xn) = h0(x1, x2, . . . , xn) = 1. In particular, when λ = [k], we have the
kth power sum symmetric function

pk(x1, x2, . . . , xn) = m[k](x1, x2, . . . , xn) =

n∑
i=1

xki ,

with p0(x1, x2, . . . , xn) = n.
The complete homogeneous symmetric functions are characterized by the following

identity of formal power series in t:

∞∑
k=0

hk(x1, x2, . . . , xn)tk =

n∏
i=1

(1− xit)−1. (1)

Analogously, for the elementary symmetric functions we have:

∞∑
k=0

ek(x1, x2, . . . , xn)tk =

n∏
i=1

(1 + xit). (2)

Inspired by these generating functions, we introduce the generalized symmetric func-

tions H
(s)
k (x1, x2, . . . , xn) and E

(s)
k (x1, x2, . . . , xn) as follows:

∞∑
k=0

H
(s)
k (x1, x2, . . . , xn)tk =

n∏
i=1

(
1− xit+ · · ·+ (−xit)s

)−1
(3)

and
∞∑
k=0

E
(s)
k (x1, x2, . . . , xn)tk =

n∏
i=1

(
1 + xit+ · · ·+ (xit)

s
)
, (4)

where s is a positive integer.
Clearly, by setting s = 1 in (3) and (4), we obtain the generating functions for

complete and elementary symmetric functions. In addition, by (4) we easily deduce that

E
(s)
k (x1, x2, . . . , xn) =

∑
λ`k
λ1≤s

mλ(x1, x2, . . . , xn). (5)

Moreover, considering that

E
(k)
k (x1, x2, . . . , xn) = hk(x1, x2, . . . , xn), (6)

the generalized symmetric functions E
(s)
k can be seen as another generalization of the com-

plete homogenous symmetric function hk. To illustrate (5), we have

E
(3)
5 (x1, x2, x3) = m[2,2,1](x1, x2, x3) +m[3,1,1](x1, x2, x3) +m[3,2](x1, x2, x3)

The symmetric functions E
(s)
k (x1, x2, . . . , xn) are not essentially a new generalization

of the elementary symmetric functions ek(x1, x2, . . . , xn). An equivalent definition of these
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symmetric functions already exists in a paper published in 2018 by Bazeniar et al. [2]:

E
(s)
k (x1, x2, . . . , xn) =

∑
λ`k

0≤λ1,λ2,...,λn≤s

xλ1
1 xλ2

2 · · ·xλn
n , (7)

where E
(s)
0 (x1, x2, . . . , xn) = 1 and E

(s)
k (x1, x2, . . . , xn) = 0 unless 0 ≤ k ≤ sn. Moreover,

the authors proved that the symmetric functions E
(s)
k (x1, x2, . . . , xn) satisfy the following

recurrence relation.

E
(s)
k (x1, x2, . . . , xn) =

s∑
j=0

xjnE
(s)
k−j(x1, x2, . . . , xn−1). (8)

A similar result can be derived for the symmetric function H
(s)
k (x1, x2, . . . , xn), namely,

H
(s)
k (x1, x2, . . . , xn−1) =

s∑
j=0

(−1)jxjnH
(s)
k−j(x1, x2, . . . , xn). (9)

Very recently, Fu and Mei [3] and Grinberg [4] independently introduced the general-

ized symmetric functions E
(s)
k . Grinberg denoted these functions by G(s, k) and called them

Petrie symmetric functions while Fu and Mei used the notation h
[s]
k and referred to them

as truncated homogeneous symmetric functions.
In this paper, motivated by these results, we investigate the properties of the gener-

alized symmetric functions H
(s)
k and E

(s)
k . We collect some classical relationships involving

complete, elementary and power sum symmetric functions and provide generalizations for
them.

2. Newton identities revisited

There is a fundamental relation between the elementary symmetric polynomials and
the complete homogeneous ones:

k∑
j=0

(−1)jej(x1, x2, . . . , xn)hk−j(x1, x2, . . . , xn) = δ0,k, (10)

where δi,j is the Kronecker delta. This relation is valid for all k > 0, and any number of
variables n. We have the following generalization of this identity.

Theorem 2.1. Let k, n and s be positive integers and let x1, x2, . . . , xn be independent
variables. Then

k∑
j=0

(−1)jE
(s)
j (x1, x2, . . . , xn)H

(s)
k−j(x1, x2, . . . , xn) = δ0,n. (11)

Proof. By (3) and (4), we see that( ∞∑
k=0

(−1)kE
(s)
k (x1, x2, . . . , xn)tk

)( ∞∑
k=0

H
(s)
k (x1, x2, . . . , xn)tk

)
= 1.

Considering the well known Cauchy product of two power series, we obtain

∞∑
k=0

 k∑
j=0

(−1)jE
(s)
j (x1, x2, . . . , xn)H

(s)
k−j(x1, x2, . . . , xn)

 tk = 1.

This concludes the proof. �
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Theorem 2.1 and [7, Theorem 1] allow us to derive two symmetric identities for the

generalized symmetric functions H
(s)
k and E

(s)
k .

Corollary 2.1. Let k, n and s be positive integers and let x1, x2, . . . , xn be independent vari-

ables. The symmetric functions H
(s)
k = H

(s)
k (x1, x2, . . . , xn) and E

(s)
k = E

(s)
k (x1, x2, . . . , xn)

are related by

H
(s)
k =

∑
t1+2t2+···+ktk=k

(−1)k+t1+t2+···+tk
(
t1 + t2 + · · ·+ tk
t1, t2, . . . , tk

) k∏
i=1

(
E

(s)
i

)ti
and

E
(s)
k =

∑
t1+2t2+···+ktk=k

(−1)k+t1+t2+···+tk
(
t1 + t2 + · · ·+ tk
t1, t2, . . . , tk

) k∏
i=1

(
H

(s)
i

)ti
.

The problem of expressing power sum symmetric polynomials in terms of elementary
symmetric polynomials and vice-versa and the problem of expressing power sum symmetric
polynomials in terms of complete symmetric polynomials and vice-versa were solved a long
time ago. The relations, called Newton’s identities

kek(x1, x2, . . . , xn) =

k∑
j=1

(−1)j−1ek−j(x1, x2, . . . , xn)pj(x1, x2, . . . , xn) (12)

or

khk(x1, x2, . . . , xn) =

k∑
j=1

hk−j(x1, x2, . . . , xn)pj(x1, x2, . . . , xn) (13)

are well known. Recently, Merca [8] proved that the complete, elementary and power sum
symmetric functions are related by

pk(x1, x2, . . . , xn) =

k∑
j=1

(−1)j−1jej(x1, x2, . . . , xn)hk−j(x1, x2, . . . , xn) (14)

and derived new relationships between complete and elementary symmetric functions:

2kek =
∑

k1+k2+k3=k

(−1)k3(k1 + k2)ek1ek2hk3 , (15)

and

khk =
∑

k1+k2+k3=k

(−1)k3−1k3hk1hk2ek3 , (16)

where k1, k2, k3 are nonnegative integers.
In order to provide the generalizations of (12)-(16), we consider the symmetric func-

tion P
(s)
k defined as

P
(s)
k (x1, x2, . . . , xn) = c

(s)
k pk(x1, x2, . . . , xn),

where

c
(s)
k =

{
(−1)k · s, if k ≡ 0 mod (s+ 1),

(−1)k−1, otherwise.

Theorem 2.2. Let k, n and s be positive integers and let x1, x2, . . . , xn be independent
variables. Then

(1) kE
(s)
k (x1, x2, . . . , xn) =

k∑
j=1

(−1)j−1P
(s)
j (x1, x2, . . . , xn)E

(s)
k−j(x1, x2, . . . , xn);
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(2) kH
(s)
k (x1, x2, . . . , xn) =

k∑
j=1

P
(s)
j (x1, x2, . . . , xn)H

(s)
k−j(x1, x2, . . . , xn);

(3) P
(s)
k (x1, x2, . . . , xn) =

k∑
j=1

(−1)j−1jE
(s)
j (x1, x2, . . . , xn)H

(s)
k−j(x1, x2, . . . , xn).

Proof. For ωj,s = e2jπi/s with j = 1, 2, . . . , s− 1, we can see that

1− t+ · · ·+ (−t)s−1 = (−1)s−1
s−1∏
j=1

(ωj,s + t) =

s−1∏
j=1

(1 + ωj,st) ,

where we take into account that
∏s−1
j=1 ωj,s = (−1)s−1 and ωj,s = 1/ωs−j,s. On one hand,

we have

d

dt
ln

n∏
i=1

(
1− xit+ · · ·+ (−xit)s

)−1
=

d

dt
ln

n∏
i=1

s∏
j=1

(1 + ωj,s+1xit)
−1

(17)

=

n∑
i=1

s∑
j=1

d

dt
ln (1 + ωj,s+1xit)

−1
= −

n∑
i=1

s∑
j=1

ωj,s+1xi
1 + ωj,s+1xit

= −
s∑
j=1

n∑
i=1

(
ωj,s+1xi − (ωj,s+1xi)

2t+ (ωj,s+1xi)
3t2 − · · ·

)
=

∞∑
k=1

(−1)k

(
s∑
j=1

ωkj,s+1

)(
n∑
i=1

xki

)
tk−1

=

∞∑
k=1

(−1)kpk (ω1,s+1, ω2,s+1, . . . , ωs,s+1) pk(x1, x2, . . . , xn)tk−1

=

∞∑
k=1

P
(s)
k (x1, x2, . . . , xn)tk−1,

where we have invoked that

pk(ω1,s+1, ω2,s+1, . . . , ωs,s+1) =

{
s, if k ≡ 0 mod (s+ 1),

−1, otherwise.

On the other hand, we can write

∞∑
k=1

P
(s)
k (x1, x2, . . . , xn)tk−1 =

d

dt
ln

( ∞∑
k=0

(−1)kE
(s)
k (x1, x2, . . . , xn)tk

)−1

= −

( ∞∑
k=1

(−1)kkE
(s)
k (x1, . . . , xn)tk−1

)( ∞∑
k=0

(−1)kE
(s)
k (x1, . . . , xn)tk

)−1
. (18)

By this identity, with t replaced by −t, we obtain

∞∑
k=1

kE
(s)
k (x1, x2, . . . , xn)tk−1

=

( ∞∑
k=0

E
(s)
k (x1, x2, . . . , xn)tk

)( ∞∑
k=1

(−1)k−1P
(s)
k (x1, x2, . . . , xn)tk−1

)
and the first identity follows.
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To prove the second identity, we consider
∞∑
k=1

P
(s)
k (x1, x2, . . . , xn)tk−1

=
d

dt
ln

n∏
i=1

(
1− xit+ · · ·+ (−xit)s

)−1
=

d

dt
ln

∞∑
k=0

H
(s)
k (x1, x2, . . . , xn)tk

=

( ∞∑
k=1

kH
(s)
k (x1, x2, . . . , xn)tk−1

)( ∞∑
k=0

H
(s)
k (x1, x2, . . . , xn)tk

)−1
.

Rewriting (18) as

∞∑
k=1

P
(s)
k (x1, x2, . . . , xn)tk−1

=

( ∞∑
k=1

(−1)k−1kE
(s)
k (x1, x2, . . . , xn)tk−1

)( ∞∑
k=0

H
(s)
k (x1, x2, . . . , xn)tk

)
,

we derive the last identity and the theorem is proved. �

Corollary 2.2. Let k, n and s be positive integers and let x1, x2, . . . , xn be independent vari-

ables. The symmetric functions E
(s)
k = E

(s)
k (x1, x2, . . . , xn) and H

(s)
k = H

(s)
k (x1, x2, . . . , xn)

are related by

2kE
(s)
k =

∑
k1+k2+k3=k

(−1)k3(k1 + k2)E
(s)
k1
E

(s)
k2
H

(s)
k3

and

kH
(s)
k =

∑
k1+k2+k3=k

(−1)k3−1k3H
(s)
k1
H

(s)
k2
E

(s)
k3
,

where k1, k2, k3 are nonnegative integers.

It is well-known that the power sum symmetric functions pk can be expressed in
terms of elementary symmetric functions ek using Girard-Newton-Waring formula [5, eq. 8],
namely

pk =
∑

t1+2t2+...+ktk=k

(−1)k+t1+t2+···+tk · k
t1 + t2 + · · ·+ tk

(
t1 + t2 + · · ·+ tk
t1, t2, . . . , tk

)
et11 e

t2
2 · · · e

tk
k .

There is a very similar result which combines the power sum symmetric functions pk and
the complete homogeneous symmetric functions hk, i.e.,

pk =
∑

t1+2t2+...+ktk=k

(−1)1+t1+t2+···+tk · k
t1 + t2 + · · ·+ tk

(
t1 + t2 + · · ·+ tk
t1, t2, . . . , tk

)
ht11 h

t2
2 · · ·h

tk
k .

The following two theorems provide generalizations of these relations.

Theorem 2.3. Let k, n and s be positive integers and let x1, x2, . . . , xn be independent
variables. The power sum symmetric function pk = pk(x1, x2, . . . , xn) and the generalized

symmetric functions E
(s)
k = E

(s)
k (x1, x2, . . . , xn) and H

(s)
k = H

(s)
k (x1, x2, . . . , xn) are related

by

pk =

∑
t1+2t2+···+ktk=k

(−1)t1+t2+···+tk

t1 + t2 + · · ·+ tk

(
t1 + t2 + · · ·+ tk
t1, t2, . . . , tk

)
k∏
i=1

(
E

(s)
i

)ti
∑

t1+2t2+···+sts=k

(−1)t1+t2+···+ts

t1 + t2 + · · ·+ ts

(
t1 + t2 + · · ·+ ts
t1, t2, . . . , ts

)
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and

pk =

∑
t1+2t2+···+ktk=k

(−1)1+t1+t2+···+tk

t1 + t2 + · · ·+ tk

(
t1 + t2 + · · ·+ tk
t1, t2, . . . , tk

)
k∏
i=1

(
H

(s)
i

)ti
∑

t1+2t2+···+sts=k

(−1)k+t1+t2+···+ts

t1 + t2 + · · ·+ ts

(
t1 + t2 + · · ·+ ts
t1, t2, . . . , ts

) .

Proof. Considering (4) and the logarithmic series

ln(1 + t) =

∞∑
n=1

(−1)n−1
tn

n
, |t| < 1,

we can write

ln

( ∞∑
k=0

E
(s)
k (x1, x2, . . . , xn)tk

)
= ln

n∏
i=1

(
1 + xit+ · · ·+ (xit)

s
)

=

n∑
i=1

ln
(
1 + xit+ · · ·+ (xit)

s
)

=

n∑
i=1

∞∑
m=1

(−1)m−1

m

 s∑
j=1

(xit)
j

m

=

∞∑
m=1

(−1)m−1

m

n∑
i=1

sm∑
k=m

∑
t1+t2+···+ts=m
t2+2t2+···sts=k

(
t1 + t2 + · · ·+ ts
t1, t2, . . . , ts

)
(xit)

k

=

∞∑
m=1

(−1)m−1

m

sm∑
k=m

∑
t1+t2+···+ts=m
t2+2t2+···sts=k

(
t1 + t2 + · · ·+ ts
t1, t2, . . . , ts

)
pk(x1, x2, . . . , xn)tk

=

∞∑
k=1

∑
t1+2t2+···+sts=k

(−1)1+t1+t2+···+ts

t1 + t2 + · · ·+ ts

(
t1 + t2 + · · ·+ ts
t1, t2, . . . , ts

)
pk(x1, x2, . . . , xn)tk.

On the other hand, we have

ln

(
1 +

∞∑
k=1

E
(s)
k (x1, x2, . . . , xn)tk

)
(19)

=

∞∑
m=1

(−1)m−1

m

( ∞∑
k=1

E
(s)
k (x1, x2, . . . , xn)tk

)m

=

∞∑
m=1

(−1)m−1

m

∞∑
k=1

∑
t1+t2+···+tk=m
t1+2t2+···+ktk=k

(
t1 + t2 + · · ·+ tk
t1, t2, . . . , tk

) k∏
i=1

(
E

(s)
i

)ti
tk

=

∞∑
k=1

∑
t1+2t2+···+ktk=k

(−1)1+t1+t2+···+tk

t1 + t2 + · · ·+ tk

(
t1 + t2 + · · ·+ tk
t1, t2, . . . , tk

) k∏
i=1

(
E

(s)
i

)ti
tk.

and the first identity follows easily. In a similar way, considering (3) we can prove the second
identity. We obtain

ln

( ∞∑
k=0

H
(s)
k (x1, x2, . . . , xn)tk

)

= ln

n∏
i=1

(
1 + (−xit) + · · ·+ (−xit)s

)−1
= −

n∑
i=1

∞∑
m=1

(−1)m−1

m

 s∑
j=1

(−xit)j
m
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=

∞∑
m=1

(−1)m

m

n∑
i=1

sm∑
k=m

∑
t1+t2+···+ts=m
t2+2t2+···sts=k

(
t1 + t2 + · · ·+ ts
t1, t2, . . . , ts

)
(−xit)k

=

∞∑
m=1

(−1)m

m

sm∑
k=m

∑
t1+t2+···+ts=m
t2+2t2+···sts=k

(
t1 + t2 + · · ·+ ts
t1, t2, . . . , ts

)
pk(x1, x2, . . . , xn)(−t)k

=

∞∑
k=1

∑
t1+2t2+···+sts=k

(−1)k+t1+t2+···+ts

t1 + t2 + · · ·+ ts

(
t1 + t2 + · · ·+ ts
t1, t2, . . . , ts

)
pk(x1, x2, . . . , xn)tk

and

ln

(
1 +

∞∑
k=1

H
(s)
k (x1, x2, . . . , xn)tk

)
(20)

=

∞∑
k=1

∑
t1+2t2+···+ktk=k

(−1)1+t1+t2+···+tk

t1 + t2 + · · ·+ tk

(
t1 + t2 + · · ·+ tk
t1, t2, . . . , tk

) k∏
i=1

(
H

(s)
i

)ti
tk.

The proof is finished. �

Theorem 2.4. Let k, n and s be positive integers and let x1, x2, . . . , xn be independent

variables. The symmetric functions E
(s)
k = E

(s)
k (x1, x2, . . . , xn), H

(s)
k = H

(s)
k (x1, x2, . . . , xn)

and P
(s)
k = P

(s)
k (x1, x2, . . . , xn) are related by

P
(s)
k =

∑
t1+2t2+...+ktk=k

(−1)1+t1+t2+···+tk · k
t1 + t2 + · · ·+ tk

(
t1 + t2 + · · ·+ tk
t1, t2, . . . , tk

) k∏
i=1

(
H

(s)
i

)ti
and

P
(s)
k =

∑
t1+2t2+...+ktk=k

(−1)k+t1+t2+···+tk · k
t1 + t2 + · · ·+ tk

(
t1 + t2 + · · ·+ tk
t1, t2, . . . , tk

) k∏
i=1

(
E

(s)
i

)ti
.

Proof. According to (17), (19) and (20), we have
∞∑
k=1

P
(s)
k (x1, x2, . . . , xn)tk−1 =

d

dt
ln

n∏
i=1

(
1− xit+ · · ·+ (−xit)s

)−1
=

∞∑
k=1

∑
t1+2t2+···+ktk=k

(−1)1+t1+t2+···+tk · k
t1 + t2 + · · ·+ tk

(
t1 + t2 + · · ·+ tk
t1, t2, . . . , tk

) k∏
i=1

(
H

(s)
i

)ti
tk−1

and
∞∑
k=1

(−1)k−1P
(s)
k (x1, x2, . . . , xn)tk−1 =

d

dt
ln

( ∞∑
k=0

E
(s)
k (x1, x2, . . . , xn)tk

)

=

∞∑
k=1

∑
t1+2t2+···+ktk=k

(−1)1+t1+t2+···+tk · k
t1 + t2 + · · ·+ tk

(
t1 + t2 + · · ·+ tk
t1, t2, . . . , tk

) k∏
i=1

(
E

(s)
i

)ti
tk−1.

These conclude the proof. �

As a consequence of Theorems 2.3 and 2.4, we remark the following family of identities.

Corollary 2.3. Let k and s be positive integers. Then∑
t1+2t2+···+sts=k

(−1)t1+t2+···+ts · k
t1 + t2 + · · ·+ ts

(
t1 + t2 + · · ·+ ts
t1, t2, . . . , ts

)
=

{
s, if k ≡ 0 mod (s+ 1),

−1, otherwise.
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It is well-known that the complete and elementary symmetric functions can be ex-
pressed in terms of the power sum symmetric functions, i.e.,

hk =
∑

t1+2t2+...+ktk=k

1

1t1t1!2t2t2! · · · ktktk!
pt11 p

t2
2 · · · p

tk
k (21)

and

ek =
∑

t1+2t2+...+ktk=k

(−1)k+t1+t2+···+tk

1t1t1!2t2t2! · · · ktktk!
pt11 p

t2
2 · · · p

tk
k . (22)

The following result provides a generalization of these relations.

Theorem 2.5. Let k, n and s be positive integers and let x1, x2, . . . , xn be independent

variables. The symmetric functions E
(s)
k = E

(s)
k (x1, x2, . . . , xn), H

(s)
k = H

(s)
k (x1, x2, . . . , xn)

and P
(s)
k = P

(s)
k (x1, x2, . . . , xn) are related by

H
(s)
k =

∑
t1+2t2+...+ktk=k

1

1t1t1!2t2t2! · · · ktktk!

k∏
i=1

(
P

(s)
i

)ti
and

E
(s)
k =

∑
t1+2t2+...+ktk=k

(−1)k+t1+t2+···+tk

1t1t1!2t2t2! · · · ktktk!

k∏
i=1

(
P

(s)
i

)ti
.

Proof. In order to prove this identity, we take into account the following two relations:

ln

( ∞∑
k=0

H
(s)
k tk

)
=

∞∑
k=1

tk

k
P

(s)
k and ln

( ∞∑
k=0

E
(s)
k tk

)
=

∞∑
k=1

(−1)k−1
tk

k
P

(s)
k

Considering the exponential series exp(z) =
∑∞
k=0

zk

k! , |z| < 1, we can write

∞∑
k=0

H
(s)
k tk = exp

( ∞∑
k=1

tk

k!
P

(s)
k

)
=

∞∑
m=0

1

m!

( ∞∑
k=1

tk

k!
P

(s)
k

)m

=

∞∑
m=0

1

m!

∞∑
k=1

∑
t1+t2+···tk=m

t1+2t2+···+ktk=k

(
t1 + t2 + · · ·+ tk
t1, t2, · · · , tk

) k∏
i=1

(
ti

i
P

(s)
i

)ti

=

∞∑
k=1

∑
t1+2t2+···+ktk=k

1

(t1 + t2 + · · ·+ tk)!

(
t1 + t2 + · · ·+ tk
t1, t2, · · · , tk

) k∏
i=1

(
1

i
P

(s)
i

)ti
tk

=

∞∑
k=1

∑
t1+2t2+···+ktk=k

1

1t1t1!2t2t2! · · · ktktk!

k∏
i=1

(
P

(s)
i

)ti
tk

and
∞∑
k=0

E
(s)
k tk = exp

( ∞∑
k=1

(−1)k−1
tk

k!
P

(s)
k

)
=

∞∑
m=0

1

m!

( ∞∑
k=1

(−1)k−1
tk

k!
P

(s)
k

)m

=

∞∑
m=0

1

m!

∞∑
k=1

∑
t1+t2+···tk=m

t1+2t2+···+ktk=k

(
t1 + t2 + · · ·+ tk
t1, t2, · · · , tk

) k∏
i=1

(
(−1)i−1

ti

i
P

(s)
i

)ti

=

∞∑
k=1

∑
t1+2t2+···+ktk=k

(−1)k+t1+t2+···+tk

1t1t1!2t2t2! · · · ktktk!

k∏
i=1

(
P

(s)
i

)ti
tk.

Thus we arrive at our identities. �
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At the end of this section, we remark the following recurrence relations for the gen-

eralized symmetric functions E
(s)
k and H

(s)
k .

Theorem 2.6. Let k, n and s be positive integers and let x1, x2, . . . , xn be independent
variables. Then

H
(s)
k (x1, x2, . . . , xn) = (−xn)s+1H

(s)
k−s−1(x1, x2, . . . , xn)

+H
(s)
k (x1, x2, . . . , xn−1) + xnH

(s)
k−1(x1, x2, . . . , xn−1)

and

E
(s)
k (x1, x2, . . . , xn) = xnE

(s)
k−1(x1, x2, . . . , xn)

+ E
(s)
k (x1, x2, . . . , xn−1)− xs+1

n E
(s)
k−s−1(x1, x2, . . . , xn−1).

Proof. Taking into account (3), we can write
∞∑
k=0

H
(s)
k (x1, x2, . . . , xn)tk =

1

1− xnt+ · · ·+ (−xnt)s
∞∑
k=0

H
(s)
k (x1, x2, . . . , xn−1)tk

=
1 + xnt

1− (−xnt)s+1

∞∑
k=0

H
(s)
k (x1, x2, . . . , xn−1)tk.

Thus we deduce that(
1− (−xnt)s+1

) ∞∑
k=0

H
(s)
k (x1, x2, . . . , xn)tk = (1 + xnt)

∞∑
k=0

H
(s)
k (x1, x2, . . . , xn−1)tk.

Equating coefficients of tn on each side of this identity gives the first identity. The second
identity follows in a similar way considering (4). �

3. Concluding remarks

In this paper, we investigate a pair of two symmetric functions which generalize the
complete and elementary symmetric functions. We show that these generalized symmetric
functions satisfy many of the classical relations between complete and elementary symmetric
functions. It would be very appealing to investigate combinatorial interpretations of the

generalized symmetric functions H
(s)
k and E

(s)
k .
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