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NEW MODELING FOR PROTECTION AGAINST FROST ON
THE OVERHEAD POWER LINES

Dorian Marcel MARIN!

In lucrare se studiazdi o metodd de eliminare a depunerilor de chiciurd de pe
conductoarele liniilor electrice aeriene. Metoda se bazeazd pe utilizarea unor
materiale feromagnetice cu punct Curie scazut incorporate in conductor sub forma
unor fire, sau montate pe conductor sub forma unor mansoane. Se elaboreazd un
model teoretic si un program de calcul care permite simularea numericd a
fenomenelor electromagnetice si termice din conductoare, in prezenta unei depuneri
de chiciura.

This paper investigated a method to eliminate the deposition of frost on wires
of overhead lines. The method is based on the use of ferromagnetic materials with
low Curie temperature incorporated in the form of conductive wires, or mounted on
the conductor in the form of sleeves. A theoretical model and a computer program
that allows numerical simulation of electromagnetic and thermal phenomena in the
presence of frost deposition on conductors were developed.

Keywords: overhead power lines, hoar-frost
1. Introduction

Accumulation of ice / hoar-frost on overhead line conductors (LEA) may
cause serious damage in the power system, hence the need of reducing or even
eliminating them. Ice / hoar-frost in the air is in dry or wet form, and it
accumulates on line conductors under cold wind conditions.

A typical situation is under-loading LEA (steady current value below the
rated current) with ambient temperatures below 0°C and in the presence of wind,
the heat produced by Joule effect leads to a temperature on the conductor’s
surface lower than the hoar-frost formation temperature (about -5°C).

The idea is to provide additional heating of the HV conductor, to obtain a
higher temperature then the hoar-frost formation temperature.

Additional heating is achieved by including ferromagnetic material in the
structure of HV conductor. The self protection characterisc of the conductor is the
its property to revert to higher temperatures, above hoar-frost formation
temperatures after an environmental disturbance (low temperature, wind speed
increase) which cooled the conductor under -5°C. Such materials are materials
with low Curie temperature. In Fig. 1 the saturation induction-temperature

'Scientific researcher, National Institute for R&D in Electrical Engineering ICPE-CA Bucharest,
Romania, e-mail: marin.dorian@yahoo.com; dorian.marin@icpe-ca.ro



248 Dorian Marcel Marin

characteristics for two types of ferromagnetic materials with Curie temperatures
of 830°C or 60°C are presented.
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Fig. 1 Magnetic characteristic of the protective conductor material

With these materials, two models for the ice / hoar-frost self protected
conductors (CAP) were considered, according to the arrangement of
ferromagnetic material: the insertion of filaments (CAPIN) and the outer casing
(CAPMA).

The paper proposes a mathematical model for calculating transient thermal
regime of a conductor of an overhead line, on which a deposit of frost as a
cylindrical sleeve was formed.

The heat source is represented by power losses in the conductor and the
power developed by self-protection elements in the form of wire or sleeves.

2. Studied configurations

We consider the example studied as homogeneous conductor construction
for the following reasons: firstly the greatest influence in the calculations has the
outer conductor due to skin effect and secondly the new manufacturing
technology eliminates conductor steel reinforcement inside and use superior alloy
materials.

It is considered a portion of any length from a conductor on the surface
which is a deposit of frost. Outside temperature is ®g and the convection
coefficient between the nozzle surface and environment is o.

The great length of the line allows the adoption of a one-dimensional
geometric pattern, in which the physical values depends only of the spatial radial
coordinate (r) and time.
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The frost is represented by a homogeneous medium, whose thermo-
physical properties are like water properties under the two states of aggregation
encountered: liquid and solid.

OF oy

Conductor Hoar-frost deposit

Fig. 2. Geometric configuration studied

The state equation of the deposit presents three areas:

- At temperatures below the melting temperature (0°C), the
characteristic is practically linear, with a slope equal to the specific
heat of ice (or frost, if applicable).

- A vertical portion corresponding to phase transformation (melting or
solidification), corresponding to the associated latent heat.

- At temperatures above the melting temperature (0°C), the
characteristic is practically a straight line, with a slope equal to the
specific heat of water.

5

45—~ -~ -~

[

4 ———— - L]

8.5 -——---

3L - -—-————

25—~~~

h [W/ma]

ol __
LT e T
|
1 -—————-- +
|
|

0.5~~~ ="~~~

—
8
[ J SUp———
o
o
a
o
-
8

Fig.3. Equation of state of water

It is difficult to estimate appropriate material properties of the hoar-frost.
The hoar-frost looks like a porous medium with a density that can be significantly
less than that of ice (between 90 and 300 kg/m®), which may considerably affect
the development of the phenomenon.
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We suppose that the cylindrical symmetry is maintained throughout the
studied process.

The problem consists in the study of the transient thermal regime
represented by the conductor (metal), self-protection sleeve (in various
constructive solutions) and frost coating, in contact with ambient temperature and
with conditions of heat transmission.

The main difficulty consists in variations of the material properties with
the temperature. The most difficult to model is the highly nonlinear character of
the thermo-physical properties of water (or frost).

3. Heat conductions equation

The thermal regime is described by the equation of Stefan:

oh —
5[ = dv lsl;dev+i.>(/1grad0)dA (1)
for a domain Dy bounded by a closed surface £. Moving bodies are neglected.
On separation surfaces, crossing relations are satisfied:
« boundary between two solids, designated by indices 1 and 2:
do,|  , do,
& dn

2
1dnl ) @

e contact surface of a solid with surface temperature 6, and a fluid with
temperature 0y (heat convection):

—/IsgradHSzak(ﬁs—ﬁf),VMeDz,t>O (3)

4, Dimensionless forms

It is convenient to express relations in dimensionless form, obtained by comparing
physical quantities to conveniently chosen reference values. Thus, choosing a
reference length /) a reference temperature &), a reference enthalpy hy=h(6,,) a
reference thermal conductivity 4p=A(6), a reference time t9=(holp?)/(106) and a
reference power py=190y/[y?, dimensionless quantities are defined as follows:

x="r=L0=0 =" A-2 P-P Graa=iy.av=L"a1=-%
A ly 0, hy A Po ly ly
Equation (1) becomes, in dimensionless form:
j OH 4y - j PdV + §(AGrad®)d_A (5)
5 oT 5 s
and the convection condition (3) is:
~ A, Zis — Bi(©,-0,) Bi = "ZJ‘) (Biot number) (6)

n f
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5. Finite volumes method

In traditional approaches, thermal problem is treated from the local form
of Stefan equation.

This approach presents considerable difficulties, especially for nonlinear
problems in materials whose properties depend on temperature.

For this reason, finite volume method is adopted, the field is discretized
into sufficiently small disjoint elements, for each of which the Stefan equation
being applied, taking into account the heat exchange between contiguous
elements.

In evaluating the surface integrals which express the heat exchange
between elements, the conditions of passage through areas between them are used
[1]. In the case of outer surfaces, a specific form of conditions for transition is
used.

Thus, a system of differential equations that equal numbers of mesh
elements is obtained. Unknowns are temperatures attached to each mesh element.
It’s reasonable that these temperatures to be considerated like average
temperatures of the elements.

In principle, for a mesh of N elements, this system is of the form:

[V} [1]=[avTP]-[GTe) )

where [O]=[@;,.., O] are the temperatures of elements (in relative units),
[H] =[H i, .., Hx] T are the specific enthalpy, [P]=[ P ;, ., Px] T are the specific
power dissipated and [AV] is a square matrix whose diagonal elements are
meshing elements volumes. The coefficients matrix [G] is a symmetrical square
matrix with N rows and columns. By appropriate numbering of the N elements,
the coefficient matrix will present a shape of "band", with favorable implications
for numerical calculations.

Further, the time is discretized, with constant or variable time step, and the
time derivatives are replaced by finite difference expressions. For the simplest
case (but also most stable) of the "2 Steps" methods (e.g. Euler method) results:

4 141w L (1141
D)L (o)) ®
where H are the "current” values and H * are the future (unknown) values.

For numerical stability reasons, the implicit method is adopted, by taking
the right member of equation (7) for the next time step (i.e. with values still
unknown). In this way, making a step in time requires solving a system of
equations, what apparently considerably complicates the calculations. Instead, this
method is stable, which it is desirable and will be considered further.
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B n)- ) =[arTpe)-[oTe ©

6. Treatment of nonlinearities

The main difficulty in solving system (9) consists in the presence of
nonlinearities of the materials with temperature dependent properties, such as
those suffering phase transformations.

In such cases, current practice consists in developing iterative methods
such as Newton-Raphson, involving numerous numerically problems.

An advantageous alternative consists in using a method proposed by
Hantila [2], for electromagnetic field problems, but which can be applied in other
situations.

Thus, the caloric equation of state can be represented by the relation:

h(0)= c,0+4(0) (10)
respectively, in relative units:
H(©)=C,0+0(0) , Cy = cully /ho; O(0) =q(0) / hy
Y

The coefficient ¢,, is a kind of an "average" specific heat, and ¢(6) is a
"difference” term. For the discretized field and using the relative values, this leads

to a representation of the type:
[(e)]=[c,]e]+[0(®)] (12)

where [Cy,] is a diagonal matrix of N*N terms representing "average" specific
heat of mesh elements. They may differ, but most often they can be chosen
equally. In this case the matrix [Cy,] is reduced to a scalar.

System (7) becomes:

(eJo)= 20 (v Bjgem o= o1+ i) a3y

It appears that the coefﬁc1ents of matrix [G *] dlffer from the original
system only by diagonal terms. Therefore, the algorithm of solving the problem of
steady state can be easily adapted to solve the problem of transient regime.

The main disadvantage of this algorithm comes from passing through
nonlinear characteristic given by [Q*]=[Q(®)]. When passing through the phase
transformation, the algorithm becomes unstable, because small changes in
temperature leads to great variations of enthalpy, and hence of the "difference"
term Q.

To avoid this, the algorithm can be modified by choosing as unknowns the
enthalpies of the elements, instead of temperatures. This is possible because the
relationship A(6) is bijective.

Thus, thermal equation of state can be represented by the relation:
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O(h)=k,h+q(h);, [kn] = gradm’/J (14)
respectively, in relative units:
O(H)=K,H+Q(H): K, =k,h/6,: O(H)=q(h)0, (15)

In discretized field and using relative values, it is a representation of the
type:
lo(#)]=[x, JH]+[0(#)] (16)
in which [K;,] is a diagonal matrix of N*N terms. As in the previous case,
different values of ky,, or a common value for all elements mesh may be taken.
System (9) becomes:
(6= 2 v Tpe)-lo=Toter): [67)=[eTx1+ 2 )
It should be noted that, if different values of the coefficient k,, for the
mesh elements are adopted, the coefficients matrix [G *] is no more symmetric.
Hence would be advantageous, in terms of computation economy, to adopt a
single k, value (in which case the matrix [K] is replaced by the scalar K;,). In this
case, system coefficients matrix [G*] differs from the original in that it is
multiplied by the scalar, and diagonal terms change.
Iterative algorithm can be represented by the following pseudo-code:
[@]€ initial conditions
[H]=[H(©)]
// Time steps:
first factorization of matrix G *
For T= AT to Tfnal step AT{
if step AT is changed, refactoring the matrix G *
/ / Tterations:
Repeat {
[Q*] = [Q(H)] (<=linear characteristic)
[H*] €system solution (9) with factorized matrix
Err=|[|[H*]-[H] ||

[H] = [H *]
while Err > admissible error
(O] =[6(H)]

}

The main advantage of this algorithm comes from passing through
nonlinear characteristic by [@*]=[®(H)]. When passing through the phase
transformation, even large changes in enthalpy leads to small variations of
temperature, and of the "difference" term [Q(H)]. This makes the algorithm stable.

It should be noted that, by this representation, the matrix [G *] contains
only linear terms. Therefore, to solve the system of equations by factorization, it is
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enough that factorization of system coefficients matrix, respectively the most
intensive time phase (number of operations is O(N°)) to be made only once, as
long as the time step or thermal conductivities of the material does not change.

7. Numerical model

The studied case is a one-dimensional geometric model, with cylindrical
symmetry.

Meshing elements will be N; coaxial layers, whose thicknesses are
arbitrary. The first element is the conductor, the second is the protection element
(sleeve or wire), and following N;-2 are layers of frost.

Let:

a = outer radius of conductor (including protection)

b = outer radius of frost deposition

thickness of the protective sleeve

and:
: radius of conductor ; : average radius of nozzle
di = (b-a)/(N;-2) : thickness for the frost layer
r3 =atds/2  :average radius of layers
fori=4,N;: Ii=ri; + (di_1+di)/2

Stefan equation for layer (i,1=1,... Ny

dh, :

“rmv = p g0, -0) v 2,0, -0)) =1, (18)
where:

2md, i=2,.N,
Av, = (19)

mwr? i=1 (conductor)
are element volumes, p; is the line loss in the conductor, p; is the power dissipated
in the line protection elements (in W/m), p; = 0 for i = 3,..N;, and g coefficients
models the heat transfer between neighboring elements.

These factors are evaluated in [1] for a two-dimensional problem and a
rectangular mesh network. In the present case, it becomes:

. div A Aoy
gi,i—l_gE_zﬂ-(r;' 2)7/(i,di—l)’ i=2,Nr

2 2 (20)
g = 2m(r+ Lyl By o N
gi,i+1 =4, = i 7 4 i’ di+1 > - D
2 2

For simplicity, is denoted by gg and g; coefficients that links a median element (i)
of its neighbors from outside (i+1), and inside (i-1).
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Fig.4 Configuration studied

Function y has the expression:

X, X
7(x,,x,) = —
xl +x2

e2y)

On the outer surface (i=N;), the thermal convection equation leads to a
particular expression of that coefficient, in function of the number of Biot
associated to the outer surface:

dy . Ay .
gy =2x(ry +—2)y(——+,Bi) (22)
r 2 dN

2

Under dimensionless form, shall be adopted following reference sizes:
- Reference temperature: 6, (for numerical modeling was adopted 6,=1)
- Reference length: Lo=a
- Reference enthalpy Ho = h(6¢), where h is specific enthalpy of water
at reference temperature.
- Conductivity reference: Aj=A(0y), where A is the thermal conductivity of
water at reference temperature.

. 2
- Reference time: r = Hly
‘ AOGO

- Lineic power reference: Po= Ao 09

Therefore, dimensionless values which will operate as follows:
- Relative Coordinates: R; =ri/Lo, D; = di/Lo, 1= 1,N;

- Relative temperature: ® =0 / 0.

- Relative line powers: P; =pi/Py
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- Reference enthalpy: H=h/Hy;
- Biot's number: Bi=ox Lo/ A
Differential equations assume the following dimensionless form:
izH LAV, = P+[G,,1(0,,-0)+G,,,(©,,-0,)} i=1..,N,(23)
where:

A, A
G, =G, =2n(R, ——) (D D ; =2,Nr
A2 AZ (24)
i i+l — _
G =G, =27(R + )7(D D, ” i=1LNr-1
2 2
27RD, i=2,.N,
AVi=q ., . (25)
7R, i=1 (conductor)

G is the tri-diagonal and symmetric matrix of coefficients. Because
homogeneous coefficients k,, were adopted, the matrix G* is also tri-diagonal and
symmetric.

The power dissipated in the protection element is calculated according to
its temperature (function of the magnetic flux density) and other relevant data.

Two types of protection elements (CAPIN respectively CAPMA) were
took into consideration.

In order to study a variety of "scenarios", the program allows setting of
time varying conditions, namely:

8.

external temperature,

intensity of electric current in conductor,

wind speed, leading to convection coefficients, by criterial relations:
Nu = 0.037 Re "* Pr "% to finally obtain a = 6.126 v **

Numerical example

Consider the following numerical example:

Protective sleeve:
- Model: CAPIN
- outer radius of layer: a= 12 mm
- filament diameters: d;=3.90 mm
- number of filaments: N =4

Conductor:
- Aluminum
- Current: Ic =400A
- Line losses: P.=P(1)=27 [W/m]

Frost layer:
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- inner radius: a=12mm
- outer radius b =50 mm
- initial temperature: ~ 6ini = -5 °C
- equation of state approximated by a polygonal line (table 1):
Table 1

°C -100  -0,5 0,5 30 100
Jme |0 208950000 541950000 665555000 958855000

The transition phase at 0°C was split at -0.5°C and 0.5°C, for reasons
imposed by the interpolation algorithm used in MATLAB program.
Between these values, the characteristic was approximated by linear
interpolation, the only able to ensure the absence of parasitic
oscillations. The average coefficient ky, is equal to the initial slope of
the characteristic 0(h).

Environment:
- Ambient temperature: Te=-10°C
- Convection coefficient. o =20 [W/(m °C)]

Temperature distribution at various times
10 T T T T T T

! time

o5 1 1.5 2 25 3 35 4 4.5
ria

Temperature variation over time in different layers
10 T T T T T T

The temperature of the frost layer

Frost enthalpy distribution at various times
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Enthalpy change over time in different layers of frost
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Temperature variation over time in different layers

o
Fig. 8 With thermal protection.
Temperature distribution at various times
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Fig. In the absence of thermal protection (zero auxiliary power)

The presence of protective factors leads to a higher temperature of
conductor than in its absence, thus facilitating the frost melting.

It appears (fig.10) that the iteration method adopted provides an accurate
representation of highly nonlinear behavior of frost (including phase change).
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9. Conclusions

This paper brings the following original contributions:

1. Modeling by similitude of physical system and experimental model of
the self protection conductor, to obtain its electro-thermal parameters.

2. A theoretical model and a computer program for the two types of
protection of conductors in different operating conditions:
temperature, wind and current intensity in conductor.

3. Experimental investigations with different materials to highlight and
analyze the practical phenomena and processes occurring on the
protected conductors.

Experimental investigations were carried out at INCDIE ICPE-CA, in

order to confirm the adopted calculation model.
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