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DNA COMPUTING – MODELLING AND SIMULATING A 
MOLECULAR TURING MACHINE 

Mihnea MURARU1, Matei-Dan POPOVICI2 

Folosind paradigma “DNA Computing”, explicată în detaliu în cadrul 
articolului, construim un model de calculator molecular – o Maşina Turing 
moleculară.  Detaliem operaţiile moleculare întrebuinţate şi cadrul de aplicabilitate 
al acestora. Apoi, pentru modelul astfel construit, realizăm un simulator 
comportamental al acestuia. 

Evidenţiem necesitatea dezvoltării unei codificări (a unui limbaj) pentru 
modele computaţionale şi prezentăm în detaliu problema generării limbajului în 
contextul nostru precum şi soluţia găsită. 

 
Using “DNA Computing”, a form of computation detailed further in the 

article, we design a model for a molecular computer – a Molecular Turing Machine. 
We explain the applicable molecular operations and their extensibility on the model. 
Finally we develop a Simulator aimed at studying the behavior of the Molecular 
Turing Machine. 

As part of the Simulator development, we emphasize the necessity for finding 
a codification or language for computation models and go into detail on the 
language generation problem for our Molecular Turing Machine and describe our 
solution. 

 
Keywords: DNA Computing, Turing Machine, NP-complete problems, language 

generation problem for DNA-based computational models 

1. Introduction 

“DNA Computing” is a form of computation which, as opposed to 
traditional silicon-based technologies, uses DNA and biochemical processes. 

The basis of this concept was set in 1994 by Leonard Adleman [1] from 
University of Southern California, which proved the efficiency of using DNA for 
computation. 

After a week-long experiment, Adleman succeeded in solving a 
hamiltonian-path NP-complete problem, using strictly biochemical processes and 
DNA. 
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The solution was found in less than a second, as opposed to 54 seconds 
necessary to solve the same problem on a computer. The laborious operations for 
isolating the molecule representing the problem solution proved to be time-
consuming. The computation nevertheless was done almost instantaneously. 

In his paper, “Computing with DNA”[1], Adleman describes in detail his 
experiment. Following his work scientists turned their attention to DNA 
Computing; seeking to solve other NP-complete problems (such as Travelling 
Salesman Problem, or the k-clique covering problem) different DNA-based 
models were designed. 

Researchers went further and tried to develop general computation models 
using DNA. The first Turing-Machine models appeared. The question if P=NP 
came into attention in correlation with the massive parallelism of DNA. DNA 
Computing seemed to be a basis for developing new ultra-performance hardware 
and software technologies. Studies show that on a traditional computer, for 
running 109 operations, 1 Joule of energy is required. By using DNA and 
molecular operations and using the same amount of energy, 2·109 operations can 
be performed. 

In 2002, researchers at Weizmann Institute of Sciences in Rehovot, Israel, 
built the first programmable molecular computer; in this computer enzymes and 
DNA molecules replace the silicon microchips. The computer is designed for 
analyzing cancer activity in a cell, and producing anti-cancer treatment. 

Starting from all available theoretical and practical results related to DNA 
Computing, and using discoveries in molecular engineering and genetics, we 
attempt to develop an efficient Molecular Turing Machine model using molecular 
operations.  

Our model will contain a Turing Machine structure (a specific DNA 
encoding for all elements that constitute the Turing Machine) and a sequence of 
operations that performed one after the other, will produce a transition of the 
machine. 

Using this model we will create a simulation program, designed as a 
distributed system running in a typical computer network environment. We will 
use the Simulator to run experiments and we will monitor the evolution of our 
model, transition by transition, towards the final state or solution.  

2. DNA Computing and the Turing Machine  

The Turing Machine concept is based on running a well-defined procedure 
that produces changes and head movement on an infinite symbol-tape. The 
symbols set is finite and defines the Turing Machine alphabet. The head position 
defines the current symbol to be read and possibly overwritten. The head can 
move one position at a time either to the left or to the right. A Turing Machine 
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transition changes the current state of the machine, and also makes the head write 
a symbol at the current position or move to the left or right. 

If from a given state and current symbol on tape there is more than one 
transition, then the Turing Machine is nondeterministic. For that state-symbol 
combination the Turing Machine can perform different transitions simultaneously. 
Based on this, we can picture a tree structure, where the root is the Turing 
Machine in its initial state, and the leaves are Turing Machines in their current 
(possibly final) states. If a Turing Machine can perform nondeterministic 
transitions to different states, it will “instantiate” itself several times and each 
instance will perform one of the nondeterministic transitions, thus completing the 
“tree” with all possible threads of execution. Each “instantiated” Machine will run 
in parallel with all the other Machines and in its turn, may “instantiate” other 
machines. The execution will come to a stop when the final state is reached, or the 
entire input has been consumed.  

We can use the nondeterministic Turing Machine described briefly above 
to solve exponential problems (problems with an exponential complexity) such as 
the Travelling Salesman Problem. There problems are classified as NP-complete 
problems (NP stands for Nondeterminist Polynomial). As the name suggests, there 
are problems that can be solved in polynomial time on a nondeterministic machine 
such as the Turing Machine. 

Unfortunately for us, using current technologies, we cannot build 
nondeterministic machines. Having in mind the current hardware concepts, we 
could compare a nondeterministic machine (a Turing Machine for example) with a 
system that has an infinite number of processors available, that can run in parallel 
at any given time. Such a system is impossible to build nowadays. 

Nevertheless, using DNA Computing we could efficiently mimic such a 
massive parallelism required for a Turing Machine to run. 

The DNA molecule is comprised by a double-helix sequence of nitrogen 
bases: Guanine, Citosine, Tymine and Adenine. These bases can be associated 
with base-4 numbers in the same way 0 and 1 represent the digits of a base-2 
number. 

A single chromosome from the human body contains a sequence of 220 
million bases, and a single bacterium contains a hundred thousand DNA 
molecules of different lengths. 

This huge storing capacity and the great number of DNA molecules that 
exist in different life forms give us a clue about the great potential of using DNA 
for our parallel computations. 

Going further, we notice that nature works with DNA in a very similar 
way computers work with data. 

The DNA molecule, in the presence of specific enzymes, can create copies 
of itself, can be cut at precise intervals or can join another DNA molecule. Using 
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lab procedures, we can classify and isolate DNA molecules by length (number of 
contained bases). 

Looking at the big picture, we have a very big number of molecules, 
pseudoinfinite in comparison to the size of our problems, and we have chemical 
reactions that involve simultaneously all molecules from a substance. In other 
words we have the premises for designing a Molecular Turing Machine. 

3. The Molecular Turing Machine Model 

Our Molecular Turing Machine Model is an adaptation of the Turing 
Machine Model described in: „Molecular Computing Machines” by Yaakov 
Benenson and Ehud Shapiro. 

The Molecular Turing Machine will be represented by a circular DNA 
molecule. Using the four nitrogen bases described above we will perform an 
encoding of the symbols on the tape, for the machine head and for the states. 

The head will be encoded by a combination of two recognition sites. We 
will call them Inv and St. (The concept of recognition site will be explained 
further in the article). This head structure is related to the way a transition in the 
Turing Machine occurs. To execute a transition, the Turing Machine head will be 
split from the molecule; the splitting will be done by enzymes that recognize Inv 
and St patterns (more details about this procedure in the following section).  

The states of the Turing Machine will have a particular encoding in such a 
way that each state has a different length (number of nitrogen bases) from all the 
others. The encoding for the current Turing Machine state will be placed 
immediately after the head.  

The head and the current state are followed by a list of encoded symbols, 
starting with the current symbol. Each symbol is flanked by L(eft) and R(ight) 
patterns. 

Fig. 1. Molecular Turing Machine structure  
 

The key of the Turing Machine Model is the way transitions are 
performed. In essence, to execute a transition, the current head and state are split, 
then a special Transition Molecule will replace them. The Transition Molecule 
contains a new head, a new state (the final state of the transition) and the new 
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symbol to be written on the tape. In the final step, the molecule will attempt to 
close and become circular. 

All residual elements such as old heads and states are eliminated from the 
substance using procedures described above. 

In the following section, we will go into detail about molecular operations 
and the necessity of such a structure for both the Turing Machine Molecule and 
the Transition Molecule. 

 
Fig. 2. The Transition Molecule structure 

4. Machine Transitions 

The execution of transitions is based on the following molecular 
operations: split of a molecule, join of two different molecules or of the two ends 
of the same molecule (in order to become circular). We also use the following 
higher-level operations: electrophoresis – elimination of molecules upon length 
criteria, replication – generation of molecule copies, and ATP-dependent remove 
– elimination of noncircular molecules. We shall detail these operations below. 

Molecule splitting is done by restriction enzymes. They make two 
incisions, one in each of the two DNA strands in the molecule. The incisions 
separate the DNA bases in fixed points. It is believed that this splitting mechanism 
was developed by bacteria, in order to eliminate viral DNA sequences. 

The way a restriction enzyme splits is defined by the following three 
parameters: 

• Recognition site – the DNA sequence a certain enzyme recognizes 
• Offset – the displacement where the splitting begins relative to the 

position where the recognition site was identified 
• Cut length – the cut span, measured as the number of DNA bases. 

 
The cutting process is presented in the following pictures: 
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Fig. 3. Recognition site identification and the actual split 

 

 
Fig. 4. Two molecules resulted from the split 

 
The two incisions in the DNA strands do not usually overlap (they aren’t 

made in the same pair of complementary bases). This behavior is important 
because it enables molecules to join in the future. The two resulted free ends, 
which do not have a correspondent in the complementary strand, are called sticky-
ends. They will cause the molecule to join another molecule with a 
complementary sticky-end. 

The coupling of molecules is possible in the presence of a certain enzyme, 
called ligase. Joining is the reverse process of splitting. Two nearby molecules 
having complementary sticky-ends will attract to each other, forming weak bonds 
between complementary DNA bases. Ligase will glue the strands together, giving 
birth to a new molecule. Ligase can also make the two ends of the same molecule 
join, causing it to become circular. 

Electrophoresis is a laboratory procedure for classifying the molecules in 
the solution based on their lengths. It shall be used to eliminate the molecules 
having their length outside a certain interval. The procedure is based on the 
movement tendency of molecules in the presence of an electric field. The forces 
acting upon a molecule are: the electrostatic force, the friction force, and the 
electrophoretic delay force (particular for that solution). The larger a molecule, the 
smaller the resulting force, producing a slower movement. The process comprises 
several steps: 

• First, an electrophoretic, electrically conductive gel is added to the 
solution, at one end of the container with the DNA molecules; 

• Two electrodes are added, generating an electric field; 
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• The smaller molecules will traverse the gel faster, while the larger ones 
slower. Eventually, it will be possible to classify the molecules having a 
certain length based on the distance they travelled throughout the gel. 
We will use these operations in order to execute machine transitions. The 

following steps are present during each transition: 
• Restriction enzymes that identify the St and Inv recognition sites are added 

to the solution. This will cause the circular molecules encoding Turing 
Machines to break. The length of the current state and the encoding of the 
current symbol guarantee that the resulted sticky-end uniquely encodes the 
state-symbol combination. 

• The restriction enzymes are removed and the transition molecules and 
ligases are added to the environment. The transition molecules that encode 
a certain state-symbol combination will join Turing molecules exposing 
the complement of the same combination, in the presence of ligases. 

• The residual elements (machine heads, uncoupled transition molecules 
etc.) are removed by electrophoresis. 

• As a result of the concatenation between transition and Turing molecules, 
the old tape symbol is rebuilt. This is why we must now remove it, using 
the X and Y restriction enzymes.  

• Residual components are removed and the Turing molecules are 
stimulated to close (we remind that the consistent configuration of Turing 
molecules is circular). At this point the transition is concluded. 
 

 
Fig. 5. Coupling between a Turing molecule (down) and a transition molecule (up) 

 

5. Language generation for the Molecular Turing Machine 

Given a Turing Machine with a fixed number of states and symbols, our 
target is to generate a valid language for it using the four DNA bases (A, C, G, T). 

The encoding cannot be chosen randomly. As stated in the previous 
section, a machine transition is made possible through a series of splits and joins 
of a circular molecule. Splits are done by restriction enzymes, which spot certain 
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recognition sites, and cut the molecule at a fixed offset from the beginning of the 
site. It is impossible to predict or control the exact moment of splitting, or the 
place in case the molecule contains the same recognition site in several spots. This 
is why a recognition site must not appear in combinations of states, symbols etc. 

The previous section described the fusion between a split Turing molecule 
and a transition molecule. This process raises two issues. First, the St enzyme 
must cut somewhere inside the span of the current symbol, and not outside it. 
Secondly, the resulted sticky-end must uniquely encode the current state-symbol 
combination. These remarks are formalized by the following invariants: 

I1 : The four recognition sites are distinct DNA sequences (will not appear 
in other combinations in the molecule) 

I2 : A restriction enzyme cuts either a complete L or R sequence, or inside 
the span of the current symbol (never somewhere else) 

I3 : The stick-ends resulted from cutting inside the span of a symbol and 
the L and R sticky-ends are all distinct 

We add one more invariant: 
I4: The encodings of different states have different lengths 
The need for I4 is explained further. 
It shows up that it is difficult and time-consuming to generate a language 

that obeys only the constraints formulated above. The exponential nature of the 
generation problem is very pregnant. This is why, besides the Verifications that 
must be passed in order to satisfy the invariants, we introduce additional Rules 
(constraints) which lower the complexity of the generation process. 

The generation process comprises five steps. In each step, distinct 
elements are randomly generated (distinct with respect to one another and to 
elements generated in previous steps); the specific Rules for the current step are 
checked; as long as a generated element creates conflicts, it is regenerated. A step 
is said to be complete when all the corresponding elements are successfully added 
to the language. 

The five steps are ordered in a specific manner. The first step generates the 
base sequences that impose restrictions for all the following steps. The second 
step finds the sequences L and R. The third step computes the parameters of the 
restriction enzymes. The fourth step generates the sequences for the machine 
states, each having a different length. Finally, the fifth step yields the encodings of 
the machine symbols. It is obvious that each step places additional restrictions 
over the steps to follow. 

Remark 1: DNA strands are very similar with strings of characters. We 
will use the term “concatenation” to designate the string operation extended to 
DNA strands. Also, the expression: 

 

denotes a strand a, resulted from concatenation of strands b and c. 
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Remark 2: This section introduces several terms with special meaning: 
Invariant – assertion about a certain feature of the molecular model. The 

invariants completely describe the model from the language generation 
perspective. 

Verification – expression that must be true in order to satisfy one or more 
invariants. 

Rule – additional constraint which simplifies the generation of a valid 
solution. 

We go into detail about each step of the generation process. 
The base sequences are the enzyme recongnition sites. Most of the 

restrictions formulated below are related to them. Let 
 

                                                                        (1) 
be the set of base sequences. 

We write rsl to denote the length of a recognition site: 
                                                        (2) 

rsl is constant and it is an input parameter for the generation process. In other 
words, all the recognition sites have the same length, which can be set by the user. 

 stands for the length of sequence s. 
In this first step, the following verifications are to be made: 

V1 : All the sequences in REC are distinct 
V2: Combinations InvSt and YX (resulted from concatenation) do not contain 
another sequence from REC 
  
Verification V2 isn’t very intuitive, but, analyzing the structure of the machine 
head and transition molecules (presented in the previous sections), we can see 
that, by bringing together two sequences (Inv-St, Y-X), a possible unwanted 
recognition site may form inside the concatenated sequences. Thus, we need V2 in 
order to satisfy I1. 
 The length of these base sequences is of no relevance. In contrast, the 
lengths of L and R deserve some special attention. If L and R have a small length, 
we must test the existence of a sequence in REC in a multitude of combinations of 
the form: 

                              (3) 
  
The number we combinations we get is: 

                                            (4) 
where  represents the number of elements of set M. 
  
It is possible to reduce the number of combinations by adding the constraint that 
the length of L should be greater or equal to the length of the base sequences: 
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                                                                      (5) 

This constraint guarantees that it is impossible for a base sequence to span over all 
three symbols  , but over at most two:  or . 
 

 
Fig. 6. The length constraint for L and R 

 
The same applies for R. 

 For simplicity, we will choose the lengths of L and R to be equal to those 
of the base sequences. We get the following rules: 

R1:                                                                               (6) 
R2:                                                                               (7) 

With these modifications, the number of combinations to be checked becomes: 
           (8) 

which is significantly smaller than the previous result. We also get another 
important advantage: now we need only to check the two-symbol combinations 

 and . This advantage will become useful when generating the other 
elements. 
 The following verifications guarantee that the invariant I1 is satisfied: 
 

V3:                   (9) 
V4:                 (10) 
V5:               (11) 
V6:               (12) 

 
By  we denote that the string a doesn’t contain the string b (as a substring). 
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In other words, the combinations RInv, LY, XL and RL must not contain 
any other recognition sites. Analyzing the structure of the molecules we can see 
that these combinations appear in different contexts. 

One last verification needed to satisfy the invariant I3 is: 
 

V7:               (13) 
 
If the sticky-ends resulted from splitting L and R were identical, we would get 
unwanted fusions of molecules. 
 In order to compute the enzyme parameters, we define the following: 

 
      – minimum state length          (14) 

  – maximum state length          (15) 
 

 has a standard value of 3, obtained experimentally (it speeds up the states 
generation). 
 The enzyme parameters to be established are: the offset where the splitting 
begins relatively to the recognition site location and the cut length. Their 
computation has to consider the invariants I2 and I3. Choosing a valid offset 
guarantees that I2 is satisfied. We get the verification: 
 

V8:                                   (16) 
 
 This verification ensures the fact that the splitting will always start inside 
the span of the symbol, and not before it. When determining the symbol length we 
will make sure that the splitting doesn’t end beyond the symbol). 
 

 
Fig. 7. Choosing the offset in order to guarantee that the splitting takes place inside the symbol 
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The cut length is important for ensuring that I3 is satisfied. For example, if 

the cut length equals 2, and the Turing Machine has 20 states and 2 symbols, then, 
using 2 “characters” (DNA bases), we are able to encode only  state-
symbol combinations (each combination corresponding to a sticky-end). In fact, 
we need 20 * 2 = 40. We get the verification: 
 

V9:         (17) 
 
 The product inside the logarithm represents the number of all state-symbol 
combinations. The logarithm will give the number of “characters” needed to 
encode all these combinations. Base 4 comes from the 4 possible values of a 
“character” (there are 4 DNA bases). speedfactor is used to control the generation 
speed of the sticky-ends encoding state-symbol combinations. When its value is 1, 
cutlen represents the smallest necessary number of characters for encoding the 
needed combinations. Ensuring the uniqueness of the sticky-ends for this smallest 
number proves to be difficult. Increasing the speedfactor (in fact the cut length) 
makes it easier to obtain unique sticky-ends. A good value for speedfactor is 2: 
 

                                                           (18) 
 
 Before presenting the states generation method, we remind that distinct 
states must be encoded with different lengths (I4). 
 

V10:                              (19) 
 
 The solution at hand is to generate states each with a unit longer than the 
previously generated state, as suggested by the above definition of . The 
verifications each state must satisfy are: 
 

V10:                 (20) 
V11:                  (21) 

 
 These verifications aim at satisfying I1; the combinations above are tied to 
the molecule structure. Sequences L and St are found in certain cases next to 
states. 
 The states set is built iteratively; the currently generated state must meet 
V10 and V11 in order to be added to the set. 

Symbol generation is the most complex part of the process. The first issue 
is establishing the length of a certain symbol. For simplicity, we assume that all 
symbols have the same length. 
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R3:                             (22) 

 
 I2 states that the restriction enzymes should cut inside that span of the 
symbol. Thus, we get:  
 

V12:                          (23) 
 
 In the case of the shortest state, the enzyme will cut most deeply inside the 
span of the symbol, whereas, for the longest state, it will cut exactly at the 
beginning of the symbol. 

Knowing that, for the longest state the cutting begins right after the first 
character (DNA basis), and that the offset at which the cutting begins is the same 
for any state, we conclude that for the shortest state the cut will be done at the 
character  (the length difference between the longest and the 
shortest states). Thus, a symbol must be encoded using at least  
characters (DNA bases) to ensure that, in case of the shortest state, the cutting will 
begin still inside the span of the symbol. Since the cut spans cutlen characters, it 
means that the symbol needs at least  characters. 

Once we have computed the length of the symbols, we must satisfy the 
verifications: 
 

V13:                                (24) 
V14:                        (25) 

 V14 guarantees that a symbol flanked by L and R will not contain any 
recognition sites, as stated by I1. 
 The next verification ensures the uniqueness of the sticky-ends resulted 
from symbol splitting. We define: 
 

 
                                     (26) 

 
We now state: 

V15:  
 

        (27) 
 
 This verification is implemented by first generating a random encoding for 
the current symbol and ensuring its uniqueness. Then, the generated sequence is 
successively concatenated with every state and then a cut is made. Each cut 
produces a sticky-end. If a sticky-end is identical to one generated before (either 
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for a previous symbol, or for the current symbol and a previous state), then the 
symbol encoding is discarded and a new one is generated. When all the conditions 
are fulfilled, the encoding is added to the language and the sticky-ends resulted 
from symbol splitting are stored in a collection, for future checks. 

6. Conclusions 

By implementing our solution for language generation (as presented in the 
previous section), we have built a Simulator for the Molecular Turing Machine[2]. 
It enables us to run virtual experiments and observe their evolution. The simulator 
models an “experimental jar, that contains DNA molecules encoding Turing 
Machines and their transitions, restriction enzymes, ligases etc. We have also 
implemented specific operations, as described in section 4: join, split, 
electrophoresis, replication, and ATP-dependent remove. 

Architecturally, the Simulator has a multilevel structure and runs in a 
distributed environment, where several worker computers run experiments locally, 
and a server gathers experiment related data for statistical processing. 

Experimentally, we concluded that the probability of reaching a final 
configuration (even if it exists theoretically) is low. The probability is closely tied 
to the number of experiment steps (maximum number of transitions the Turing 
Machine can make): the greater the running time, the greater the probability. We 
can also raise the possibility of reaching a solution by increasing various 
experiment parameters (number of DNA molecules, enzymes concentration) and 
by running in parallel several independent experiments. 
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