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OPTIMAL METHOD FOR CONTROLLED SWITCHING 
CIRCUITS  

Dan OLARU1, Dan FLORICĂU2 
 

Controlul transferului de putere cu ajutorul circuitelor de comutaţie este o 
soluţie economică relativ la puterea disipată, dar generează anumite probleme 
referitoare la calitatea energiei. Filtrarea armonicelor, minimizarea puterii reactive 
şi amortizarea regimurilor tranzitorii trebuie rezolvate prin strategia de comandă. 

Lucrarea prezintă o metodă numerică, verificată prin rezultatele simulării, 
pentru un exemplu particular al variaţiei semnalului de referinţă. Totuşi, în viitor se 
pot realiza dezvoltări corespunzătoare unor cazuri mai generale. 
 

The power control, using switching circuits is a power saving solution, but 
generates some problems concerning the power quality. Harmonic filtering, reactive 
power minimization and damping transient regimes must be solved by the control 
strategy. 

The paper gives a numerical solution, verified by simulation results, for a 
particular example of reference signal variation. However, general case 
developments are possible in the future. 
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1. Introduction 

In the high current technique the necessity to control the power delivered 
to a consumer occurs frequently. The switching regime is a good power saving 
solution. A low-pas filter is necessary, in order to suppress the high order 
harmonics. When a feedback technique, based on a closed loop is used, an 
additional delay, due to the reactive filter, may create instability problems. In the 
case of a single LC filtering cell the stability is on the edge. Even if the filter 
consists of this structure, only a minor additional delay, caused by the  control 
circuit, will lead to instability. 
 Thus, the improvement of the control strategy is necessary, in order to 
eliminate this problem. The main idea is that the control function should, on one 
hand to prevent instability and on the other assure an acceptable dynamic 
behavior. In this case, for reasons of respecting the causality principle, the control 
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method should use information both on the transfer function of the circuits inside 
the feedback loop and on the variation mode of reference input signal. 

2. The Mathematical background 

 A rigorous solution corresponding to a class of control problems and easy 
to implement with a simple electronic schema is based on the switching surface 
method, described in [1] for a theoretical context. In general, the validity of this 
method may be demonstrated though the following reasoning. 
Consider an n-order differential equation that models the operation of a circuit 
controlled by the input signal v=v(t) and described by parameter x=x(t), that 
correspond to a state function. 
 The input signal is time dependent and may have only the values +M and –
M. The evolution of the value of x(t) is represented by a trace (a curve) in phase 
space, having, as coordinates, the parameter x(t) and its derivatives until order n-
1, as time dependent functions: x'(t),x"(t),…,x(n-1)(t). In each moment the state of 
the circuit is defined by the position on the trace through coordinates in phase 
space. Consider the function x(t) as solution of an n-order differential equation: 
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The problem consists of finding the control function v(t) so that signal x(t) comes 
closer to the origin of the phase space as fast as possible (for the other cases the 
reference system must be moved). When the generic point follows the trace, the 
control function changes when the trace intersects a virtual (switching) S. If its 
position is known, the evolution of the control function may be determined. For 
this, suppose that the generic point, instead of evolving from a certain initial point 
towards the origin, will evolve backwards, relative to the flow of time from the 
origin towards the initial point. Consider a new independent variable denoted 
τ=T-t, where T is final time of the transient process. A new differential equation is 
obtained, containing variable τ: 
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The first trace segment, denoted x1(t), up to moment τ1, is described by the above 
equation with the following initial conditions: 
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The continuation of the evolution backwards to the initial point, after changing the 
value of the control function, is done by restarting the evolution process with the 
same differential equation, but with new initial conditions that depend on moment 
τ1. Consider that the second trace segment of the solution x(t), that implicitly 
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depends on moment τ1, may be represented as x2(t)=x(τ,τ1). If the reasoning is 
continued in the same manner the solution for other trace segments are obtained: 
x3= ,…, x4=…, each depending on the moment of time in the past, when the 
control function has changed. Although, in the expression above only the 
dependence on moments τ, τ1,…, τn-1 was shown, it is obvious that they also 
depend on phase space coordinates: x(τ), x'(τ), x"(τ),..., a system of n equations 
can be assembled with the variables: τ,τ1,…. Eliminating the variables, the 
equation of the switching hypersurface can be obtained: 

 S(x(τ), x(τ)’, x(τ)”, … , x(τ)(n-1)) = 0    (4) 
 
3. The switching curve method 
 

 The most simple close loop structure that uses the control of a switching 
circuit powered by a bipolar supply is presented, in principle (Fig.1). The Laplace 
transform of the transfer function of a LC filtering circuit has the expression: 
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Observe that if the product s2LC >> 1 then the expression can be approximated 
with the transfer function of an integrator circuit with two cells (Fig.2). If the 
output signal is considered to be x1(t) then the input signal will be d2x1/dt2. The 
scheme in Fig.1 may be represented in open loop, as in Fig.2, with output 
parameter x1(t) depending on the control function u1(t,x*,x1), by means of the 
equation: 
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The function u1(t,x*,x1) has the purpose of approximate signal x*(t) with signal 
x1(t). The error signal at the comparator output is:  x(t) = x*(t) - x1(t). 
The function u1(t,x*,x1) may be written as a new function u(t,x), depending on the 
error signal x(t). The following differential equation is obtained: 
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As shown in Fig.1 the control function u(t,x) must correspond to the action of 
switching circuit K. This can connect either the positive power supply +V or the 
negative power supply –V. It results that the control function u(t,x) has the form: 

 u(t,x) = σ(t,x)M     (8) 
The σ function may only take positive or negative unitary values (-1,+1), 
depending on the state of the switching circuit, and M represents the absolute 
value of the supply voltage. The differential equation that models the circuit may 
be written as: 
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It is desired that the representative differential equation contains a single unknown 
function, that include information both on the output signal x1(t) and on the 
reference signal x*(t). The most appropriate choice is exactly the error signal x(t). 
To this end, the second derivative of the error signal is computed, considering that 
the reference signal has a second order polynomial form, 2
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Observe that for a second order reference signal, the control's synthesis only 
depends of the maximal degree term coefficient, denoted above with C2. Let use 
the notation C=C2. Thus, the error signal satisfies the differential equation: 
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Using the error signal represents a major advantage because, in the case of a 
converging approximation process, function x(t) tends to zero (the origin of the 
referential). Thus, the problem of approximating the reference signal is reduced to 
that of reaching the origin of the referential. The general theory presented above 
may be applied, the phase space having only two dimensions, resulting a phase 
plane and a switching curve. Solving the problem consists in finding the switching 
function σ(t,x), so the output signal x1(t) gets closer, as fast as possible to 
reference signal x*(t) imposed to the input, satisfying, at the same time, the 
stability criteria. The right term of the differential equation is considered constant 
until the moment when the trace intersects the switching curve. Thus, for 
σ(t,x)=const, the equation giving x(t) has the right term μ0 = 2C-σ(t,x)V:  
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As in the general case, the reverse evolution is considered, using the new variable 
τ=T-t. So, in this case, the second derivative of the function x(t) remains the same: 
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The solution of the differential equation can be found by simple integration:
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where μ0, μ1, μ2 are integration constants. 
Because for τ=0 the variables y and x are null, it results μ1, μ2 =0 and:  
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If variable τ is eliminated, the defining equation for the switching curve is:  
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The switching curve consists of two braches (for σ(t,x) equal +1 or -1), denoted 
SP(x), SN(x), having as a common point the origin of the phase plane. It can be 
demonstrated that the switching curve method offers an optimal solution, both 
from the point of view of stability and from the point of view of the reference 
signal approximation speed. In Fig.3 (from [1]) it can be observed intuitively that 
two branches of the switching curve, SP and SN, actually represent the traces or 
the possible solution of the problem, corresponding to initial conditions that 
determine crossing the origin, denoted by Q. The other possible traces will go 
around the origin, at a greater or smaller distance. In Fig.3 these are represented, 
partially, until the intersection with the switching curve, by the curves mark with 
arrows. In order to reach the origin, as fast as possible, and therefore to obtain a 
minimal error signal, the generic point must follow one of the traces that cross the 
origin. So, as seen in Fig.3, the traces of the generic point may be partitioned into 
families, according to the sign of the switching function. In order to reach the 
origin, the sign of σ(t,x) must be switched, so that the generic point follows traces 
from different families. 
 Presume that, for certain initial conditions and for a certain value of the 
switching function, the generic point moves on a certain trace. It results the 
approximation process is optimal if the switching function change its sign exactly 
in the moment when the trace crosses the switching curve. However, if due to 
various errors (specific to the model or to the numerical calculus) the change of 
the sign is not perfectly synchronized, the new trace will evolve in the proximity 
of the switching curve, until it will intersect the other branch of the curve. The 
process of getting closer to the origin continues step by step. A similar situation 
may occur in a dynamic regime, when the reference signal, and therefore the 
phase plane configuration, changes. The stability of the method in inherent, thanks 
to using directly the phase plane in which any oscillatory process is observable. 
 

 
 
 
 
 
 
 

Fig.1.Principial diagram for an controlled switching-mode equipment. 
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Fig.2.The open loop equivalent diagram. 
 

 

 
Fig.3. An hypothetical trace family profile, for the two σ values (from [1]). 

 
 

 
 
 
 
 
 
 

Fig.4. Functional diagram of the control strategy. 
 
 

4.  Implementation and simulation results 
 
 Although the mathematical formalism seems complex, implementing the 
switching curve method may be relatively easy in a digital as in analog technique. 
The functional diagram (Fig.4) must include besides comparator, switching and 
filtering blocs, a special nonlinear bloc, containing information on the switching 
curve. In order to use the presented method, the specific operating characteristics 
for the given circuit must be known. 
 The purpose of the numerical simulation was, on one hand, the validation 
of the reasoning and, on the other, the study of the control process's behavior and 
stability. Observe that the algorithm may be simplified if a correspondence 
between the variation domain of function x(t) and the sign of function σ(t,x) is 
found. In this context, due to relation (9), if the condition: 
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is respected the following dependency results: 
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 sign y = sign σ = σ    (19) 
 

The formulated problem may be interpreted either as a control process – having as 
optimality criterion following the reference signal – or as a process of 
approximating the value of the reference signal with the output signal. 
The study includes two aspects. On one hand, it considers the evolution of the 
trace in the phase plane, corresponding to error signal x(t) and its derivative y(t). 
On the other, it considers the evolution of output parameter x1(t) and reference 
signal x*(t), in time domain. Their variation is described by the differential 
equations derived above: 
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A general 2-order differential equation is equivalent with a 1-order system: 
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where v(t) and w(t) denote its solution. This may be solved recursively by means 
of the Euler method. 
For solving the equations above, a step-by-step procedure has been developed. 
Implemented in Mathcad language, it is based on a first order discrete 
approximation (Euler method) and a recursive representation: 
 

 Z<k> := F(Z<k-1>)     (22) 
 

Including of all information necessary to the recursive solution into a single vector 
is necessary because, at each step, the calculus must be done simultaneously. 
It is important to observe that solving the formulated problems contains two 
aspects: on one hand, the estimation of the error and output signals and, on the 
other, determination of the control function by means of switching function σ(t,x). 
The recursive calculus uses the composed vector Z, calculated at step k as a 
function of the values at step k-1. The vector contains three type of information, 
necessary for: the recursive calculus of error signal x(t), the estimation of control 
function σ(t,x) and the recursive calculus of output signal x1(t). 
Vector Z contains the five components denoted: Z0 – the instantaneous value of 
the error signal derivative; Z1 – the instantaneous value of the error signal; Z2 – 
the value of switching function σ(t,x); Z3 - the instantaneous value of the output 
signal derivative; Z4 - the value of the output signal. It results, that the function 
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that describes the recursive equation, imported from Mathcad program, may be 
written: 

     (23) 
where the branch function S(z) is implemented by means of the conditional 
expression: 

     (24) 
and represents, in the phase plane, the ordinate values of the switching curve. 
According to (16) this is composed of two branches, corresponding to the two 
variation domains of x(t), for the two possible values of the switching function 
σ(t,x). In this case, these domains are coincident with the abscissa semi-axes, 
defined as: 

    (25) 
Finding the switching function σ(t,x) is done by calculating the sign of expression 
S(Z), by means of the sign(.) function. Thus, according the reasoning above and to 
equation (*), if the trace in the phase plane is above a branch of the switching 
curve the value of switching function σ(t,x) is +1, otherwise -1. 
For the numerical simulation, it is considered that: C0 = C1 = C2 =1 and M =4. 
Figure 5, obtained by numeric calculus in Mathcad, presents the evolution of the 
trace in phase plane, corresponding to error signal x(t), starting at the initial point 
(x0,y0) and going to towards the origin. The changes in the sign of the control 
function take place at the intersection with the branches of the switching curve 
(these are asymmetrical, due to the shape of the trace). The dotted curve 
(corresponding to S(z<k>)) represents the switching curve. The trace – with 
coordinates z<k>

0 and z<k>
1 – represents the evolution of error signal x(t). 

It is important to point out that this control process is, from the point of view of 
signal theory, an approximation process, where the output parameter x1(t) is an 
approximation for the reference signal x*(t).  
Figure 6 presents the process of approximating reference signal (denoted here by 
E(t)) with the output signal with the value z<k>

4, combined with the evolution of 
the switching function, with scaled representation by K(z<k>

2). 
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Notice that the starting point for the approximating signal is far from the starting 
point for the approximating signal and the approximating process contains small 
oscillations, corresponding to the variation of the sign of switching function. 
Observe that as the computing step is smaller, the switching function changes sign 
more frequently in the vicinity of the origin. Therefore if the value of the 
computing step is limited, this switching frequency will be limited, which allows 
to keep stability and approximation error within the desired limits. 
Figure 7 shows that, throughout the time evolution, the relative error decreases 
rapidly at the beginning and is afterwards limited to finite values due to the effects 
of rounding the numerical results. 

 
Fig.5. The switching curve and the error function trace represented in phases plane. 

 

 
 

Fig.6. The reference signal, the control function and the obtained solution, in time domain. 
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Fig.7. The relative error of the reference signal approximation. 

5. Conclusions 

 The content of the paper creates a conceptual correspondence between 
abstract mathematical theory and technical problems derived from circuit theory. 
Some similarities may be established between results belonging to apparently 
different research domains, like optimal control, approximation methods and 
stability control. This allows solving, in a rigorous manner, some problems of 
technical interest:  
- optimal approximation process, relative to the approximation speed; 
- unconditioned control stability in a feedback loop with delay elements; 
- switching frequency limitation of the control function (and active devices).  
 The reference [1] describes a pure mathematical formalism, corresponding 
to an abstract representation based on differential equations. The authors have 
elaborated an original representation and recursive algorithm, simulating the 
control strategy and its behavior, in a technical context, from electrical 
engineering domain. Although the numerical simulation was done for the specific 
case of a second order polynomial, more general cases may be developed, when 
an analytical solution cannot be found, but a numerical approximation is 
available. 
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