U.P.B. Sci. Bull., Series C, Vol. 71, Iss. 4, 2009 ISSN 1454-234x

DNA COMPUTING — MODELLING AND SIMULATING A
MOLECULAR TURING MACHINE

Mihnea MURARU?, Matei-Dan POPOVICI?

Folosind paradigma “DNA Computing”, explicata in detaliu in cadrul
articolului, construim un model de calculator molecular — o Masina Turing
moleculara. Detaliem operatiile moleculare intrebuintate §i cadrul de aplicabilitate
al acestora. Apoi, pentru modelul astfel construit, realizam un simulator
comportamental al acestuia.

Evidentiem necesitatea dezvoltarii unei codificari (a unui limbaj) pentru
modele computationale §i prezentam in detaliu problema generarii limbajului in
contextul nostru precum si solutia gasitd.

Using “DNA Computing”, a form of computation detailed further in the
article, we design a model for a molecular computer — a Molecular Turing Machine.
We explain the applicable molecular operations and their extensibility on the model.
Finally we develop a Simulator aimed at studying the behavior of the Molecular
Turing Machine.

As part of the Simulator development, we emphasize the necessity for finding
a codification or language for computation models and go into detail on the
language generation problem for our Molecular Turing Machine and describe our
solution.

Keywords: DNA Computing, Turing Machine, NP-complete problems, language
generation problem for DNA-based computational models

1. Introduction

“DNA Computing” is a form of computation which, as opposed to
traditional silicon-based technologies, uses DNA and biochemical processes.

The basis of this concept was set in 1994 by Leonard Adleman [1] from
University of Southern California, which proved the efficiency of using DNA for
computation.

After a week-long experiment, Adleman succeeded in solving a
hamiltonian-path NP-complete problem, using strictly biochemical processes and
DNA.

! PhD student, Faculty of Automatic Control and Computers, University POLITEHNICA of
Bucharest, Romania, mmihnea@gmail.com

> PhD student, Faculty of Automatic Control and Computers, University POLITEHNICA of
Bucharest, Romania

100 Mihnea Muraru, Matei-Dan Popovici

The solution was found in less than a second, as opposed to 54 seconds
necessary to solve the same problem on a computer. The laborious operations for
isolating the molecule representing the problem solution proved to be time-
consuming. The computation nevertheless was done almost instantaneously.

In his paper, “Computing with DNA”™, Adleman describes in detail his
experiment. Following his work scientists turned their attention to DNA
Computing; seeking to solve other NP-complete problems (such as Travelling
Salesman Problem, or the k-cliqgue covering problem) different DNA-based
models were designed.

Researchers went further and tried to develop general computation models
using DNA. The first Turing-Machine models appeared. The question if P=NP
came into attention in correlation with the massive parallelism of DNA. DNA
Computing seemed to be a basis for developing new ultra-performance hardware
and software technologies. Studies show that on a traditional computer, for
running 10° operations, 1 Joule of energy is required. By using DNA and
molecular operations and using the same amount of energy, 2:10° operations can
be performed.

In 2002, researchers at Weizmann Institute of Sciences in Rehovot, Israel,
built the first programmable molecular computer; in this computer enzymes and
DNA molecules replace the silicon microchips. The computer is designed for
analyzing cancer activity in a cell, and producing anti-cancer treatment.

Starting from all available theoretical and practical results related to DNA
Computing, and using discoveries in molecular engineering and genetics, we
attempt to develop an efficient Molecular Turing Machine model using molecular
operations.

Our model will contain a Turing Machine structure (a specific DNA
encoding for all elements that constitute the Turing Machine) and a sequence of
operations that performed one after the other, will produce a transition of the
machine.

Using this model we will create a simulation program, designed as a
distributed system running in a typical computer network environment. We will
use the Simulator to run experiments and we will monitor the evolution of our
model, transition by transition, towards the final state or solution.

2. DNA Computing and the Turing Machine

The Turing Machine concept is based on running a well-defined procedure
that produces changes and head movement on an infinite symbol-tape. The
symbols set is finite and defines the Turing Machine alphabet. The head position
defines the current symbol to be read and possibly overwritten. The head can
move one position at a time either to the left or to the right. A Turing Machine

DNA computing — modelling and simulating a molecular Turing Machine 101

transition changes the current state of the machine, and also makes the head write
a symbol at the current position or move to the left or right.

If from a given state and current symbol on tape there is more than one
transition, then the Turing Machine is nondeterministic. For that state-symbol
combination the Turing Machine can perform different transitions simultaneously.
Based on this, we can picture a tree structure, where the root is the Turing
Machine in its initial state, and the leaves are Turing Machines in their current
(possibly final) states. If a Turing Machine can perform nondeterministic
transitions to different states, it will “instantiate” itself several times and each
instance will perform one of the nondeterministic transitions, thus completing the
“tree” with all possible threads of execution. Each “instantiated” Machine will run
in parallel with all the other Machines and in its turn, may “instantiate” other
machines. The execution will come to a stop when the final state is reached, or the
entire input has been consumed.

We can use the nondeterministic Turing Machine described briefly above
to solve exponential problems (problems with an exponential complexity) such as
the Travelling Salesman Problem. There problems are classified as NP-complete
problems (NP stands for Nondeterminist Polynomial). As the name suggests, there
are problems that can be solved in polynomial time on a nondeterministic machine
such as the Turing Machine.

Unfortunately for us, using current technologies, we cannot build
nondeterministic machines. Having in mind the current hardware concepts, we
could compare a nondeterministic machine (a Turing Machine for example) with a
system that has an infinite number of processors available, that can run in parallel
at any given time. Such a system is impossible to build nowadays.

Nevertheless, using DNA Computing we could efficiently mimic such a
massive parallelism required for a Turing Machine to run.

The DNA molecule is comprised by a double-helix sequence of nitrogen
bases: Guanine, Citosine, Tymine and Adenine. These bases can be associated
with base-4 numbers in the same way 0 and 1 represent the digits of a base-2
number.

A single chromosome from the human body contains a sequence of 220
million bases, and a single bacterium contains a hundred thousand DNA
molecules of different lengths.

This huge storing capacity and the great number of DNA molecules that
exist in different life forms give us a clue about the great potential of using DNA
for our parallel computations.

Going further, we notice that nature works with DNA in a very similar
way computers work with data.

The DNA molecule, in the presence of specific enzymes, can create copies
of itself, can be cut at precise intervals or can join another DNA molecule. Using

102 Mihnea Muraru, Matei-Dan Popovici

lab procedures, we can classify and isolate DNA molecules by length (number of
contained bases).

Looking at the big picture, we have a very big number of molecules,
pseudoinfinite in comparison to the size of our problems, and we have chemical
reactions that involve simultaneously all molecules from a substance. In other
words we have the premises for designing a Molecular Turing Machine.

3. The Molecular Turing Machine Model

Our Molecular Turing Machine Model is an adaptation of the Turing
Machine Model described in: ,,Molecular Computing Machines” by Yaakov
Benenson and Ehud Shapiro.

The Molecular Turing Machine will be represented by a circular DNA
molecule. Using the four nitrogen bases described above we will perform an
encoding of the symbols on the tape, for the machine head and for the states.

The head will be encoded by a combination of two recognition sites. We
will call them /nv and Stz. (The concept of recognition site will be explained
further in the article). This head structure is related to the way a transition in the
Turing Machine occurs. To execute a transition, the Turing Machine head will be
split from the molecule; the splitting will be done by enzymes that recognize Inv
and St patterns (more details about this procedure in the following section).

The states of the Turing Machine will have a particular encoding in such a
way that each state has a different length (number of nitrogen bases) from all the
others. The encoding for the current Turing Machine state will be placed
immediately after the head.

The head and the current state are followed by a list of encoded symbols,
starting with the current symbol. Each symbol is flanked by L(eft) and R(ight)

patterns.
v

In

St SO L a R

Fig. 1. Molecular Turing Machine structure

NN

The key of the Turing Machine Model is the way transitions are
performed. In essence, to execute a transition, the current head and state are split,
then a special Transition Molecule will replace them. The Transition Molecule
contains a new head, a new state (the final state of the transition) and the new

DNA computing — modelling and simulating a molecular Turing Machine 103

symbol to be written on the tape. In the final step, the molecule will attempt to
close and become circular.

All residual elements such as old heads and states are eliminated from the
substance using procedures described above.

In the following section, we will go into detail about molecular operations
and the necessity of such a structure for both the Turing Machine Molecule and
the Transition Molecule.

R Inv

St
o |
M |I||

Fig. 2. The Transition Molecule structure

4. Machine Transitions

The execution of transitions is based on the following molecular
operations: split of a molecule, join of two different molecules or of the two ends
of the same molecule (in order to become circular). We also use the following
higher-level operations: electrophoresis — elimination of molecules upon length
criteria, replication — generation of molecule copies, and ATP-dependent remove
— elimination of noncircular molecules. We shall detail these operations below.

Molecule splitting is done by restriction enzymes. They make two
incisions, one in each of the two DNA strands in the molecule. The incisions
separate the DNA bases in fixed points. It is believed that this splitting mechanism
was developed by bacteria, in order to eliminate viral DNA sequences.

The way a restriction enzyme splits is defined by the following three
parameters:

e Recognition site — the DNA sequence a certain enzyme recognizes

e Offset — the displacement where the splitting begins relative to the
position where the recognition site was identified

e Cut length — the cut span, measured as the number of DNA bases.

The cutting process is presented in the following pictures:

104 Mihnea Muraru, Matei-Dan Popovici

L offset =5
CRETTETER
clolaloialric

T cut length =3

restriction enzyme
thie recognizes the
pattern GCT

Fig. 3. Recognition site identification and the actual split

yoiiey __ WWldy
ricloh . -

Fig. 4. Two molecules resulted from the split

The two incisions in the DNA strands do not usually overlap (they aren’t
made in the same pair of complementary bases). This behavior is important
because it enables molecules to join in the future. The two resulted free ends,
which do not have a correspondent in the complementary strand, are called sticky-
ends. They will cause the molecule to join another molecule with a
complementary sticky-end.

The coupling of molecules is possible in the presence of a certain enzyme,
called ligase. Joining is the reverse process of splitting. Two nearby molecules
having complementary sticky-ends will attract to each other, forming weak bonds
between complementary DNA bases. Ligase will glue the strands together, giving
birth to a new molecule. Ligase can also make the two ends of the same molecule
join, causing it to become circular.

Electrophoresis is a laboratory procedure for classifying the molecules in
the solution based on their lengths. It shall be used to eliminate the molecules
having their length outside a certain interval. The procedure is based on the
movement tendency of molecules in the presence of an electric field. The forces
acting upon a molecule are: the electrostatic force, the friction force, and the
electrophoretic delay force (particular for that solution). The larger a molecule, the
smaller the resulting force, producing a slower movement. The process comprises
several steps:

e First, an electrophoretic, electrically conductive gel is added to the
solution, at one end of the container with the DNA molecules;
e Two electrodes are added, generating an electric field;

DNA computing — modelling and simulating a molecular Turing Machine 105

e The smaller molecules will traverse the gel faster, while the larger ones
slower. Eventually, it will be possible to classify the molecules having a
certain length based on the distance they travelled throughout the gel.

We will use these operations in order to execute machine transitions. The
following steps are present during each transition:

e Restriction enzymes that identify the St and /nv recognition sites are added
to the solution. This will cause the circular molecules encoding Turing
Machines to break. The length of the current state and the encoding of the
current symbol guarantee that the resulted sticky-end uniquely encodes the
state-symbol combination.

e The restriction enzymes are removed and the transition molecules and
ligases are added to the environment. The transition molecules that encode
a certain state-symbol combination will join Turing molecules exposing
the complement of the same combination, in the presence of ligases.

e The residual elements (machine heads, uncoupled transition molecules
etc.) are removed by electrophoresis.

e As aresult of the concatenation between transition and Turing molecules,
the old tape symbol is rebuilt. This is why we must now remove it, using
the X and Y restriction enzymes.

e Residual components are removed and the Turing molecules are
stimulated to close (we remind that the consistent configuration of Turing
molecules is circular). At this point the transition is concluded.

WY iz 7
T Ui
I L a

i

b Inv 54 X Y

b %
i

e 4!

Fig. 5. Coupling between a Turing molecule (down) and a transition molecule (up)

5. Language generation for the Molecular Turing Machine

Given a Turing Machine with a fixed number of states and symbols, our
target is to generate a valid language for it using the four DNA bases (A, C, G, T).
The encoding cannot be chosen randomly. As stated in the previous
section, a machine transition is made possible through a series of splits and joins
of a circular molecule. Splits are done by restriction enzymes, which spot certain

106 Mihnea Muraru, Matei-Dan Popovici

recognition sites, and cut the molecule at a fixed offset from the beginning of the
site. It is impossible to predict or control the exact moment of splitting, or the
place in case the molecule contains the same recognition site in several spots. This
is why a recognition site must not appear in combinations of states, symbols etc.

The previous section described the fusion between a split Turing molecule
and a transition molecule. This process raises two issues. First, the St enzyme
must cut somewhere inside the span of the current symbol, and not outside it.
Secondly, the resulted sticky-end must uniquely encode the current state-symbol
combination. These remarks are formalized by the following invariants:

11 : The four recognition sites are distinct DNA sequences (will not appear
in other combinations in the molecule)

12 : A restriction enzyme cuts either a complete L or R sequence, or inside
the span of the current symbol (never somewhere else)

13 : The stick-ends resulted from cutting inside the span of a symbol and
the L and R sticky-ends are all distinct

We add one more invariant:

I4: The encodings of different states have different lengths

The need for 14 is explained further.

It shows up that it is difficult and time-consuming to generate a language
that obeys only the constraints formulated above. The exponential nature of the
generation problem is very pregnant. This is why, besides the Verifications that
must be passed in order to satisfy the invariants, we introduce additional Rules
(constraints) which lower the complexity of the generation process.

The generation process comprises five steps. In each step, distinct
elements are randomly generated (distinct with respect to one another and to
elements generated in previous steps); the specific Rules for the current step are
checked; as long as a generated element creates conflicts, it is regenerated. A step
is said to be complete when all the corresponding elements are successfully added
to the language.

The five steps are ordered in a specific manner. The first step generates the
base sequences that impose restrictions for all the following steps. The second
step finds the sequences L and R. The third step computes the parameters of the
restriction enzymes. The fourth step generates the sequences for the machine
states, each having a different length. Finally, the fifth step yields the encodings of
the machine symbols. It is obvious that each step places additional restrictions
over the steps to follow.

Remark 1: DNA strands are very similar with strings of characters. We
will use the term “concatenation” to designate the string operation extended to
DNA strands. Also, the expression:

c = be

denotes a strand a, resulted from concatenation of strands b and C.

DNA computing — modelling and simulating a molecular Turing Machine 107

Remark 2: This section introduces several terms with special meaning:

Invariant — assertion about a certain feature of the molecular model. The
invariants completely describe the model from the language generation
perspective.

Verification — expression that must be true in order to satisfy one or more
invariants.

Rule — additional constraint which simplifies the generation of a valid
solution.

We go into detail about each step of the generation process.

The base sequences are the enzyme recongnition sites. Most of the
restrictions formulated below are related to them. Let

REC = {Inv. 5t X.Y} 1)
be the set of base sequences.
We write rs/ to denote the length of a recognition site:
vsl = #(rec;), vac; € REC)
rsl is constant and it is an input parameter for the generation process. In other
words, all the recognition sites have the same length, which can be set by the user.
#(=) stands for the length of sequence s.
In this first step, the following verifications are to be made:
V1 : All the sequences in REC are distinct
V2: Combinations InvSt and YX (resulted from concatenation) do not contain
another sequence from REC

Verification 72 isn’t very intuitive, but, analyzing the structure of the machine
head and transition molecules (presented in the previous sections), we can see
that, by bringing together two sequences (/nv-St, Y-X), a possible unwanted
recognition site may form inside the concatenated sequences. Thus, we need J2 in
order to satisfy /1.

The length of these base sequences is of no relevance. In contrast, the
lengths of L and R deserve some special attention. If L and R have a small length,
we must test the existence of a sequence in REC in a multitude of combinations of
the form:

S Lay , 8y € siader vel, ay € symbols vet 3

The number we combinations we get is:
ng.coml = |states set| = |spmbols setl (4)
where || represents the number of elements of set M.

It is possible to reduce the number of combinations by adding the constraint that
the length of L should be greater or equal to the length of the base sequences:

108 Mihnea Muraru, Matei-Dan Popovici

&(L) mwrsl ©)
This constraint guarantees that it is impossible for a base sequence to span over all
three symbols §,La,, but over at most two: ¥, L or La,.

St

| 4

%
NARRR
s =III

Fig. 6. The length constraint for L and R

The same applies for R.
For simplicity, we will choose the lengths of L and R to be equal to those
of the base sequences. We get the following rules:

RI: &1L = &R (6)
R2: &R =rsl (7)

With these modifications, the number of combinations to be checked becomes:
ne.comb = |stater sat| + [rrmbels sat| (8)

which is significantly smaller than the previous result. We also get another
important advantage: now we need only to check the two-symbol combinations
&.L and La,. This advantage will become useful when generating the other
elements.

The following verifications guarantee that the invariant /7 is satisfied:

V3: RInv & rec,, vec, € REC 9
V4: LY 2 rec;, rec; € REC (10)
V5: XE %'rw:'t, rag; € REC (11)
V6: RI. & rar,, var, & RE((12)

By @ & k we denote that the string « doesn’t contain the string 4 (as a substring).

DNA computing — modelling and simulating a molecular Turing Machine 109

In other words, the combinations R/nv, LY, XL and RL must not contain
any other recognition sites. Analyzing the structure of the molecules we can see
that these combinations appear in different contexts.

One last verification needed to satisfy the invariant /3 is:

V7. B=L (13)

If the sticky-ends resulted from splitting L and R were identical, we would get
unwanted fusions of molecules.
In order to compute the enzyme parameters, we define the following:

S — minimum state length (14)
Smex = Smm T nO.Ftates — maximum state length (15)

£, has a standard value of 3, obtained experimentally (it speeds up the states
generation).

The enzyme parameters to be established are: the offset where the splitting
begins relatively to the recognition site location and the cut length. Their
computation has to consider the invariants 72 and /3. Choosing a valid offset
guarantees that /2 is satisfied. We get the verification:

V8: af feat = el + 8L + 5,00 (16)
This verification ensures the fact that the splitting will always start inside

the span of the symbol, and not before it. When determining the symbol length we
will make sure that the splitting doesn’t end beyond the symbol).

minimum length
state

maximum length “‘l"Hl”H"”

rsl Smax #(L)

Fig. 7. Choosing the offset in order to guarantee that the splitting takes place inside the symbol

110 Mihnea Muraru, Matei-Dan Popovici

The cut length is important for ensuring that /3 is satisfied. For example, if
the cut length equals 2, and the Turing Machine has 20 states and 2 symbols, then,
using 2 “characters” (DNA bases), we are able to encode only 2% = 16 state-
symbol combinations (each combination corresponding to a sticky-end). In fact,
we need 20 * 2 = 40. We get the verification:

V9: cutlent = [log,(no.siater = no.symbeols)] = spesdfactoer a7

The product inside the logarithm represents the number of all state-symbol
combinations. The logarithm will give the number of “characters” needed to
encode all these combinations. Base 4 comes from the 4 possible values of a
“character” (there are 4 DNA bases). speedfactor is used to control the generation
speed of the sticky-ends encoding state-symbol combinations. When its value is 1,
cutlen represents the smallest necessary number of characters for encoding the
needed combinations. Ensuring the uniqueness of the sticky-ends for this smallest
number proves to be difficult. Increasing the speedfactor (in fact the cut length)
makes it easier to obtain unique sticky-ends. A good value for speedfactor is 2:

cutlen® = Z = cutlen (18)

Before presenting the states generation method, we remind that distinct
states must be encoded with different lengths (74).

Vi0: #i8,) = #(3,} (¥) 5,5, € states ssv (19)

The solution at hand is to generate states each with a unit longer than the
previously generated state, as suggested by the above definition of 5, ... The
verifications each state must satisfy are:

V10: 8, L@ vec,, vec, @ REC, 3, € sluler yel (20)
Vii: §tS, 2rec,, rec, & RE(, §, F states sat (22)

These verifications aim at satisfying /7; the combinations above are tied to
the molecule structure. Sequences L and St are found in certain cases next to
states.

The states set is built iteratively; the currently generated state must meet
V10 and V11 in order to be added to the set.

Symbol generation is the most complex part of the process. The first issue
is establishing the length of a certain symbol. For simplicity, we assume that all
symbols have the same length.

DNA computing — modelling and simulating a molecular Turing Machine 111

R3: #(a,) = const. (¥) a, € symbole sat (22)

12 states that the restriction enzymes should cut inside that span of the
symbol. Thus, we get:

Viz: #'(r'r‘.:[= Sn’.‘l.l’.{ - Sm.n-c + entlamn + 1 (23)

In the case of the shortest state, the enzyme will cut most deeply inside the
span of the symbol, whereas, for the longest state, it will cut exactly at the
beginning of the symbol.

Knowing that, for the longest state the cutting begins right after the first
character (DNA basis), and that the offset at which the cutting begins is the same
for any state, we conclude that for the shortest state the cut will be done at the
character §,... — F..m + 1 (the length difference between the longest and the
shortest states). Thus, a symbol must be encoded using at least £, .. — £+ 1
characters (DNA bases) to ensure that, in case of the shortest state, the cutting will
begin still inside the span of the symbol. Since the cut spans cutlen characters, it
means that the symbol needs at least %,,,.. — %,.;. = cutian 4+ 1 characters.

Once we have computed the length of the symbols, we must satisfy the
verifications:

VIi3: @y, = a,. (¥la,.a, € symbels set (24)
Vi4: La, R & rec;, réc; € REC, a, € symbols s8t (25)
V14 guarantees that a symbol flanked by L and R will not contain any
recognition sites, as stated by 71.
The next verification ensures the uniqueness of the sticky-ends resulted
from symbol splitting. We define:

F8y,, = the sticky — end resulted from splitting the combination 5 a,,,
5, € states sat, a,, € symbele sat (26)

We now state:
Vi5:
Fm + H}n ’

(¥)s,5; € states set, (¥Y)a,..a, € symbolsset,l = fm & n (27)

This verification is implemented by first generating a random encoding for
the current symbol and ensuring its uniqueness. Then, the generated sequence is
successively concatenated with every state and then a cut is made. Each cut
produces a sticky-end. If a sticky-end is identical to one generated before (either

112 Mihnea Muraru, Matei-Dan Popovici

for a previous symbol, or for the current symbol and a previous state), then the
symbol encoding is discarded and a new one is generated. When all the conditions
are fulfilled, the encoding is added to the language and the sticky-ends resulted
from symbol splitting are stored in a collection, for future checks.

6. Conclusions

By implementing our solution for language generation (as presented in the
previous section), we have built a Simulator for the Molecular Turing Machine!?.
It enables us to run virtual experiments and observe their evolution. The simulator
models an *“experimental jar, that contains DNA molecules encoding Turing
Machines and their transitions, restriction enzymes, ligases etc. We have also
implemented specific operations, as described in section 4: join, split,
electrophoresis, replication, and ATP-dependent remove.

Architecturally, the Simulator has a multilevel structure and runs in a
distributed environment, where several worker computers run experiments locally,
and a server gathers experiment related data for statistical processing.

Experimentally, we concluded that the probability of reaching a final
configuration (even if it exists theoretically) is low. The probability is closely tied
to the number of experiment steps (maximum number of transitions the Turing
Machine can make): the greater the running time, the greater the probability. We
can also raise the possibility of reaching a solution by increasing various
experiment parameters (number of DNA molecules, enzymes concentration) and
by running in parallel several independent experiments.

REFERENCES

[1] Leonard Adelman, “Computing with DNA”, Scientific American, Aug 1998

[2] Mihnea Muraru, Matei-Dan Popovici, “DNA Computing — Modelling and Simulating a
Molecular Turing Machine” Graduation Paper, June 2008

[3] Cristian A. Giumale, “Introducere in Analiza Algoritmilor”, Ed. Polirom Bucuresti, 2004

[4] Yaakov Benenson, Ehud Shapiro, “Molecular Computing Machines”, Dekker Encyclopedia of
Nanoscience and Nanotechnology, 2004

