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NEW APPROACH IN DETERMINING THE TUNNELING

COEFFICIENT FOR A TRIANGULAR BARRIER IN MIM

JUNCTIONS

Emilia-Simona Mălureanu

Quantum tunneling has many important applications in electronics. In

thin layers structures, when the tunneling phenomenon occurs at the metal-insulator

contact barrier, as for the MIM or MOS structures, there is a Fowler-Nordheim

field emission. In such structures, the tunneling currents must be calculated. The

current density is calculated based on the transmission coefficient through the bar-

rier, which is determined by solving the Schrödinger equation. The calculation

methods currently used lead to values that get predictions of the tunneling current

too low comparing to the experimental values. The transmission coefficient is cal-

culated using harmonic wavelets and the results are validated experimentally on a

MOM junction.
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1. Introduction

As feature sizes of modern devices plunge beyond the submicron regime, quan-

tum effects begin to play a more prominent role in governing the behavior of the

devices.

This is the case of quantum tunneling phenomenon, with many important

applications as cold emission, tunnel diode, transistors, scanning tunneling micro-

scope, but also with undesired potential effects, mentioning the MOSFET, where

the quantum tunneling represent a limitation regarding its design. The phenomenon

appears in high intensity electric fields, around 1000kV/mm.

In the case of MIM structures with a dielectric thickness of a few nanometers,

conduction can occur in two ways.

At high temperatures and electric field strengths smaller than 108V/m, the

electrons, due to increased thermal agitation, gain enough energy to climb the po-

tential barrier that occurs at metal-insulator interface. This conduction mechanism

is called Schottky injection.

At normal temperatures and an electric field intensity that exceeds 108V/m,

the potential barrier, corresponding to the metal-insulator contact becomes very

thin and there will appear the quantum type phenomenon called tunneling, when
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electrons, although they do not have enough energy to climb the potential barrier,

they manage to pass through the barrier. When the tunneling phenomenon occurs

in metal-insulator contact barrier, this is a Fowler - Nordheim injection. In the case

of devices that are based on the phenomenon of Fowler - Nordheim injection, the

emission density current must be determined.

In thin layer structures, where the conduction is achieved by tunneling the

barrier, the waves associated to the electrons suffer reflection from passing through

the barrier. The current density will be calculated according to the barrier transmis-

sion coefficient, meaning the probability that the incident electrons to pass through

the barrier. The quantum mechanical reflection can limit the current gain for these

structures, so it is important for the optimal device design to know the extent of

this reflection.

The transmission coefficient is determined by solving the Schrödinger equation.

The exact calculation of the current density depends on the form of the potential

barrier, but the existing methods for solving the Schrödinger equation lead to values

that get predictions of the emission current density too low by a factor of 100 or

more [1]. The triangular potential barrier is the most used in determining the tun-

neling current. The Schrödinger equation for this type of barrier is solved by WKB

approximation, but this method has some drawbacks as not taking into account the

wavefunction interference and, applied to the Fowler - Nordheim injection, it also

does not consider the thickness of the insulator. This paper proposes a wavelet based

method for solving the 1D Schrödinger equation for a triangular barrier and deter-

mining the transmission coefficient using the harmonic multiresolution analysis. The

transmission coefficient is finally used to compute the emission current density and

the theoretical results are compared afterwards to the experimental ones. The har-

monic and Shannon wavelet methods were before applied by Bibic and Malureanu

[2] in determining the transmission coefficient for a rectangular potential barrier.

Also, Malureanu and Craciunoiu [3] applied a wavelet based numerical method

for determining the transmission coefficient.

2. Rectangular potential barrier

Let the one-dimensional time independent Schrödinger equation be considered

− h2

2m

d2ψ

dx2
+ U(x)ψ(x) = wψ(x), (1)

where the potential energy U(x) is by the form

U(x) =

{
U0 , 0 ≤ x ≤ a
0 , otherwise

, U0 > 0 , (2)

and ~ represents Planck’s constant divided by 2π, m represents the electron rest

mass, ψ is the wave function, w is the total energy of the particle.

For U(x) = 0 the solution of (1) is

ψ(x) = k1 exp
ix
√

2mw
~2 +k2 exp

−ix
√

2mw
~2 , (3)
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Figure 1. Rectangular potential barrier.

and (3) can be detailed as following.

Considering k0 =
√

2mw
~2 , then

ψL(x) = Ar expik0x +Al exp−ik0x, if x < 0 , (4)

and

ψR(x) = Cr expik0x +Cl exp−ik0x, if x > a . (5)

If U(x) = U0 (w < U0), then (1) becomes

d2ψ

dx2
− k2ψ(x) = 0 , (6)

where k2 = 2m(U0−w)
~2 .

In this case, the solution has the form

ψC(x) = Br expkx +Bl exp−kx . (7)

Applying the boundary conditions to (4),(5) and (7), the coefficientsAr,l, Br,l, Cr,l
can be determined [4]. Two sets of conditions will be used

i) for x = 0

ψL(0) = ψC(0),

ψ
′
L(0) = ψ

′
C(0).

(8)

ii) for x = a

ψC(a) = ψR(a),

ψ
′
C(a) = ψ

′
R(a) .

(9)

The boundary conditions give the following restrictions on the coefficients
Ar +Al = Br +Bl,

ik0(Ar −Al) = ik(Br −Bl),

Br expika +Bl exp−ika = Cr expik0a +Cl exp−ik0a,

ik(Br expika−Bl exp−ika) = ik0(Cr expik0a−Cl exp−ik0a)

(10)

To study the case of quantum tunneling, let us consider the following situation:

a particle incident on the barrier from the left side (Ar) (see Fig.1). It may be

either reflected (Al) or transmitted (Cr). To find the amplitudes for reflection and



254 Emilia-Simona Mălureanu

transmission for incidence from the left, we put in the above equations Ar = 1

(incoming particle), Al = r (reflection), Cl = 0 (no incoming particle from the

right), and Cr = t (transmission). We then eliminate the coefficients Bl, Br from

the equation and solve for r and t.

The reflection and transmission coefficient are

R = |r|2 , T = |t|2 (11)

with

T =
16k0

2k2

(k0
2 + k2)2

exp−2ka, (12)

and

R+ T = 1. (13)

This method applies only to constant coefficients Schrödinger equation so, only when

the potential U , is constant.

3. Triangular potential barrier

This algorithm can be applied to more complex potential barrier types such as

triangular potential barrier. The most used method to solve the Schrödinger equa-

tion for a triangular potential barrier is the WKB approximation. The approximate

solution of the wavefunction according to WKB is [6]

ψ(x)WKB ≈ exp

− x2∫
x1

k(x)dx

 , (14)

where

k(x) =

[
2m0

~2
(U(x)− w)

] 1
2

, (15)

for

U(x) = wF + φ− q0 · E · x. (16)

U(x) represents the triangular potential barrier, wF = Fermi energy, φ =unreduced

height of the barrier (zero field height), q0 = elementary charge absolute value, E =

intensity of the electric field. Considering a physical situation of an Al− SiO2 −Al
sandwich, the values of the above physical quantities are φ = 3.2eV , q0 = 1.6 ·
10−19C, m0 = 9.11 · 10−31kg, E = 109V/m, mox = 0.5 · m0kg. The thickness of

the insulator is 950Å, so in this case there will be a Fowler-Nordheim tunneling,

characterizing thick layers ([5]). The total energy w of the electron is assumed to

be equal to the Fermi energy wF , so

k(x) =

[
2m0

~2
(φ− q0 · E · x)

] 1
2

. (17)

In order to calculate the transmission coefficient, the value of the wavefunction in

[x1, x2] interval must be determined. In the WKB approximation, the coordinates

x1 and x2 represent turning points, where the total energy is equal to the potential
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energy of the particle. Considering that U(x)−w = 0, the integration limits x1 and

x2 for (14) are determined

x1 = 0,

x2 =
φ

q0 · E
.

(18)

According to (17), the expression of the wavefunction in [0, x2] is

ψ = exp

[
−
(

2m0

~2

) 1
2

· 1

q0 · E
· 2

3
· φ

3
2

]
. (19)

The transmission coefficient, according to (19), is

T = ψ · ψ̄ = exp(−2

∫ x2

x1

√
K(x)dx) = exp

(
−4

3

(
2m0

~2

) 1
2 φ

3
2

q0 · E

)
. (20)

Considering the physical quantities that characterize the Al−SiO2−Al struc-

ture, the value of the transmission coeficient according to (20) is

T = 9.33 · 10−13. (21)

4. The wavenumber as a function of frequency

Considering the case when U(x) = U0 (w < U0), with

d2ψ

dx2
− k2ψ(x) = 0 , (22)

where

K(x) = k2 =
2m(U0 − w)

~2
. (23)

Let

ψ(x) = αϕ(x) + ᾱϕ̄(x) + βη(x) + β̄η̄(x), (24)

the harmonic wavelet series expansion of (22) is

α
d2ϕ

dx2
+ ᾱ

d2ϕ̄

dx2
+β

d2η

dx2
+ β̄

d2η̄

dx2
−K(x) · (αϕ(x) + ᾱ ¯ϕ(x) +βη(x) + β̄η̄(x)) = 0 , (25)

where α and β represent the harmonic wavelet coefficients, ᾱ and β̄ represent their

conjugates, ϕ(x) and η(x) represent the harmonic scaling function and harmonic

wavelet function, respectively, ϕ̄(x) and η̄(x) are their conjugates. The harmonic

scaling function or ”father wavelet” ([7]), is a complex function and has the following

form

ϕ : R→ C , ϕ(x)
def
=


e2πix−1

2πix , if x 6= 0

1, if x = 0.

(26)
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The harmonic wavelet function, also named ”mother wavelet” ([7]), is a com-

plex valued function,having the following form

η : R→ C , η(x)
def
=


e4πix−e2πix

2πix , if x 6= 0

1, if x = 0.

(27)

The following equalities are true (see [8])

ds

dxs
(ϕ(x)) = λ(s)ϕ(x),

ds

dxs
(η(x)) = γ(s)η(x) ,

ds

dxs
(ϕ̄(x)) = λ̄(s) ¯ϕ(x),

ds

dxs
(η̄(x)) = γ̄(s)η̄(x) ,

(28)

where λ and γ represent the connection coefficients of the scaling function and of the

wavelet function respectively and λ̄, γ̄ represent their conjugates. Harmonic scaling

function ϕ(x), harmonic wavelet function η(x) and their conjugates must satisfy the

following(see [2]) 

〈
ϕ

HW
, ϕ

HW
〉

=
〈
ϕ̄

HW
, ϕ̄

HW
〉

=
〈
η
HW
, η

HW
〉

=
〈
η̄
HW
, η̄

HW
〉

= 1

〈
ϕ

HW
, ϕ̄

HW
〉

=
〈
ϕ̄

HW
, ϕ

HW
〉

=
〈
η
HW
, η̄

HW
〉

=
〈
η̄
HW
, η

HW
〉

= 0

〈
ϕ

HW
, η

HW
〉

=
〈
η
HW
, ϕ

HW
〉

=
〈
ϕ̄

HW
, η̄

HW
〉

=
〈

Ψ̄
HW
, ϕ̄

HW
〉

= 0

〈
ϕ

HW
, η̄

HW
〉

=
〈
η̄
HW
, ϕ

HW
〉

=
〈
ϕ̄

HW
, η

HW
〉

=
〈
η
HW
, ϕ̄

HW
〉

= 0 .

(29)

Considering (28), equation (25) becomes

αλ(2)ϕ(x)+ᾱλ̄(2)ϕ̄(x)+βγ(2)η(x)+β̄γ̄(2)η̄(x)−K(x)·(αϕ(x)+ᾱϕ̄(x)+βη(x)+β̄η̄(x)) = 0 .

(30)

The projection of (22) in a dimensional finite wavelet space ΠN,M verifies (see

[8])〈
ΠN,M

[
d2

dx2
(ψ(x))

]
, ϕ(x)

〉
−
〈
ΠN,M [K(x)] , ϕ(x)

〉
·
〈
ΠN,M [ψ(x)] , ϕ(x)

〉
= 0 ,〈

ΠN,M

[
d2

dx2
(ψ(x))

]
, η(x)

〉
−
〈
ΠN,M [K(x)] , η(x)

〉
·
〈
ΠN,M [ψ(x)] , η(x)

〉
= 0 ,〈

ΠN,M

[
d2

dx2
(ψ(x))

]
, ¯ϕ(x)

〉
−
〈
ΠN,M [K(x)] , ¯ϕ(x)

〉
·
〈
ΠN,M [ψ(x)] , ¯ϕ(x)

〉
= 0 ,〈

ΠN,M

[
d2

dx2
(ψ(x))

]
, ¯η(x)

〉
−
〈
ΠN,M [K(x)] , ¯η(x)

〉
·
〈
ΠN,M [ψ(x)] , ¯η(x)

〉
= 0 .

(31)



New approach in determining the tunneling coefficient for a triangular barrier in MIM junctions 257

For ∀ s ∈ N

λ̄(s) = (−1)sλ(s) ,

γ̄(s) = (−1)sγ(s) .
(32)

Considering(29), (31) and (32), by inner product with ϕ(x), η(x) and their

conjugates, the following system of equations is obtained from (30)

αλ(2) − 〈K(x), ϕ(x)〉 · α = 0

βγ(2) − 〈K(x), η(x)〉 · β = 0

ᾱλ(2) −
〈
K(x), ¯ϕ(x)

〉
· ᾱ = 0

β̄γ(2) −
〈
K(x), ¯η(x)

〉
· β̄ = 0

(33)

The following notation is proposed

b = 〈K(x), ϕ(x)〉 , c = 〈K(x), η(x)〉 ,

d =
〈
K(x), ¯ϕ(x)

〉
, e =

〈
K(x), ¯η(x)

〉
.

(34)

The values of the connection coefficients for this case are λ(2) = −π2

3 şi γ(2) = 0 (see

[9]).

According to Parceval equality

〈f(x), g(x)〉 =
1

2π

〈
f̂(ω), ĝ(ω)

〉
=

1

2π

∫
R

∣∣∣f̂(ω) · ĝ(ω)
∣∣∣ dω , (35)

〈f(x), ḡ(x)〉 =
1

2π

〈
f̂(ω), ĝ(−ω)

〉
=

1

2π

∫
R

∣∣∣f̂(ω) · ĝ(−ω)
∣∣∣ dω . (36)

The Fourier transform of ϕ(x) function is ([9])

ϕ̂(ω) = χ(ω + 2π) =


1, if 0 ≤ ω ≤ 2π

0, otherwise,

(37)

where

χ (ω) =


1, if 2π ≤ ω ≤ 4π

0, otherwise

(38)

represents ”the characteristic function” ( or ”box” ).

In the first equation of the system (33)

b =
1

2π

〈
K̂(ω), ϕ̂(ω)

〉
=

1

2π

∫
R

∣∣∣K̂(ω) · ϕ̂(ω)
∣∣∣dω =

=
1

2π

∫ 2π

0
K̂(ω)dω ,

(39)
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where K̂(ω) represents the Fourier transform of the (23) function. Also, according

to Parceval equality, and considering that the Fourier transform of η(x) is

η̂(ω) = χ(ω), (40)

where

χ (ω) =


1, if 2π ≤ ω ≤ 4π

0, otherwise,

(41)

represents ”the characteristic function” ( or ”box” ), in the second equation of the

system (33)

c =
1

2π

〈
K̂(ω), η̂(ω)

〉
=

1

2π

∫
R

∣∣∣K̂(ω) · η̂(ω)
∣∣∣ dω =

=
1

2π

∫ 4π

2π
K̂(ω)dω .

(42)

Using the Fourier property that

F
[
f̄(x)

]
= f̂(−ω) , (43)

the Fourier transforms of the scaling and wavelet functions conjugates are deter-

mined(see [2]) ̂̄ϕ(ω) = χ (ω + 4π) (44)

̂̄η(ω) = χ (ω + 6π) . (45)

Considering (44), (45) and Parceval equality

d =
1

2π

〈
K̂(ω), ϕ̂(ω)

〉
=

1

2π

∫
R

∣∣∣K̂(ω) · ϕ̂(ω)
∣∣∣ dω =

=
1

2π

∫ 0

−2π
K̂(ω)dω ,

(46)

e =
1

2π

〈
K̂(ω), η̂(ω)

〉
=

1

2π

∫
R

∣∣∣K̂(ω) · η̂(ω)
∣∣∣ dω =

=
1

2π

∫ −2π

−4π
K̂(ω)dω .

(47)

Solving the integrals(39), (42), (46), (47), the sum |b|+ |d| will be always equal

to the square of the wavenumber, k2, and c = e = 0. In order to verify this, the

harmonic wavelet solution was compared to the analytical solution for a rectangular

potential barrier. Also, the free electron model case was considered, comparing the

wavelet solution to analytically obtained k2
0. the results are presented in the tables

below (Tables 1, 2). Let the harmonic wavelet algorithm be applied on the above
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Table 1. k2 and |b|+ |d| for different values of U0 and w

U0 = 5, w = 4 U0 = 7, w = 5 U0 = 10, w = 6

k2 4.2082 8.4164 16.8328

|b|+ |d| 4.2082 8.4164 16.8328

Table 2. k2
0 and |b|+ |d| for different values of w

w = 2 w = 5 w = 7

k2
0 8.4164 21.041 29.457

|b|+ |d| 8.4164 21.041 29.457

triangular potential barrier. The result is

|b| = 1

2π

∫ 2π

0
K̂(ω)dω = 10.02,

|d| = 1

2π

∫ 0

−2π
K̂(ω)dω = 10.02,

|b|+ |d| = 20.04 .

(48)

Considering that 1
2π

∫ 2π
0 K̂(ω)dω + 1

2π

∫ 0
−2π K̂(ω)dω = |b| + |d| = K(x) is a

constant, it means that the time independent Schrödinger equation for a triangu-

lar potential barrier can be solved by the analytical method described in (2) as a

equation with constant coefficients.

Considering the analytical expresion of the transmission coefficient

Tan =
16k0

2|b|+ |d|
(k0

2 + |b|+ |d|)2
exp−2

√
|b|+|d|a, (49)

and replacing k with
√
|b|+ |d|, the result for the transmission coefficient through

the barrier obtained is

THW = 2.94 · 10−12, (50)

with a = 1.52 coresponding to the thickness of the insulator (950Å) for fields up to

109V/m [10].

5. Tunneling current

The tunneling current is given by

I =
πr2

2
· j, (51)

where r represents the radius of the emission electrode and j is the density current.

The calculation of the current density for the Fowler-Nordheim emission is

made according to the following equation

j = M · E2 · exp(−B
E

), (52)
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where

M =
q3

0m0

16π~moxφ
= 1.54 · 10−6 m0

mox
· 1

φ
(A/V 2). (53)

The second part of the expression (52) represents the transmission coefficient

T = exp(−B
E

) = ψ · ψ̄, (54)

where ψ represents the wave function. Considering the transmission coefficient de-

termined for a triangular potential barrier with the harmonic wavelets (50), the

current density, considering a physical situation of an Al−SiO2−Al sandwich (see

Section (3)), is

j = M · E2 · exp(−B
E

) = 5.4 · 10−6 · 1018 · 2.94 · 10−12 = 15.87 (A/m2) . (55)

The value of the tunneling current, according to (51) and (55), is

I = 5.6 · 10−11A. (56)

6. Experiments

6.1. Metal-oxide-metal tunnel junctions

The experimental validation of the theoretical results was made on Al−SiO2−
Al structures, which were specially designed and realised by silicon planar technol-

ogy. The experimental part was conducted at National Institute for Research and

Development in Microtechnologies from Bucharest.

Figure (2) presents a schematic view of such a structure and Figure (3) shows

the optical and SEM microscope top view.

Figure 2. Al − SiO2 −Al sample schematic structure-cross section.

As can be seen in the images, the mentioned structure consists of two metal

(Al) islands separated by a thin barrier wall of SiO2. The SiO2 barrier was obtained

by corrosion of approximately half of the oxide layer, which initial thickness was

1.6µm, through a photoresist mask, obtaining two cavities in the oxide, separated

by a wall with a controlled thickness. The metal was deposited on the bottom of

the cavities by lift-off technique. The SEM image for Figure (3b) presents the two

metal arrays, separated by the oxide wall with its width at the level of the deposited

metal of aproximately 90 nm.
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(a) Optic microscope

view of the experimen-

tal junction.

(b) Scanning electron

microscope (SEM)

view of the experimen-

tal junction.

Figure 3. Al − SiO2 −Al sample.

Figure 4. I(U) diagram measurements for Al − SiO2 junctions

6.2. Measurements

The measurements on the Al−SiO2 junctions were made with Keithley Model-

4200 SCS/C, EP6/ Suss MicroTec. Regarding the test conditions, the measurements

were made at room temperature, applying a 0 − 20V input, with a 0.1 voltage

increasing step. The peaks from Figure (4) indicate the Gundlach oscillations [11],

attributed to the interference of the incident electron waves and electron waves which

are reflected at the barrier-electrode interface. Also, the graphs show a growth

of the current as a function of the input voltage, so as a function of the electric

field intensity, aspect that verifies the Fowler-Nordheim tunneling. The measured

tunneling currents have close values to the theoretical result.

This is a very good model for estimating the value of the tunneling current

since the models based on the WKB approximation, like that proposed by Fowler

and Nordheim [1], give a value for the tunneling current smaller with two orders of

magnitude than the experiments.

7. Conclusions

The transmission coefficient has a great influence on the value of the tunneling

current. The harmonic multiresolution analysis was used to calculate the transmis-

sion coefficient for a triangular potential barrier. The theoretical determined value
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of the tunneling current was validated experimentally. The measurements show that

the proposed method offers a good approximation of the the transmisssion coeffi-

cient and, as a result, of wave function. The transmission coefficient was used to

calculate the current density and tunneling current. The results are in concordance

with the experimental measured values.

The WKB method, which is usually used in tunneling problems, does not

consider the thickness of the dielectric for thick layers (5 − 100nm). The wavelet

based method offers the possiblility to consider the thickness of the dielectric, and

this is the main reason for obtaining a better estimation than the WKB method of

the transmission coefficient.
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