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A GENERALIZATION OF COMPLETE AND ELEMENTARY
SYMMETRIC FUNCTIONS - PART 1

Moussa Ahmia', Mircea Merca?

In this paper, we consider the generating functions of the complete and el-
ementary symmetric functions and provide a new generalization of these classical sym-
metric functions. Some classical relationships involving the complete and elementary
symmetric functions are reformulated in a more general context.
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1. Introduction

A formal power series in the variables x1, o, ..., x, is called symmetric if it is in-
variant under any permutation of the variables. These symmetric formal power series are
traditionally called symmetric functions. A symmetric function is homogeneous of degree k
if every monomial in it has total degree k. Symmetric functions are ubiquitous in mathemat-
ics and mathematical physics. For example, they appear in elementary algebra (e.g. Viete’s
Theorem), representation theories of symmetric groups and general linear groups over C or
finite fields. They are also important objects to study in algebraic combinatorics.

A partition A = [Ay, Ag, ..., \g] of a positive integer n is a weakly decreasing sequence
of positive integers whose sum is n, i.e.,

AMFA+--+Ag=n and A > XA >- 2> > 0.

The positive integers in the sequence are called parts [1]. The multiplicity of the part ¢ in
A, denoted by t;, is the number of parts of A equal to i. We denote by I(A) the number of
parts of A\. In order to indicate that A = [A1, A2, ..., \g] or A = [1©12%2 . . ni] is a partition
of n, we use the notation A F n.

We recall some basic facts about monomial symmetric functions. Proofs and details
can be found in Macdonald’s book [6]. If A = [A1, \a,..., Ax] is an integer partition with
k < n then, the monomial symmetric function

m)\(xl,Z‘Q, e axn) = m[/\l,)\g,...7/\k](x17x27 ct 73371)
is the sum of the monomial z}'z5? - - - xg’“ and all distinct monomials obtained from it by a

permutation of variables. For instance, with A = [2,1, 1] and n = 4, we have:
2 2 2 2 2
miz,1,1)(T1, T2, T3, 1) = TIT2T3 + T125T3 + T1 0273 + T]ToT4 + T1T574
2 2 2 2 2 2 2
+ X122y + TIT3T4 + X1X3%4 + T1T3TY + T5X3XT4 + X2X3T4 + ToT3Ty.
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The kth complete homogeneous symmetric function Ay is the sum of all monomials
of total degree k in these variables, i.e.,

hi(1, 29, ) = > ma(21, 32, .., 2n) = > Ty Tiy " T
Ak 1<i1 <2< <ip<n
and the kth elementary symmetric function is defined by
ex(T1, T2, . Tn) = Mpr)(T1, T2, . .0, Ty) = E Xy Tiy - Ty
1<iy<ig<--<ix<n

where eg(x1,x2,...,2,) = ho(x1,T2,...,2,) = 1. In particular, when A\ = [k], we have the
kth power sum symmetric function

n
pr(T1,22,. .. Tn) = m[k](fﬂl,xm ey Tp) = Ziﬂf,
i=1

with po(21,Za,...,2,) = n.
The complete homogeneous symmetric functions are characterized by the following
identity of formal power series in t:

> hi(ry,wa, .zt = T - ait) (1)
k=0 i=1
Analogously, for the elementary symmetric functions we have:
Zek(xlax%'“axn)tk :H(1+l’it)- (2)
k=0 i=1
Inspired by these generating functions, we introduce the generalized symmetric func-
tions H,gs) (x1,29,...,2,) and E,(Cs)(gcl7 Za,...,Zy,) as follows:
[e’e) . n 1
STH (@ra, . an)tt = [[ (- @it 4o+ (—it)?) (3)
k=0 i=1
and
ZE,(CS)({,El, T2, ... ,ZL‘n)tk = H (1 +xit+ -+ (l'it)s)7 (4)
k=0 i=1

where s is a positive integer.
Clearly, by setting s = 1 in (3) and (4), we obtain the generating functions for
complete and elementary symmetric functions. In addition, by (4) we easily deduce that

E,(Cs)(xl,xg,...,xn) = Z ma(z1,Z2,...,Tn). (5)
Ak
)\1§S

Moreover, considering that
k
El(c )(‘T17$2,'~-7xn):hk(xthw"?‘rn)a (6)

e generalized symmetric functions can be seen as another generalization of the com-
th lized tric functions £ can b th lization of th
plete homogenous symmetric function hg. To illustrate (5), we have

E® (21, 0, 3) = mpa,2,1)(T1, T2, x3) + myz1,1) (21, T2, T3) + Mmy3,9) (71, T2, 73)

The symmetric functions E,(CS) (z1,x2,...,%,) are not essentially a new generalization
of the elementary symmetric functions eg(x1,x2,...,z,). An equivalent definition of these
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symmetric functions already exists in a paper published in 2018 by Bazeniar et al. [2]:

E,(CS)(:Cha?g,...,xn) = Z TPay? e, (7)
ARk
0<A1,A2,...,A,<s
where Eés)(xl,xz, ...,xy) = 1 and E,is)(zl,zg, ...y Ty) = 0 unless 0 < k < sn. Moreover,
the authors proved that the symmetric functions E,is)(:zl, T, ..., x,) satisfy the following
recurrence relation.
S
E,is)(xl,x27 cey X)) = Zxﬂ;E,ii)j(xl,x% ey Tpe1)- (8)
§=0
A similar result can be derived for the symmetric function H lgs) (x1,22,...,2,), namely,
S
HY (21,22, @) = Y (~1Iad HY (21,20, @), (9)
§=0

Very recently, Fu and Mei [3] and Grinberg [4] independently introduced the general-
ized symmetric functions El(f). Grinberg denoted these functions by G(s, k) and called them

Petrie symmetric functions while Fu and Mei used the notation hLS] and referred to them
as truncated homogeneous symmetric functions.
In this paper, motivated by these results, we investigate the properties of the gener-

alized symmetric functions H ,ES) and E,(:). We collect some classical relationships involving
complete, elementary and power sum symmetric functions and provide generalizations for
them.

2. Newton identities revisited
There is a fundamental relation between the elementary symmetric polynomials and
the complete homogeneous ones:

k

Z(—l)jej (xl, To, ... ,Zn)hk_j (Il, Lo, ... ,Jin) = (SQJ€7 (10)
7=0

where §; ; is the Kronecker delta. This relation is valid for all k& > 0, and any number of
variables n. We have the following generalization of this identity.

Theorem 2.1. Let k, n and s be positive integers and let x1,xs,...,x, be independent
variables. Then

k
STV EY (1,20, wn)HY (1,22, 1) = Go0 (11)
0

Jj=

Proof. By (3) and (4), we see that

<Z(—1)kE£S)(ZE1,$2,...,xn)tk> (Z H]E:S)(l'l,g’EQ,...?xn)tk) =1.
k=0

k=0

Considering the well known Cauchy product of two power series, we obtain

00 k
Z Z(_l)jE](‘S)(xlaan"'7xn)H]ES_)j(x1,$2a"'axn) tk =1
k=0 \j=0

This concludes the proof. O
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Theorem 2.1 and [7, Theorem 1] allow us to derive two symmetric identities for the
generalized symmetric functions H ]SS) and E,(CS).

Corollary 2.1. Let k, n and s be positive integers and let x1,xo, . .., T, be independent vari-
ables. The symmetric functions H,Es) = H,ES)(xh Zoy...,&y) and E,gs) = E,Es)(xl, Xy Ty
are related by
k
s t1+ta+ -+t (s)\ b
HS — )ttt (E )
k 2 =) ti by, .ty ) AT

1

t1+2ta+-+ktp=k ¢

and
k

s L Ftotee ) t1+t2++tk: s ti
EY = Z (—1)kHta+tat +tk( . )H(Hf )) .

Lt
t1+2to+-+ktp=k vk i=1

The problem of expressing power sum symmetric polynomials in terms of elementary
symmetric polynomials and vice-versa and the problem of expressing power sum symmetric
polynomials in terms of complete symmetric polynomials and vice-versa were solved a long
time ago. The relations, called Newton’s identities

k
kep(z1,z2,...,20) = Z(—l)j_lek_j(l‘l,xg, e )P (X1, Ty, T) (12)
=1
or
k
khi(z1,22,...,2n) = Z hi—j(x1, 2, ..., 2n)pj(T1, T2, ..., Tp) (13)
=1

are well known. Recently, Merca [8] proved that the complete, elementary and power sum
symmetric functions are related by

k

pr(@n, g, ) = > (1) jej (w1, w2, )i (21, 22, ) (14)
j=1

and derived new relationships between complete and elementary symmetric functions:

2key, = Z (_1)k3 (kl + k2)ek1€k2hk37 (15)
ki1+ko+ks=k
and
kh = Y (=1 kshy, hy,er,, (16)
ki+ko+ks=k

where k1, ks, ks are nonnegative integers.
In order to provide the generalizations of (12)-(16), we consider the symmetric func-

tion P,gs) defined as

PIES)(Il,IQ, e ,l’n) = Cgcs)pk(l’l,l'g, e ,In),
where
(s) (-1)k.s, if k=0mod (s+1),
C =
k (—=1)*=1 otherwise.
Theorem 2.2. Let k, n and s be positive integers and let x1,xs,...,x, be independent

variables. Then
k

(1) k‘El(;) (1'175523 s 7xn) = Z(_l)j71P;S)(xlax27 s 71'77«)E1(cs_)j(x1,1'2a cee axn);

=1
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k
(2) kH,gS)(xl,ajg, ) = ZPJ.(S)(xl,xg, .. ,mn)H,Ei)j(xl,xQ, ey Ty);

j=1

k
(3) Pés)(xl,xg, ey X)) = Z(—l)j_le](-S)(xl,xg, .. ,J}n)Héi)j(iL‘l,.Tg, ...

Proof. For w; s = e2mi/s with j = 1,2,...,5 — 1, we can see that

s—1

1—t4--- 4 (_t)sfl = (—1)571 ‘h(w‘jys +1) = H (14 wj,st

) Tn).

where we take into account that H 1 wjs = (=1)*1 and w; s = 1/ws_;s. On one hand,

we have
d n
ilnH(l—xit-F"'-‘r( zit)*)” dtlnHH (14 wjoprait) "
=1 i=175=1
- > Wi s4+1T5
e D) DR T
i=1 j= 1d i=1 j= 1]'_’_(")]‘("+1miL
s n
= =)D (wisr1mi — @y s012)°t + (W ep12:) 7 — )
j=1i=1
o0 S n
-3 ek ) (o)
k=1 j=1 =1
o0
= Z(—l)kpk (W41, W2 5115 -5 Ws 51) Pr (1, T, -y )T
k=1

= ZP]§S)<x17$2; . ,xn)tk_l,
k=1

where we have invoked that

—1, otherwise.

Pk (w1,5+17 W2 5415 - 7Ws,s+1) =
)
On the other hand, we can write

oo o0

k=1 k=0

s, ifk=0mod (s+1),

~1
s _ d s
Z P,E )(171,;1:2, )t = p In (2:(—1)]€E,(C )(zl,xg, e ,xn)tk>

(17)

=— (i(1)kkE,(:)(x1,...,xn)tk1> (i(l)kE,gs)(xl,...,xn)tk> . (18)

k=1 k=0

By this identity, with ¢ replaced by —t, we obtain

Z kE,(CS) (21, @0, ..., 2,)tF 1

o) [eS)
= (ZE](CS)($17$27~-~, ) (Z k 1P(8 xl,xg,...,xn)tk_1>
k=0

k=1

and the first identity follows.
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To prove the second identity, we consider

oo

ZP,ES)(zl,xQ,...,xn)tk71
k=1

d. T a1l d N () k
:alnH(l—xit+-~-+(—xit)) :%anHk (1,22, ..., Tp)t

[e'e] [e%s} -1
= (ZkH,gs)(m,zg,...,x” )R 1> (Z :cl,xg,...,:z:n)tk> .

k=1 k=
Rewriting (18) as

Z P,gs) (z1,22,. .. ,xn)tkfl

= (Z(—l)k_lkEl(j)(J?l,.’I}g,..., YR 1) (ZH xl,xg,...,xn)tk> ,

k=1
we derive the last identity and the theorem is proved. |
Corollary 2.2. Let k, n and s be positive integers and let x1, 2, ..., x, be independent vari-

ables. The symmetric functions E(S) ,is)(xl, 2,y Tpn) and H,gs) = H,gs)(xl, Xy ey Tn)

are related by

kB = N (DM (ki + k)EDEDHY)
ki1+ko+ks=k
and
kHY = N ()b U HY B,
ki+ko+ks=k

where ki, ko, k3 are nonnegative integers.

It is well-known that the power sum symmetric functions py can be expressed in
terms of elementary symmetric functions ey, using Girard-Newton-Waring formula [5, eq. 8],
namely

_)kttattabe bt L S 4 e g
ey B AT

tr
t1+t2++tk tl tg...tk 1 2”.ek.
t1+2to+...+ktr=k s V2 )

There is a very similar result which combines the power sum symmetric functions p; and
the complete homogeneous symmetric functions hy, i.e.,

Z (_1)1+t1+t2+"'+tk.k t1+to+ -+t htlht2-.-ht’“
ty +t2+ -+t t1,t2, ...,k v R

Pk =
t14+2to+...+kty=k

The following two theorems provide generalizations of these relations.

Theorem 2.3. Let k, n and s be positive integers and let x1,xs,...,x, be independent
variables. The power sum symmetric function pr = pr(x1,22,...,2,) and the generalized
symmetric functions E( ) = E( )(xl,xg, ceoy ) and H( ) = H( )(:El,:vg, ..., Tp) are related
by
_1tattettte /g t et k
(-1) (1+2+ +k>H(E(s>
_ ti42to+tktr=k ty +to+ -+ 1k t17t27~";tk i=1
P = (_1)t1+t2+~~+t5 <t1—|—t2+ St )
by 42t tsto=k 1 T la+ -+ g t1,ta, ..., ts
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and

(_1)1+t1+t2+‘-~+tk t+tg+ -+t ﬁ (H(S))t7
t17t27"'7tk !

b4 2to o tkty=k L1 Tl A i=1
(_1)k)+t1+t2+“'+ts t1+to+ -+t
ty4+ 2ot tsta=k 1 FHla+ -+ ( ti,ta, ..., ts )
Proof. Considering (4) and the logarithmic series
oo i
In(1+t) = 2(71)”*1? It < 1,
n=1

we can write

In (Z E,(Cs)(xhxg, . ,xn)tk> = lnH (1 +axit+--+ (-Tit)s)

k=0 i=1
et O (55
i=1 i=1 m=1 j=1

Me B B

(71)m71 n_osm t1 4ty + -+t &
E 4
m ZZ tito, .t (wit)
1=1 k=m ti1+ta+---+ts=m
tot2ta+--ste=k

_1ym—1 ™ ti+to+---+ts
LZ Z <1 ’ ey, T2, ... xn)tF

m k=m t1+to+-+t,=m tyt2,. -t
to+2to+---sts=k

Z (=1)tHtttattte (4 fy g
Lttt bt Uttt

)pk(xl,xg, . ,xn)tk.

e
I

1t142ta+--+sts=

On the other hand, we have

In (1 + 3 B (1,70, ,zn)tk> (19)
k=1
_1 m—l jo%s) . m
% (,; E,(c )(gcl,x27 .. ,xn)tk>

k

() & A IO

m tl,tz,...7tk - ¢

1 k=1 ti+to+-+tp=m =1
t1+2to+-+ktr=k

00 k
_ Z Z (_1)1+t1+t2+ +tg tl + t2 + o+ tk H (E(S))tl tk
li+ta+--+ 1t t1,t2,. ’

ot
k=1 t142t0+ - +ktr=k )k i=1

M7 i1

3
Il

and the first identity follows easily. In a similar way, considering (3) we can prove the second
identity. We obtain

oo
In <Z H,gs) (z1,22,. .. ,xn)tk>
k=0

m

= lnH L+ (i) + o (zit)) ==Y _T , (—zit)’
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(D" 5~ | tt byttt "

m ZZ ti,ta, ..., ts (=it
i=1 k=m t1+to+-+ts=m
to+2ta+---sts=k

1)m - t1+t2—|—_|_t
" Z Z tl,tg,‘,,,ts ’ pk(xlax2,...7xn)(_t)k

1 k=mti+ia+--+ts=m
to+2to+---sts=k

oo
71 k+ti+to+---+ts t +t + +t
B D DI ( > )p<>t
k=1 ’

7 1

m

Tt 42t pstu—k t1+to+ -+ tg t1,ta, ..., ts
and
oo
In (1 + 3 H (1,70, ,xn)tk> (20)
k=1
>y L ) ()
Pt 2t bkt LT R A RELCIERE i=1
The proof is finished. O
Theorem 2.4. Let k, n and s be positive integers and let x1,xs,...,T, be independent
variables. The symmetric functions E,(f) = E,is)(xl, Xy ey Ty, H,gs) = H,Es)(xl, Xy ey Tn)

and P,gs) = P,SS) (x1,22,...,2n) are related by

PO _ Z (—1)tHtttetotte . (t1 gt tk) ﬁ ( )
k - . e
1420+ Akt =k bitilod -+ t1,t2y. 05t i=1

and

s 1 k+ti+ta+-+ty | k ('t t et o)\ i
W e (eI
ti42t . Akty=k T 2 k LP2ees e /G
Proof. According to (17), (19) and (20) we have

Z Pé‘g)(x17x27 .. tk 1 IHH -+ (_xlt)s)il
k=1

oo k
_ Z Z (_1)1+t1+t2+ +tx -k t1+to+ -+t H ( ) itk—l
t1 +io 4+ 1k t1,t2,...,tk

k=1t1+2to+ - +ktr=k i=1

and
o0 d o0
Z(—l)kilP,Es)(ml, To,. .. ,xn)t]“l = In (Z E,is)(xl, To,. .. ,xn)tk>
k=1 k=0
0 D)ttt ke (e et O\ b
-3 $ (t) t t <1;r§+ :k)H(EZ()) =1
k=1t 4+2tot - +htp=k * Tlat b 1502y -5 bk i=1
These conclude the proof. O

As a consequence of Theorems 2.3 and 2.4, we remark the following family of identities.

Corollary 2.3. Let k and s be positive integers. Then

Z (_1)t1+t2+-~+ts -k (tl +tyg 4+ ts) B

t by 4+t t1, b, ts

s, if k=0mod (s+ 1),
—1, otherwise.

t1+2to+--+sts=k



A generalization of complete and elementary symmetric functions - part I 127

It is well-known that the complete and elementary symmetric functions can be ex-
pressed in terms of the power sum symmetric functions, i.e.,
1 th, t t
hie = > ket PPy Py (21)

1t1t1 !2t2t2
t14+2to+...+ktr=k

and Ety4totet
_ (_1) ! 2 k t1 to T
e = > UV TR R (22)
t14+2to+...+ktp=k
The following result provides a generalization of these relations.
Theorem 2.5. Let k, n and s be positive integers and let x1,xs,...,x, be independent
variables. The symmetric functions E,(Cs) = E,(Cs)(xl, ZyeeeyTn), H,Es) = H,Es)(xh Xy .oy Ty

and P,gs) = P,gs)(xl, Zay...,&y) are related by

HI(CS) - Z 1t1t1'2t2t2 ktktk' H < (8 )

t1+2to+...+ktp=k

and

R 1) kttittate et k o\ b
B = % (=1) I1(r)"

1tagg12t2¢5! .o ktegy!
t1+2to+...+kty=k i=1

Proof. In order to prove this identity, we take into account the following two relations:

In (Z H,S’tk> =y EP,ES) and  In (Z Efj)tk> = Z(fl)kflzp,g”
k=0 k=1 k=0 k=1

Sy . . k .
Considering the exponential series exp(z) = >~ &7, |2| < 1, we can write

N () P L (=t )

D HE = exp Zk. =Y (g

k=0 m=0 k=1
) 0o k i t;
Z lz Z ti+to+ -+t ARG

m! o ( tl,tz,"',tk )H(Z g
m=0 k=1 ti+to+--tp=m =1
t1+2ta+-thtp=Fk

- 1 tidto+ -4t 1 _o\"
:Z Z (1+ 2+ +k)H(‘Pi()) w
Gl )ttt )\
oo k
_ 1 &\ ok
=2 2 k1t1t1!2t2t2!---ktktk!1—[1(3 ) t

k=11t14+2to+-+ktp=

and

) ) ¢ %) 1 ) ~ ik . m
S B0 — exp <z oot p@) 3 m( i >>
— m=0 """ \k=1 '
SN Qe ti+to+ - +tk Jim )
SO DD DI G | [ (Gt
m=0 """ k=1 tittatoty=m biyta, -t i=1
t1+2to+-+htp=k

ik

(—1)kttittatttn k )

- Z Z 1tag12t2¢,! . ktktk' H (P(S

k=1t14+2to+---+ktr=k
Thus we arrive at our identities. O
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At the end of this section, we remark the following recurrence relations for the gen-
eralized symmetric functions E,(CS) and H ]gs).

Theorem 2.6. Let k, n and s be positive integers and let x1,x2,...,x, be independent
variables. Then
H,is) (1,29, ..,&p) = (fxn)SHH,gs_)s_l(xl, Xy ey Ty

+ H,E,s)(xl,xg, ceyTp—1) + an]E:s_)l(xl,.TQ, ceeyTp—1)
and
E,gs)(xl,xg, cey X)) = an,(:'_)l(xhxg, cey )
+ E,gs)(xl, Toy.o, Tpo1) — x2+1E£‘?571(;v1, Toy.oy Tpo1)-
Proof. Taking into account (3), we can write

> 1
ZHIgS)(l‘l,JJQ, . ,.Tn)tk
k=0

- 1—apt+-+ (—z,

o0
IR
k=0
1+ z,t 2 s
B E e S OHD (@1,ma, )t
" k=0
Thus we deduce that

oo oo
(1= (—znt)*t) ZH,ES)(:cl,xz, o) tE = (14 zpt) Z H,gs) (z1,%2, ..., 21t~
k=0 k=0

Equating coefficients of ¢t on each side of this identity gives the first identity. The second
identity follows in a similar way considering (4). O

3. Concluding remarks

In this paper, we investigate a pair of two symmetric functions which generalize the
complete and elementary symmetric functions. We show that these generalized symmetric
functions satisfy many of the classical relations between complete and elementary symmetric
functions. It would be very appealing to investigate combinatorial interpretations of the
generalized symmetric functions H ,is) and E,E,s).
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