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NEW APPROACH IN DETERMINING THE TUNNELING
COEFFICIENT FOR A TRIANGULAR BARRIER IN MIM
JUNCTIONS

Emilia-Simona Malureanu

Quantum tunneling has many important applications in electronics. In
thin layers structures, when the tunneling phenomenon occurs at the metal-insulator
contact barrier, as for the MIM or MOS structures, there is a Fowler-Nordheim
field emission. In such structures, the tunneling currents must be calculated. The
current density is calculated based on the transmission coefficient through the bar-
rier, which is determined by solving the Schrédinger equation. The calculation
methods currently used lead to values that get predictions of the tunneling current
too low comparing to the experimental values. The transmission coefficient is cal-
culated using harmonic wavelets and the results are validated experimentally on a
MOM junction.

Keywords: Schrodinger equation, transmission coefficient, tunneling current

1. Introduction

As feature sizes of modern devices plunge beyond the submicron regime, quan-
tum effects begin to play a more prominent role in governing the behavior of the
devices.

This is the case of quantum tunneling phenomenon, with many important
applications as cold emission, tunnel diode, transistors, scanning tunneling micro-
scope, but also with undesired potential effects, mentioning the MOSFET, where
the quantum tunneling represent a limitation regarding its design. The phenomenon
appears in high intensity electric fields, around 1000kV/mm.

In the case of MIM structures with a dielectric thickness of a few nanometers,
conduction can occur in two ways.

At high temperatures and electric field strengths smaller than 108V/m, the
electrons, due to increased thermal agitation, gain enough energy to climb the po-
tential barrier that occurs at metal-insulator interface. This conduction mechanism
is called Schottky injection.

At normal temperatures and an electric field intensity that exceeds 10%V/m,
the potential barrier, corresponding to the metal-insulator contact becomes very
thin and there will appear the quantum type phenomenon called tunneling, when
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electrons, although they do not have enough energy to climb the potential barrier,
they manage to pass through the barrier. When the tunneling phenomenon occurs
in metal-insulator contact barrier, this is a Fowler - Nordheim injection. In the case
of devices that are based on the phenomenon of Fowler - Nordheim injection, the
emission density current must be determined.

In thin layer structures, where the conduction is achieved by tunneling the
barrier, the waves associated to the electrons suffer reflection from passing through
the barrier. The current density will be calculated according to the barrier transmis-
sion coeflicient, meaning the probability that the incident electrons to pass through
the barrier. The quantum mechanical reflection can limit the current gain for these
structures, so it is important for the optimal device design to know the extent of
this reflection.

The transmission coefficient is determined by solving the Schrodinger equation.
The exact calculation of the current density depends on the form of the potential
barrier, but the existing methods for solving the Schrédinger equation lead to values
that get predictions of the emission current density too low by a factor of 100 or
more [1]. The triangular potential barrier is the most used in determining the tun-
neling current. The Schrédinger equation for this type of barrier is solved by WKB
approximation, but this method has some drawbacks as not taking into account the
wavefunction interference and, applied to the Fowler - Nordheim injection, it also
does not consider the thickness of the insulator. This paper proposes a wavelet based
method for solving the 1D Schrodinger equation for a triangular barrier and deter-
mining the transmission coefficient using the harmonic multiresolution analysis. The
transmission coefficient is finally used to compute the emission current density and
the theoretical results are compared afterwards to the experimental ones. The har-
monic and Shannon wavelet methods were before applied by Bibic and Malureanu
[2] in determining the transmission coefficient for a rectangular potential barrier.

Also, Malureanu and Craciunoiu [3] applied a wavelet based numerical method
for determining the transmission coeflicient.

2. Rectangular potential barrier

Let the one-dimensional time independent Schrédinger equation be considered
h? d%y
o de? + U(2)y(z) = wip(z), (1)
where the potential energy U(z) is by the form

{Uo ,0<x<a

Uz) = , Up>0, (2)

0 , otherwise
and h represents Planck’s constant divided by 27, m represents the electron rest
mass, ¥ is the wave function, w is the total energy of the particle.
For U(x) = 0 the solution of (1) is

2mw
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U(x) =k exp Vi 4hkoexp TV o#Z (3)
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FIGURE 1. Rectangular potential barrier.

and (3) can be detailed as following.

Considering ko = 2’;{‘—2”, then
¥r(x) = Ay exp™0® 4 A exp 0T if 2 < 0, (4)
and
Yr(x) =C, exp™? +Clexp 0T if x> a. (5)
If U(x) = Up (w < Uyp), then (1) becomes
),
@—k Y(z) =0, (6)
where k? = w
In this case, the solution has the form
Yo(z) = By expt® +Bjexp ™. (7)

Applying the boundary conditions to (4),(5) and (7), the coefficients A, ;, B, 1, Cy;
can be determined [4]. Two sets of conditions will be used
i) forz =0

<
S
©
I
<=
Q
S

ii) forx =a
Yo(a) = Yr(a),
vela) = Yp(a).
The boundary conditions give the following restrictions on the coefficients
A, + A =B, + By,
iko(Ar — A)) = ik(B, — By),
B, exp™*® 4+ B, exp~* = (0, exp™ 0% 4C} exp ko
ik(B, expik“ —B; exp_ik“) = iko(C, expikoa —C exp_ikoa)

(9)

(10)

To study the case of quantum tunneling, let us consider the following situation:
a particle incident on the barrier from the left side (A,) (see Fig.1). It may be
either reflected (A4;) or transmitted (C,). To find the amplitudes for reflection and
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transmission for incidence from the left, we put in the above equations A, = 1
(incoming particle), A; = r (reflection), C; = 0 (no incoming particle from the
right), and C, = ¢ (transmission). We then eliminate the coefficients Bj, B, from
the equation and solve for r and t.

The reflection and transmission coefficient are

R=1r]*, T =|t|? (11)
with -
16k0 k —92k
T=—5—>=c¢ 4 12
(ko + k2)2 0 (12
and
R+T=1. (13)

This method applies only to constant coefficients Schrodinger equation so, only when
the potential U, is constant.

3. Triangular potential barrier

This algorithm can be applied to more complex potential barrier types such as
triangular potential barrier. The most used method to solve the Schrédinger equa-
tion for a triangular potential barrier is the WKB approximation. The approximate
solution of the wavefunction according to WKB is [6]

T2

(z)wkp =~ exp —/k(x)dx , (14)
where N )
ko) = |0 - o) (15)
for

Ul)=wrp+¢—qo- E-z. (16)
U(x) represents the triangular potential barrier, wp = Fermi energy, ¢ =unreduced
height of the barrier (zero field height), gy = elementary charge absolute value, E =
intensity of the electric field. Considering a physical situation of an Al — SiOy — Al
sandwich, the values of the above physical quantities are ¢ = 3.2¢V, g9 = 1.6 -
107190, mg = 9.11 - 1073 kg, E = 10°V/m, myz = 0.5 - mokg. The thickness of
the insulator is 9504, so in this case there will be a Fowler-Nordheim tunneling,
characterizing thick layers ([5]). The total energy w of the electron is assumed to
be equal to the Fermi energy wg, so
1
2
200 B )| (1)
In order to calculate the transmission coefficient, the value of the wavefunction in
[x1,x2] interval must be determined. In the WKB approximation, the coordinates
x1 and xy represent turning points, where the total energy is equal to the potential

k(z) =



New approach in determining the tunneling coefficient for a triangular barrier in MIM junctions 255

energy of the particle. Considering that U(x) —w = 0, the integration limits z; and
xg for (14) are determined
Tl = O,

__ ¢ (18)
q-E

T2
According to (17), the expression of the wavefunction in [0, z2] is
1
2mg \ 2 1 2 3
_ B , 2l 19
v exp[ (%) qO_E3¢2] (19)
The transmission coefficient, according to (19), is
13
_ 2 4 (92 2 ¢
T:1/1‘1/1:exp(—2/ VEK(z)dz) =exp | —= =70 ¢ . (20)
T 3 h? qo - E

Considering the physical quantities that characterize the Al — Si0Oy — Al struc-
ture, the value of the transmission coeficient according to (20) is

T=9.33-10713, (21)

4. The wavenumber as a function of frequency

Considering the case when U(z) = Ug (w < Up), with

2 *Y(x) =0, (22)
where
K(z) = k2 = Qm(UhO? w) (23)
Let
P(x) = ap(x) + ap(x) + pn(z) + Bi(x), (24)

the harmonic wavelet series expansion of (22) is

LI :
dz?

where o and 8 represent the harmonic wavelet coefficients, & and 3 represent their

d2 3 d2 _d2— _
+ash+ By + B — K(2)- (ap(@) + apla) + Bn(a) + Bi(a) = 0, (25)

conjugates, ¢(z) and n(z) represent the harmonic scaling function and harmonic
wavelet function, respectively, @¢(x) and 7j(z) are their conjugates. The harmonic
scaling function or ”father wavelet” ([7]), is a complex function and has the following
form

[ e
p:R—=>C |, opx) lef (26)

1, if x=0.
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The harmonic wavelet function, also named ”mother wavelet” ([7]), is a com-
plex valued function,having the following form

e47mac _627(132

d 2miz ’ if 7& 0
n:R—-C , n(z) 2] (27)
1, if =0
The following equalities are true (see [8])
d’ s
1 (9(@) = Xe(a),
d® s
1o (1) =1 (@),
i ) (28)
B = e,
d® (s~
1o (1) =77(2),

where A and v represent the connection coefficients of the scaling function and of the
wavelet function respectively and X, 7 represent their conjugates. Harmonic scaling
function ¢(z), harmonic wavelet function n(z) and their conjugates must satisfy the
following(see [2])

<<P<P

)
(" &%)
(¢ 777“”>:
[ (¢

Considering (28), equation (25) becomes

XD (2)+aA DG (2)+BvPn(2)+87Pi(x)— K () (ap(x) +a@(x)+Bn(x) +Bi(

The projection of (22) in a dimensional finite wavelet space II"V"M verifies (see

&)
<HNM [dd; <w<x>>] | so<x>> — (VMK @), pa)) - (T [p(@)], () =0,
<HN,M [ i« w(m»] | n<x>> — (M [ ()], () - (VM [ih(2)] () = 0,
<HN,M [;52 (w(x))] | S0(;,5)> — (I [K(@)], o)) - (I [p(a)], o)) = 0,
<HNM [di: (w(m))] , n(w)> — (VMK (2)], n(e)) - (TYM ()], n(z)) =
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ForVs e N

A6 = (=1)°A®) )
32
F) = (~1)'y.

Considering(29), (31) and (32), by inner product with ¢(z), n(z) and their
conjugates, the following system of equations is obtained from (30)

aA®) — (K (z), p()) - a=0

ByY®) —(K(2), n(x)) - =0

) (33)
2)—<K p(z))-a=0
py® — (K(2), n(x)) - =0
The following notation is proposed
b= (K(x), p(x)),c = (K(z), n(z)), (34)
d=(K(z), ¢(z)) e = (K(z), n(z))
The values of the connection coefficients for this case are \(2) = —%2 siv® =0 (see
[9])-
According to Parceval equality
(F(a). (@) = 5 {Flw) A<w>> - / Fl@) - §(w)| dw (35)
7g - 27'(' g - 27'(' . g )
_ 1 /4 =
(F@),9(2)) = 5 (F@).500) = 5 [ |f) 50wl do. 36)
The Fourier transform of ¢(z) function is ([
1, if 0<w< 27
P(w) = x(w +2m) = (37)
0, otherwise,
where
1, if 2n<w <A4r
X (w) = (38)
0, otherwise
represents ”the characteristic function” ( or "box” ).
In the first equation of the system (33)
1/~
b= (R(w), plw / ‘K =
2 T on
(39)

% K( Jdw,
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where K (w) represents the Fourier transform of the (23) function. Also, according
to Parceval equality, and considering that the Fourier transform of n(x) is

Nw) = x(w), (40)
where

1, if 2r<w<drm

X (w) = (41)
0, otherwise,

represents ”the characteristic function” ( or ”box” ), in the second equation of the
system (33)

1 /- 1 ~ N
0= 5= (K@) i) = 5= [ |R(w) ()| do =
1 dm (42)
=5 . K(w)dw.
Using the Fourier property that
F[J@)] = f(-w), (43)

the Fourier transforms of the scaling and wavelet functions conjugates are deter-
mined(see [2])

p(w) = x (w + 4m) (44)
7(w) = x (w+ 67) . (45)

Considering (44), (45) and Parceval equality

d= o (R(w). 3@)) = ;ﬂ/R‘I?(w) @) dw =

27
(46)
= ;T/_Zwl?(w)dw,
e:i K(w), N(w) :i I?(w)-’\(w) dw =
27 < K > 27 /R ’1 _22 i ‘ (47)

= — K(w)dw.
L A

Solving the integrals(39), (42), (46), (47), the sum |b|+|d| will be always equal
to the square of the wavenumber, k2, and ¢ = e = 0. In order to verify this, the
harmonic wavelet solution was compared to the analytical solution for a rectangular
potential barrier. Also, the free electron model case was considered, comparing the
wavelet solution to analytically obtained k:g. the results are presented in the tables
below (Tables 1, 2). Let the harmonic wavelet algorithm be applied on the above
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TABLE 1. k% and |b| + |d| for different values of Uy and w

U=5,w=4|Uy=7,w=5|Uy=10, w =26
k2 4.2082 8.4164 16.8328
b + |d] 4.2082 8.4164 16.8328

TABLE 2. k% and |b| + |d| for different values of w

w=2|w=5|w="7T
k3 | 8.4164 | 21.041 | 29.457
b] + |d| | 8.4164 | 21.041 | 29.457

triangular potential barrier. The result is

1 2w

b= — | K(w)dw = 10.02,
27T 0
1[0
d =L [ Rw)dw = 10.02, (48)
27 —27
|b] + |d| = 20.04.

Considering that o= [27 K (w)dw + 5= [, K(w)dw = [b] + |d] = K(z) is a
constant, it means that the time independent Schrédinger equation for a triangu-
lar potential barrier can be solved by the analytical method described in (2) as a
equation with constant coefficients.

Considering the analytical expresion of the transmission coefficient

2
= G o
0

and replacing k with \/|b| + |d|, the result for the transmission coefficient through
the barrier obtained is

an

W —=2.94.10712, (50)

with a = 1.52 coresponding to the thickness of the insulator (950A) for fields up to
10°V/m [10].

5. Tunneling current

The tunneling current is given by

I="_.; 1
5 (51)

where 1 represents the radius of the emission electrode and j is the density current.
The calculation of the current density for the Fowler-Nordheim emission is
made according to the following equation

. B
j=M-E*. exp(— ), (52)
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where

3
1
— Q™0 _ 54907670 ASARL (53)

N 167Thmox(;5 Moy

The second part of the expression (52) represents the transmission coefficient

T = exp(—p) =0 (54)

where 1 represents the wave function. Considering the transmission coefficient de-
termined for a triangular potential barrier with the harmonic wavelets (50), the
current density, considering a physical situation of an Al — SiOy — Al sandwich (see
Section (3)), is

B
j=M-E*. exp(—7) =54 1076.10"®.2.94 10712 = 15.87 (4/m?). (55)

The value of the tunneling current, according to (51) and (55), is

I=56-10"11A. (56)

6. Experiments
6.1. Metal-oxide-metal tunnel junctions

The experimental validation of the theoretical results was made on Al—S5i0s—
Al structures, which were specially designed and realised by silicon planar technol-
ogy. The experimental part was conducted at National Institute for Research and
Development in Microtechnologies from Bucharest.

Figure (2) presents a schematic view of such a structure and Figure (3) shows
the optical and SEM microscope top view.

Meial (Al)
4

_w» S0

FIGURE 2. Al — Si09 — Al sample schematic structure-cross section.

As can be seen in the images, the mentioned structure consists of two metal
(Al) islands separated by a thin barrier wall of Si0O2. The SiO2 barrier was obtained
by corrosion of approximately half of the oxide layer, which initial thickness was
1.6pum, through a photoresist mask, obtaining two cavities in the oxide, separated
by a wall with a controlled thickness. The metal was deposited on the bottom of
the cavities by lift-off technique. The SEM image for Figure (3b) presents the two
metal arrays, separated by the oxide wall with its width at the level of the deposited
metal of aproximately 90 nm.
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F1GURE 3. Al — Si0Oy — Al sample.

owamatzsrss . KEITHLE Y e it KEITHLEY

m i V/
A (AR . i At

=
‘-:?
e S,
R
N
—_—
—
=
=
=
P
3
[——
—

eeeeeeeeeeeeeee

FIGURE 4. I(U) diagram measurements for Al — SiOy junctions

6.2. Measurements

The measurements on the Al—SiO3 junctions were made with Keithley Model-
4200 SCS/C, EP6/ Suss MicroTec. Regarding the test conditions, the measurements
were made at room temperature, applying a 0 — 20V input, with a 0.1 voltage
increasing step. The peaks from Figure (4) indicate the Gundlach oscillations [11],
attributed to the interference of the incident electron waves and electron waves which
are reflected at the barrier-electrode interface. Also, the graphs show a growth
of the current as a function of the input voltage, so as a function of the electric
field intensity, aspect that verifies the Fowler-Nordheim tunneling. The measured
tunneling currents have close values to the theoretical result.

This is a very good model for estimating the value of the tunneling current
since the models based on the WKB approximation, like that proposed by Fowler
and Nordheim [1], give a value for the tunneling current smaller with two orders of
magnitude than the experiments.

7. Conclusions

The transmission coefficient has a great influence on the value of the tunneling
current. The harmonic multiresolution analysis was used to calculate the transmis-
sion coefficient for a triangular potential barrier. The theoretical determined value
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of the tunneling current was validated experimentally. The measurements show that
the proposed method offers a good approximation of the the transmisssion coeffi-
cient and, as a result, of wave function. The transmission coefficient was used to
calculate the current density and tunneling current. The results are in concordance
with the experimental measured values.

The WKB method, which is usually used in tunneling problems, does not
consider the thickness of the dielectric for thick layers (5 — 100nm). The wavelet
based method offers the possiblility to consider the thickness of the dielectric, and
this is the main reason for obtaining a better estimation than the WKB method of
the transmission coefficient.
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