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OPTIMALITY CONDITIONS FOR A FAMILY OF CURVES

Oltin Dogaru1, Mihai Postolache2, Mădălina Constantinescu3

Fie mulţimea deschisă D ı̂n Rp şi a un punct ı̂n D. Fie Γ (a) familia

curbelor parametrizate ce trec prin punctul a. Această lucrare introduce condiţiile

pe care trebuie să le satisfacă Γ (a) pentru ca două probleme de extrem să devină

echivalente: problema de extrem local şi problema de extrem local restricţionată

de familia Γ (a), pentru o funcţie arbitrară f : D → R. La final, sunt enunţate

două probleme deschise.

Let be given D an open set in Rp, and a a point in D. Also, let Γ (a) be a

family of parametrized curves passing through the point a. This work introduces

a set of conditions to be satisfied by Γ (a) in order that two extremum problems

become equivalent: the local extremum problem and the extremum problem con-

strained by family Γ (a), for an arbitrary function f : D → R . Finally, two open

problems are stated.
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1. Introduction and preliminaries

Let us consider the extremum problem

min f (x) , subject to x ∈M,

whereM is a subset of Rp. IfM is an open set, then the extremum problem is called

unconstrained. Otherwise, the extremum problem is called constrained. In several

recent works [1], [2], [4], [8]÷[11], it was shown that the above type of problem is

related to extremum problems constrained by a family of parametrized curves. This

work develop further this relationship from a different perspective: we investigate

the conditions that a family of parametrized curves has to satisfy such that a local

extremum problem be equivalent to an extremum problem constrained by this family

of parametrized curves.

Definition 1.1. Let I ⊆ R be an interval. A function α : I → Rp of class Cm,

m ≥ 1, is called parametrized curve of class Cm. We shall say that the curve α:
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1) passes through the point a ∈ Rp if there exists t0 ∈ I such that α (t0) = a;

2) is regular at the point a = α (t0) if α
′ (t0) ̸= 0;

3) has a tangent at the point a = α (t0) if there exists k = 1,m such that

α(k) (t0) ̸= 0.

Throughout this work, we shall refer to a function f : D → R, where D is an

open subset in Rp.

Definition 1.2. Let f : D → R, let a ∈ D, and α : I → D be a parametrized curve

passing through a. We say that a is minimum point for f constrained by α if for

any t0 ∈ I, with α (t0) = a, it follows

f (a) = f (α (t0)) ≤ f (α (t)) , ∀t ∈ [t0, t0 + ε) ∈ I.

This Definition is more general than that used in works [1], [2] and [3], where

the above inequality is valid for all t ∈ (t0 − ε, t0 + ε) ⊂ I.

Definition 1.3. Let Γ (a) be a family of parametrized curves passing through the

point a ∈ Rp. We say that a is minimum point of f constrained by the family Γ (a)

if a is minimum point of f constrained by each curve of the family Γ (a).

It is obvious that any local minimum point of f is also a minimum point of f

constrained by Γ (a) .

2. Curves subordinate to a certain sequence

Let a be a point in Rp and S (a) be a family of sequences with elements from

Rp, convergent to a.

Definition 2.1. A parametrized curve α passing though a (α (t0) = a) is called

subordinate to the sequence (xn) ∈ S (a) if there exist a subsequence (xnk
) and a

decreasing sequence of real numbers (tk), tk → t0, such that α (tk) = xnk
, ∀k ∈ N∗.

Let (xn) ∈ S (a) and α a parametrized curve having a tangent at the point a

and subordinate to the sequence (xn). Then, the direction of the tangent of α at a

is one of the limit points of the sequence
xn − a

∥xn − a∥
. Indeed, let us assume that α is

of Cm-class and has a tangent at the point a = α (t0), that is there exists k = 1,m

such that α(k) (t0) ̸= 0. It follows lim
t→t0

α (t)− α (t0)

(t− t0)
k

= α(k) (t0). For t > t0 we get

lim
t→t0

α (t)− α (t0)

∥α (t)− α (t0)∥
=

α(k) (t0)∥∥α(k) (t0)
∥∥ .

Definition 2.2. Let Γ (a) be a family of parametrized curves passing through the

point a in Rp. The family Γ (a) is called S (a)-subordinate if for each (xn) ∈ S (a)

there exists α ∈ Γ (a) subordinate to the sequence (xn) .

Theorem 2.1. Let f : D → R and a be a point in D. Consider C (a) the family of

all sequences of distinct elements from the open set D converging to a. Assume that

Γ (a) is C (a)-subordinate. Then, a is local minimum point for f if and only if a is

minimum for f constrained by Γ (a) .
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Proof. Let us assume that a is a minimum point for f constrained by the family

Γ (a). By reductio ad absurdum, suppose that a is not a local minimum point for

the function f . Then, there exists a sequence of distinct elements (xn) from D such

that xn → a and f (xn) < f (a) , ∀n ∈ N. Since the family Γ (a) is C (a)-subordinate,

we can find a sequence (xnk
) , a parametrized curve α ∈ Γ (a) (α (t0) = a) and a

decreasing sequence of real numbers (tk) where tk → t0, so that α (tk) = xnk
, for all

k in N∗. Therefore f (α (tk)) < f (a) , ∀k ∈ N∗, which contradicts the hypothesis

that a is a minimum constrained by Γ (a) . �

Let g = (g1, ..., gs) : D → Rs be a C1-class function. We set a in D such

that g (a) = 0. Let Cg (a) be the family of all sequences (xn) of distinct points

from D which satisfy the relations g (xn) ≥ 0 and xn → a. Let Γg (a) be a family

of parametrized curves α passing through the point a, with the property that if

α (t0) = a, then g (α (t)) ≥ 0, for all t ∈ [t0, t0 + ε).

Theorem 2.2. Let f : D → R and a be a point in D. Assume that the family Γg (a)

is Cg (a)-subordinate. Then, a is local minimum for f constrained by g ≥ 0 if and

only if a is minimum point for f constrained by the family Γg (a) .

The proof is similar to those in Theorem 2.1.

3. Families of parametrized curves

We shall prove that there exist families of parametrized curves C (a)-subordinate.

Lemma 3.1. Let a, b, c, and d be real numbers with a < b and m ∈ N∗. There

exists a function φ : R→R of class C∞ strictly monotonic on [a, b] such that:

φ (a) = c, φ (b) = d, φ(i) (a) = φ(i) (b) = 0, i = 1,m (1)∣∣∣φ(i) (x)
∣∣∣ ≤ ki

|d− c|
(b− a)i

, i = 1,m, (2)

where ki are constants that do not depend on a, b, c, and d.

Proof. We shall prove that the interpolation Hermite polynomial φ for the data in

(1) is appropriate for our purpose. From (1), we have

φ′ (x) = A (x− a)m (x− b)m , A ∈ R.

We shall show that φ satisfies conditions (2). First of all, φ is strictly monotonic on

[a, b]. Now

φ (x) = A

∫ x

a
(t− a)m (t− b)m dt+B.

From φ (a) = c and φ (b) = d we get

B = c, A =
d− c∫ b

a
(x− a)m (x− b)m dx

.
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Calculating the integral, we obtain

A = k
d− c

(b− a)2m+1 , where k = (−1)m
(2m+ 1)!

(m!)2
.

From |(x− a) (x− b)| ≤ (b− a)2 , ∀x ∈ [a, b], it follows∣∣φ′ (x)
∣∣ ≤ |A| (b− a)2m = k1

|d− c|
b− a

, where k1 =
(2m+ 1)!

(m!)2
.

By Leibniz’s law we obtain∣∣∣φ(i) (x)
∣∣∣ ≤ ki

|d− c|
(b− a)i

, i = 2,m,

ki being constants not depending on a, b, c, and d. �

Remark 3.1. Keeping in mind the value of A in the above, if c < d, then the

function φ is strictly increasing.

Lemma 3.2. [1] Let (xn) be a sequence of real numbers such that:

1) xn ̸= 0, xn ̸= xn+1, for all n ∈ N;

2) there exists λ > 0 with

∣∣∣∣ xnxn+1
− 1

∣∣∣∣ ≥ λ, for all n ∈ N.

If (yn) is a sequence of real numbers such that

3) there exists lim
n→∞

yn
xn

= r,

then the sequence
yn+1 − yn
xn+1 − xn

is convergent to r.

Lemma 3.3. If (xn) is a sequence of positive real numbers and xn+1 ≤ 1

2m
xn,

∀n ∈ N, where m ∈ N∗, then there exists µ > 0 such that

xn − xn+1(
x
1/m
n − x

1/m
n+1

)m ≤ µ, ∀n ∈ N.

Proof. Denote tn = x
1/m
n . We have

xn − xn+1(
x
1/m
n − x

1/m
n+1

)m =
tmn − tnn+1

(tn − tn+1)
m =

tm−1
n + tm−2

n tn+1 + · · ·+ tm−1
n+1

(tn − tn+1)
m

≤
tm−1
n

(
1 +

1

2
+ · · ·+

(
1

2

)m−1
)

tm−1
n

(
1− 1

2

)m =

1−
(
1

2

)m

(
1− 1

2

)m ,

and the statement is proved. �

Lemma 3.4. Let (xn) and (yn) be two sequences of real numbers such that (xn) is

strictly monotonic, xn → 0, yn → 0 and
yn
xn

→ 0. Then, for any m ∈ N∗ there exist
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two functions f, g ∈ Cm (R) , two subsequences (xnk
) and (ynk

) and a sequence of

real numbers (tk) such that tk → 0 strictly monotonic and

f (tk) = xnk
, g (tk) = ynk

, ∀k ∈ N, f (i) (0) = 0, ∀i = 1,m− 1,

g(i) (0) = 0, ∀i = 1,m, f (m) (0) ̸= 0.

Moreover, f does not depend on (yn) , and, if yn > 0, ∀n ∈ N, then f is increasing.

Proof. Let us assume, for instance, that xn > 0, ∀n ∈ N. Replacing (xn) by one

of its subsequences, we can assume xn+1 ≤ 1

2m
xn, ∀n ∈ N. Let tn = x

1/m
n be a

strictly decreasing sequence. Clearly, the function f (x) = xm satisfies the hypothe-

ses. We proceed by constructing the function g. From Lemma 3.2 it follows that
yn+1 − yn
xn+1 − xn

→ 0. Hence

yn+1 − yn
(tn+1 − tn)

m =
yn+1 − yn
xn+1 − xn

xn+1 − xn
(tn+1 − tn)

m .

Now, we can apply Lemma 3.3:
xn+1 − xn

(tn+1 − tn)
m is bounded, therefore

yn+1 − yn
(tn+1 − tn)

m → 0. (3)

Then, for any n ∈ N we consider for a = tn+1, b = tn+1, c = yn+1 and d = yn, in

Lemma 3.1 and we obtain a function φn ∈ C∞ (R) such that:

φn (tn) = yn, φn (tn+1) = yn+1, φ
(i)
n (tn) = φ(i)

n (tn+1) = 0, ∀i = 1,m

and ∣∣∣φ(i)
n (x)

∣∣∣ ≤ ki
|yn − yn+1|
(tn − tn+1)

i
, i = 1,m (4)

where ki are constants that do not depend on tn and yn.

Let

g (x) =


0, if x ≤ 0

φn (x) , if x ∈ [tn+1, tn]

y0, if x > t0.

It is clear that g is a C∞-class function on R \ 0. From (3) and (4) we conclude that

g is a Cm-class function on R and g(i) (0) = 0, i = 1,m. Furthermore, according to

Remark 3.1, if yn > 0 for all n ∈ N, then g is increasing. �

Theorem 3.1 in the following is a refinement of a result in [3], since in the

conclusion the sequence (tk) is strictly decreasing.

Theorem 3.1. Let (xn) be a sequence of distinct points of Rp, convergent to a ∈ Rp.

Then, for any m ∈ N∗, exist a subsequence (xnk
), a Cm-class parametrized curve α,

with α (0) = a, having a tangent at a, and a strictly decreasing sequence (tk) of real

numbers with tk → 0 such that α (tk) = xnk
for all k ∈ N.
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Proof. By a translation, we can suppose a = (0, ..., 0) ∈ Rp. Clearly un =
xn
∥xn∥

is

bounded. Considering it as a subsequence, we can assume without loss of generality

that un → u ∈ Rp. By a rotation, we can assume u = (1, 0, ..., 0). Consequently, if

xn =
(
x1n, ..., x

p
n

)
, it follows

x1n

|x1n|

√
1 +

(
x2n
x1n

)2

+ ...+

(
xpn
x1n

)2
→ 1.

Hence xn > 0 for a large enough value of n and
xin
x1n

→ 0, for all i = 2, p. Obviously,

there exists a subsequence (xnk
) such that x1nk

> 0 and x1nk+1
<

1

2m
x1nk

, for all

k ∈ N. Applying Lemma 3.4 to the pair of sequences x1nk
and xink

, i = 2, p, we

can find non decreasing functions φi : R→Rp, i = 1, p, of class Cm and a strictly

decreasing sequence (tk) of real numbers such that tk → 0, φi (tk) = xink
, i = 1, p,

φ
(j)
i (0) = 0, i = 1, p, j = 1,m− 1, φ

(m)
i (0), i = 2, p and φ

(m)
1 (0) ̸= 0. Then, the

parametrized curve α (t) = (φ1 (t) , ..., φp (t)) , t ∈ R, has the required properties. �

Denote (Rp
q)

+
=
{
x =

(
x1, ..., xp

)
| xq+1 ≥ 0, ..., xp ≥ 0

}
.

Theorem 3.2. Let (xn) be a sequence of distinct points of (Rp
q)

+
convergent to the

point 0 ∈ (Rp
q)

+
. Then, for any m ∈ N∗, there exist a subsequence (xnk

), a Cm-class

parametrized curve α with α (0) = 0, having a tangent at 0, and a strictly decreasing

sequence (tk) of real numbers, with tk → 0, such that α (tk) = xnk
, for all k ∈ N and

α (t) ∈ (Rp
q)

+
, for all t ∈ [0, ε).

Proof. It is enough to prove the following statement: if the sequence (xn) has

the property g (xpn) ≥ 0, for all n ∈ N, then the parametrized curve α (t) =(
x1 (t) , ..., xp (t)

)
given by Theorem 3.1 has the same property, for t ∈ [0, ε). We

can suppose that xpn > 0; if (xn) contains a subsequence (xnk
) with xnk

= 0, then

we can define xp (t) = 0. Let us consider un = xn/ ∥xn∥, which being bounded, can

be assumed to be convergent to a unit vector u =
(
u1, ..., up

)
. We have up ≥ 0.

The case up = 0. By a rotation in the subspace xp = 0 we can assume

u = (1, 0, ..., 0) . Then, by following the proof of Theorem 3.1 we have upn → 0 and

x1n/ ∥xn∥ → 1, hence x1n > 0. By the same Theorem, we get α (t) = (φ1 (t) , ..., φp (t)),

where φi are nondecreasing functions and therefore, the parametrized curve α is the

required one.

The case up > 0. By a rotation we can suppose that u = (1, 0, ..., 0). By

this rotation the halfspace xp > 0 becomes the halfspace h
(
x1, ..., xp

)
> 0, where

h
(
x1, ..., xp

)
=

p∑
i=1

cix
i. We have , in this case, c1 = h (u) > 0.

By a change of parameter, the parametrized curve α as in Theorem 3.1 has the

properties α(k) (0) = 0, k = 1,m− 1 and α(m) (0) = u. Let ψ (t) = h (α (t)) . Then
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ψ(k) (0) = 0, k = 1,m− 1 and ψ(m) (0) = c1 > 0. It results h (α (t)) > 0, ∀t ∈ (0, ε)

and so α has the required properties. �
Corollary 3.1. Consider D be an open set in Rp. Let gi : D → R, i = q + 1, p,

be C1-class functions with rank

[
∂gi

∂xj
(a)

]
= p− q. Let a be a point in D such that

gi (a) = 0, i = q + 1, p, and a sequence (xn) ⊂ D of distinct points, xn → a, with

the property gi (xn) ≥ 0, i = q + 1, p, n ∈ N. Then, for any m in N∗ there exist a

subsequence (xnk
) , a strictly decreasing sequence tk → 0 of numbers and a Cm-class

parametrized curve α passing through a, which has a tangent at the point a, such

that α (0) = a, α (tk) = xnk
and gi (α (t)) ≥ 0, i = q + 1, p, n ∈ N, for all t ∈ [0, ε).

Proof. Consider the change of variable y = G (x) ,

yi = xi, for i ≤ q or i ≥ q + 1 and gi (a) > 0

yi = gi (x) , for i ≥ q + 1 and gi (a) = 0,

which is a diffeomorphism. Now we apply Theorem 3.2. �

4. Optimal families of curves

Consider D an open set in Rp and a point in D. Let g = (g1, ..., gs) : D → Rs

be a C1-class vector function such that rank

[
∂gi

∂xj
(a)

]
= s and g (a) ≥ 0. Let C (a)

be the family of all sequences of distinct element from D convergent to a and Cg (a)

be the family of all sequences (xn) of distinct elements of D such that g (xn) ≥ 0

and xn → a.

Definition 4.1. Let Γ (a) a family of parametrized curves passing through a. The

family Γ (a) is called optimal if for any function f : D → R having a as minimum

point constrained by Γ (a), it follows that a is also a local minimum point for f .

Definition 4.2. Let Γg (a) be a family of parametrized curves α passing through

the point a, with the property: if α (t0) = a, then g (α (t)) ≥ 0, ∀t ∈ [t0, t0 + ε).

The family Γg (a) is called optimal if, given a function f : D → R for which a is a

minimum point constrained by Γg (a) , a is also a minimum point for the function f

constrained by g ≥ 0.

The following two corollaries are consequences of Theorem 2.1 and Theorem

2.2.

Corollary 4.1. If Γ (a) is C (a)-subordinate family, then Γ (a) is an optimal family.

Corollary 4.2. If Γg (a) is Cg (a)-subordinate family, then Γg (a) is an optimal

family.

For eachm in N∗ we denote by Γm (a) the family of all Cm parametrized curves

passing through the point a having a tangent at a. We denote by Γm
g (a) the family

of all parametrized curves α ∈ Γm (a), with α (t0) = a, such that g (α (t)) ≥ 0, for

all t ∈ [t0, t0 + ε).

From Theorem 3.1 and Corollary 3.1 we obtain:
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Theorem 4.1. The family Γm (a) is an optimal family.

Theorem 4.2. The family Γm
g (a) is an optimal family.

The above theorems can be rephrased as follows:

Theorem 4.3. Let f : D → R and a ∈ D. Then, a is local minimum point for f

if and only if a is minimum point constrained by Γm (a) .

Theorem 4.3 is more general than Theorem 3.1 in [3], since it uses the notion

of minimum point constrained by a family of parametrized curves in a more general

sense.

Theorem 4.4. Let f : D → R and a be point in D. Let g = (g1, ..., gs) : D → Rs of

C1-class with rank

[
∂gi

∂xj
(a)

]
= s such that g (a) = 0. Then, a is minimum point for

the function f constrained by g ≥ 0 if and only if a is minimum point constrained

by Γm
g (a).

It is worth noting that no restriction is placed on the function f in the above

two theorems. Theorem 4.3 answers to one of the questions asked in [7], [12]. The-

orem 4.4 generalizes the results of [3], [6], [13]÷[16].

Some remarks hold true.

1) The properties of a family of parametrized curves to be optimal or C (a)-

subordinate also hold for all families that include it. Therefore is useful to find

families of curves with these properties with as few elements as possible.

2) The optimality property of a family is not preserved for all its subfami-

lies. In R2 let us consider the family Γm (0), with m ≥ 2. We have established

that this family is optimal. Let us define the subfamily Φm (0) consisting in all

parametrized curves α ∈ Γm (0) (α (0) = 0) for which min{i |α(i) (0) ̸= 0} ≤ m− 1.

We shall prove first that Φm (0) is not C (0)-subordinate family. The sequence(
xn =

1

n
, yn = 3x(m+1)/m

n

)
converges to 0. On one hand,

yn
xn

= 3
1

n1/m
→ 0 (5)

and on the other hand,

yn

x
(k+1)/k
n

> n1/k(k+1), k ≤ m− 1. (6)

By reductio ad absurdum, we assume that Φm (0) is a C (0)-subordinate family.

Then, there exist a subsequence
(
xnp , ynp

)
, a parametrized curve α ∈ Φ(0) (α (0) =

0) and a decreasing sequence tp → 0 such that α (tp) =
(
xnp , ynp

)
, ∀p ∈ N∗. If

α (t) = (x (t) , y (t)), it is obvious that

x (t) = tk (a+ tf (t)) , y (t) = tk (b+ tg (t)) ,

where a2 + b2 > 0, k ≤ m− 1 and f, g are continuous functions.
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Suppose that a ̸= 0. Therefore,
ynp

xnp

=
b+ tnpg

(
tnp

)
a+ tnpf

(
tnp

) . Using (5) we get that

b = 0. Hence,
ynp

x
(k+1)/k
np

=
g
(
tnp

)(
a+ tnpf

(
tnp

))(k+1)/k
→ g (0) .

However, from (6), it follows that
ynp

x
(k+1)/k
np

→ ∞, which is a contradiction.

If a = 0, then
xnp

ynp

=
tnpf

(
tnp

)
b+ tnpg

(
tnp

) → 0,

which contradicts (5).

Let us prove now that the family Φm(0) is not optimal. In this respect, it is

enough to consider the function

f : R2 → R, f(x, y) =
(
ym − xm+1

) (
ym − 3mxm+1

)
,

which is of C∞-class. The critical point (0, 0) is not a local minimum for the function

f . Following the above ideas, it can be proven that (0, 0) is a minimum point for f

constrained by the family Φm(0).

5. Conclusions and further development

Inspired and motivated by the ongoing research in this area, [1]÷[16], we

introduced and studied optimality conditions for a family of curves. Using essentially

the techniques of Oltin Dogaru and his research collaborators, our results propose

the conditions that a family of parametrized curves needs to satisfy such that a

local extremum problem be equivalent to an extremum problem constrained by this

family of parametrized curves.

Open problem 5.1. Do there exist minimal elements with respect to inclusion in

the class of all optimal families or in the class of all C (a)-subordinate families?

Open problem 5.2. Do there exist optimal families of curves which are not C (a)-

subordinate?
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[15] C. Udrişte, O. Dogaru, M. Ferrara and I. Ţevy, Pfaff inequalities and semi-curves in optimum

problems, in Recent Advances in Optimization (G. P. Crespi, A. Guerragio, E. Miglierina and

M. Rocca (Eds.)), DATANOVA, 2003, pp. 191-202.
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