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IMPLICIT ITERATION SCHEME WITH NUMERICAL ANALYSIS FOR
A FINITE FAMILY OF STRICTLY PSEUDOCONTRACTIVE MAPPINGS

Balwant Singh Thakur, Rajshree Dewangan, Alia Kurdi®

In this paper, we propose an implicit iteration scheme with perturbed mapping
for a finite family of strictly pseudocontractive mappings and establish weak and strong
convergence theorems. We report some preliminary computational results related to the
influence of parameters of the algorithm. Results in this paper extend and improve recent

results in the literature.
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1. Introduction

In the past five decades, iteration processes for numerical reckoning fixed points of
nonlinear mappings and their applications have been studied extensively by many authors.
In 2001, Xu and Ori [24] introduced an implicit iteration process to approximate a common
fixed point of a finite family of nonexpansive self mappings in a Hilbert space. In 2004,
Osilike [12] further extended the iteration process of Xu and Ori to a finite family of strictly
pseudocontractive self mappings in Banach spaces. In 2007, Acedo and Xu [1] proposed
a parallel iterative algorithm for strictly pseudocontractive mappings in the framework of
Hilbert spaces. Zeng and Yao [30] introduced in 2006 an implicit iteration process with
perturbed mapping, to approximate common fixed points of a finite family of nonexpansive
mappings. Ceng et al. [3] introduced in 2007 an implicit iteration process with perturbed
mapping G, for approximating common fixed points of a finite family of continuous pseu-
docontractive self-mappings. Our contribution in this paper is motivated and inspired by
the above described research, and proposes a new implicit iteration scheme, with perturbed
mapping, to approximate fixed point of a finite family of strictly pseudocontractive self-
mappings.

2. Mathematical preliminaries
Let E be a real Banach space and let J: E — 27" is the normalized duality mapping
defined by
J) ={f e E*: (. /) = [zl IF 5 =l =[]} VzeFE,
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where E* denotes the dual space of E and (-,-) denotes the generalized duality pairing. If
E* is strictly convex then J is single valued. We denote the single valued normalized duality
mapping by j. Let T: E — E be a mapping. We use F'(T') to denote the set of fixed points
of T; that is, F(T) ={x € E : © =Tx}.

Let T be a mapping with domain D(T') and range R(T) in E. Mapping T is said
to be N-strictly pseudocontractive mapping in the sense of Browder-Petryshyn [2], if there
exists a constant 0 < X < 1, j(x —y) € J(z — y) such that

(Tw =Ty, j(z —y)) < e —y|* =Nz —y— (Te-Ty)|*, Ya,yeDT). (21)
In Hilbert space inequality (2.1) is equivalent to the following inequality.
T2 = Ty|* < |lo—y|* + 5z —y - (Te = Ty)|*,

where kK = (1 — 2\') < 1, and we can assume also that x > 0, so that x € [0,1).

The class of strictly pseudocontractive mappings includes the class of nonexpansive
mappings. A nonexapansive mapping is strictly pseudocontractive mapping for xk = 0. A
mapping 7" is said to be nonexpansive if |7z — Ty|| < ||z — y||, for all z, y in D(T'). A strictly
pseudocontractive mapping is pseudocontractive mapping for k = 1. The class of strictly
pseudocontractive mappings falls between the class of nonexpansive mappings and the class
of pseudocontractive mappings: Karaka and Yildirim [9], Thakur et al. [18, 19, 20, 21, 23],
Yao et al. [28].

Inequality (2.1) is equivalent to

(I =T)z— (I =Ty, jx—y) > N||(I = T)x — (I - T)y|* (2.2)

It can be seen from (2.2) that every strictly pseudocontractive mapping is L-Lipschitzian
with L > 1+ .

Mapping T is pseudocontractive [2, 10], if there exists j(x — y) € J(z — y) such that

(Te — Ty, j(x —y)) < e —yl*, VayeDT); (2.3)

and T is strongly pseudocontractive, if there exists a constant 8 € (0,1), j(z—y) € J(z—y)
such that
(Tx =Ty, j(@ —y)) < Ble—y|*, Va,yeD(T).
Recall that T is strongly accretive, if there exists a constant 6 € (0,1), j(z —y) €
J(x —y) such that

(Tz =Ty, j(z —y)) = 8z —yll*, Va,yeD(T).

In 2001, Xu and Ori [24] introduced the implicit iteration process (2.4) to approximate
a common fixed point of a finite family of nonexpansive self mappings in Hilbert space. More
accurately, for arbitrary chosen zy € K, construct x,, by the formula

Tp = pTp-1+ (1 —ap)Thx,, n>1, (2.4)

where {a,,} be a sequence in (0,1) and T,, = T}, mod N-

Zeng and Yao [30] introduced an implicit iteration process (2.5) with perturbed map-
ping GG, to approximate common fixed points of a finite family of nonexpansive mappings.
For an arbitrary initial point z¢o € H, the sequence {z,} is generated as follows:

Tp = &1 + (1 — ap)[Thxn — MuG(Thxy)], n>1, (2.5)
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where G: H — H is a k-Lipschitzian and 7-strongly monotone mapping for some constants
k,m >0, p € (0,23) is a fixed number and {a,,} C (0,1), {\.} C [0,1).

It is clear that if A, = 0, n > 1, then the implicit iteration scheme (2.5) reduces to
the implicit iteration process (2.4).

Ceng et al. [3] introduced an implicit iteration process (2.6) with perturbed mapping
G, for approximation of common fixed points of finite family of continuous pseudocontractive
self-mapping. For an arbitrary chosen initial point xg € E, the sequence {x,} is generated
as follows:

Ty = ap(Tp_1 — AMG(Tn—1)) + (1 — an)Thzn, n>1, (2.6)
where G: E — E be a mapping which is both X -strictly pseudocontractive and d-strongly
accretive with A + 4 > 1, and {a,,} C (0,1), {\,} € [0,1).

Clearly, if A\, = 0, for all n > 1, then the implicit iteration scheme (2.6) reduces to
the implicit iteration process (2.4).

Motivated and inspired by the above described contribution, we propose a new implicit
iteration scheme with perturbed mapping, to approximate fixed point of a finite family of
ki-strictly pseudocontractive self-mappings {T, l}f\il as we will explain below.

Let E be a real Banach space and G: E — E be a perturbed mapping which is both
M -strictly pseudocontractive and d-strongly accretive with X' + § > 1. For an arbitrary
initial point ¢ € E, the sequence {z,} is generated by

N
Tn = OnTn1 + (1 — ap) [Bn (0 = AG(2)) + 70 Y uTxn} (2.7)
i=1
where {ui}ﬁil is a sequence of weights satisfying Zi\il wi =1, {a,} € (0,1),{v»} € (0,1],
{Bn} C[0,1) and X € [0, 1).

In this paper, we establish some strong and weak convergence theorems for a finite
family of strictly pseudocontractive mappings using implicit iteration scheme (2.7). Last
but not least, in Section 4 we illustrate our results on concrete examples and numerically
compute the fixed point. The results obtained in this paper improve and extend the results
of Xu and Ori [24], Ceng et al. [3], Chen et al. [5], Dewangan et al. [7, 8], Thakur et al.
[22], Yang et al. [25], Yao et al. [26, 27, 29], Zeng and Yao [30], Zhou [31] and some other
results in this direction.

To introduce our results, we need other definitions and results. In this respect, recall
that the norm of Banach space E is said to be Gateaux differentiable (or E is said to be

smooth) if the limit
t —
et tyl
t—0 t
exists for each z,y on the unit sphere S = {z € E : ||z|| = 1} of E. Moreover, if for each

(2.8)

y in S the limit defined by (2.8) is uniformly attained for € S, we say that the norm of
FE' is uniformly Géateaux differentiable. The norm of F is said to be Fréchet differentiable
if, for each x € S, the limit (2.8) is attained uniformly for y € S. The norm of F is said
to be uniformly Fréchet differentiable (or is said to be uniformly smooth) if the limit (2.8)
attained uniformly for (z,y) € S x S. We know that if E is smooth then the normalized
duality mapping J is single valued and continuous from the strong topology to the weak*

topology.
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Definition 2.1 ([11]). A Banach space E is said to satisfy Opial’s condition if whenever
{z,} is a sequence in E which converges weakly to x, as n — oo, then

limsup ||z, — z|| < limsup ||z, —y||, forall y € E, y# .
n— oo n—oo

Lemma 2.1 ([14]). Let E be a real g-uniformly smooth Banach space which is also uniformly
convex. Let K be a nonempty closed convex subset of E and T: K — K be a strictly pseudo-
contractive mapping in the terminology of Browder-Petryshyn. Then (I —T) is demiclosed
at zero, i.e. {x,} € D(T) such that {x,} converges weakly to x € D(T) and {(I — T)x,}
converges strongly to 0, then x — Tx = 0.

Lemma 2.2 ([13]). Let {an},{bn} and {c,} be three sequences of nonnegative real numbers
satisfying the following condition:
ant1 < (1 +by)an + ¢, foralln>ng,
where ng is some nonnegative integer, Y o b, < 0o and > oo ¢, < co. Then
(i) limy, 00 @ exists;

(i) if, in addition, there exists a subsequence {an,;} C {an} such that a,, — 0, then a, — 0
asn — oo.

Lemma 2.3 ([16]). Let {an}and{b,} be two sequences of nonnegative real numbers satis-
fying the inequality
ant1 < ap + b, forall n>1.
If Z;’LO:O bn, converges, then lim,, o a, exists.
Lemma 2.4 ([6]). Let K be a nonempty closed convex subset of a smooth Banach space E

and let T: K — K be a strictly pseudocontractive mapping. Then the fized point set F(T)
is a closed convex subset of E.

Lemma 2.5 ([3]). Let E be a smooth Banach space and G: E — E be both X -strictly
pseudocontractive and J-strongly accretive with N’ + 8 > 1. Then I — G is nonezpansive

mapping.

Proposition 2.1. Let E be a smooth Banach space and G: E — E be both X -strictly
pseudocontractive and §-strongly accretive with X' +8§ > 1. Then Sy = (I = \G): E — E is
a pseudocontractive mapping, for 0 < A < 1.

Proof. Since Sx(z) = = — AG(z), using Lemma 2.5 we have

(Sx(@) = Sa(y),j(x —y)) = (z = AG(z) —y + AG(y), j(z — y)),
(I=Nz+ Al -Gz =1 =Ny —AI -Gy, j(z—y)),
=Nz =yI* + 2 = Gz — (I = Gy, j(x —y)),
A=N ]z =yl + AT = Gz — (I = Gyl ||z — ]I,
<(1- /\)Hw—y\l + Az =yl llz —yll,

IAN I

IN

hence S is a pseudocontractive mapping. O
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Lemma 2.6 ([31]). Let E be a smooth Banach space and K be a nonempty convex subset
of E. T;: K — K is a k;-strictly pseudocontractive mapping for some 0 < k; < 1. Assume
that {ui}ﬁvzl is a positive sequence such that Ef\il wi=1. Set S = Zi\[:l w;T;, then

(i) S: K — K is a k-strictly pseudocontractive mapping with k = min{k; : 1 <i < N}.
(il) If F =N, F(T3) # 0, then F(S) = 5.

Lemma 2.7 ([4)). If J: E — 2" is a normalized duality mapping, then for all x,y € E,
e+ yll* < llell* + 2 (y.j(x +y), for all jz+y) € J(@+y).

Throughout the paper, we shall denote strong (respectively weak) convergence of the
sequence {x,} to = by z, — x (respectively z,, — x) and for the weak w-limit set of a
sequence {x,} in E, we shall use the following notation

wy(zn) = {z € E;{x,,} — x, for some subsequence {n;} of {n}}.

3. Weak and strong convergence theorems

Lemma 3.1. Let E be a real smooth Banach space E, G: E — E be both X -strictly pseudo-
contractive and 0-strongly accretive with X' +6 > 1 and T;: E — E be a ﬁnite family of x;-

strictly pseudocontractive mappings, where i € {1,2,..., N} such that F = ﬂ L E(T;) # 0.

Suppose {an}, {Bn} and {y,} are real sequences satisfymg the conditions 0 < a < a,, < b <
L0<a<y <1, B8,+v=1and > ", By < co. Let {x,} be a sequence generated by
(2.7). Then

(a) lim,—oo ||y, — pl|| exists, for all p € F;

(b) lim,, o0 d(xy, F) exists, where d(zp, F) = infpes ||z, — || -

Proof. Let S = Zfil wi Ty, where p; > 0 for all 1 < p; < N such that Zf;l u; = 1. Then
by Lemma 2.6, S is a k-strictly pseudocontractive mapping with x = min{x; : 1 <1i < N}
and F(S) = 9.

Suppose p € F, and using Proposition 2.1 and Lemma 2.6, we have

2 = plI* = (Qnzn—1 + (1 = @) [Ba(zn = AG(n)) + 10 San] = Py (@ = p)),
)+ (1= an) ([BnSx(xn) + S| — p,j(2n —p)),
)+ (L= an) (Bu(Sx(zn) = p) + W (Stn — ), j(2n —p)),
= an (@n1 = p,j(@n —p)) + (1 = an)Bn (Sx(zn) — Sx(p), j(zn — p))
- (- an)ﬂn (AG(p), j(xn = p)) + (1 = an)yn ((Szn — ), j (0 — P))
< ap [@n—1 = p| 2 = pll + (1 = @n)Bn |20 — pl”
+ (1= an) B A GO |20 = pll + (1= @n) v |20 = p]®

— (I = an)ynk||zn —p — (Szn *p)HQ,

= Qp, <$n—1 (zn p)

= On <:Cn—1 ( p)

< ap [@n—1 = p|l 20 = pll + (1 = an) |z, — p|*
+ (1= an)BuA G| [[2n — pll- (3.1)
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If ||z, — p|| = 0, the result follows. Next, let ||z, — p|| > 0. Then from (3.1), we have

1—a,
e = pll < lencr — ol + T2 g 3 e,

n

(1-a)

a

< [[#n—1 —pl + Bur G- (3.2)

Using condition > | 8, < co and by Lemma 2.3, we get that lim,_, ||z, — p|| exists.

Since lim,, oo ||x, — p|| exists, so {z,} is bounded. Since G is L—Lipschitzian with
L>1+ 4, s0 {G(x,)} is also bounded. Let ||G(zy,)| < M, for all n > 1, for some M > 0.
Then by equation (3.2)

[2n =Pl < llen—1 —pl + 0= a)ﬁnA 1G(p) = G(zn-1) + Gzn)l,

< lowr —pll+ =20 160) - Gan i+ 22

1—a 1—a
< Nowr =l + DAL o — ol + S g

(1—a)

BrA |G (zn-1)ll,

_ [1 + ML} lenos — ol + T g 1.

a

Taking the infimum over all p € &, we have

d(zn, F) < [1 4 d=a) ﬁnAL} 1,5 + L= Y5

a a
By applying Lemma 2.2, we have lim,,_,o d(x,, F) exists.

This completes the proof. O

Lemma 3.2. Let E be a real reflexive and smooth Banach space, G and T; are as in Lemma
3.1 and all conditions of Lemma 3.1 are satisfied. Let S = Zivzl w;T;: E— E be a k-strictly
pseudocontractive mapping. Let {x,} be a sequence generated from an arbitrary xg € E by
(2.7). Then limy, o0 [|S2p — zn|| = 0.

Proof. Since FE is smooth, the normalized duality mapping J is single-valued. Also, since
the mappings T;: E — E are k;-strictly pseudocontractive for each ¢ € {1,2,..., N}, we
deduce from (2.2) that

(I =Ti)x— (I =Ty, j(x —y)) > wll(I = Tz — (I = Ty)yll*,

for all x,y € E, where x; € (0,1), for i € {1,2,...,N}.
Put k = mini<;<n{k;}. Then x € (0,1) and for each i € {1,2,...,N}

(I =T — (I =Ty, j(x —y) = &|(I - T)e - (I - Tyl

for all z,y € E. Since S = Zf\;l w;T;: E — E is a k-strictly pseudocontractive mapping
with kK = min{k; : 1 <i¢ < N}, so we have

(I =8)z—(I—8)y,jz—y))>k|I=S)z—I—-S)y|> foral z,yc E.  (3.3)

Moreover, it is easy to see that each T; (1 < ¢ < N) is S-Lipschitzian with 8 > 1+ %
Hence all the conditions of Lemma 3.1 are satisfied. Thus, by Lemma 3.1 we conclude that
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lim, o0 ||zn, — pl| exists, for all p € F. Consequently, {z,} and {G(x,)} are bounded, due
to the fact that G is L-Lipschitzian with L > 1+ % Using equation (2.7), we have

Tp = nZn_1+ (1 = ay) [Bn (T — AG(2,)) + YnSTy],

and
Tyl = a—lnmn + (1 — Ozn> [Bn (zn, — AG(20)) + YnSTy] , (3.4)
then
B 1 1
Ty — Tpe] = <1 — %) Ty — (1 - Oén> [Bn (xn, — AG(24)) + Y ST,
= (1 - Cjﬂ,) (1 - 6n)$n - (1 - 0[1> 'Ynsxn + <1 - Oéln) /Bn)\G(-rn)a
_ (1 _ aln) (T — San) + (1 - a) BuAG ().
Now,

(50 = 2ncrodlen =) = (1= o ) 2o 00 = S = )

n

+ (1= 2 ) A (Glan)dten ). (35
By Lemma 2.7 and using (3.3) and (3.5), we have

||13n _p||2 = Hxn—l —p+xTn— xn—l”2 ,

S ||xn—1 _pH2 +2 <xn - xn—laj(xn _p)>7
n< Tn —

<llowr—alf 42 (1 ) (-~ 5p),(n 1)
)
)

+2(1- 1) 8. (GG - ).

< l#n-1 — pl* -2 Vn = (I = 8)p,j(zn —p))
(o) et

~2(120) A Glan)dten - ).

< llzns — o —2( )7 [ — Sl

+2 (2222 galcenlllen - ol (36)
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Thus from (3.6) and using conditions 0 < a < a,, <b<1,0<a <7y, <1, we have

1-5 1—-a,
2 () ak ||z, — Sz, ||* < 2 ( a ) Vot ||2n — Sz |?
b Qp

< a1 = pll* = l|z0 - pII”

1—a,
+2 (125 B G e o ol

n

2 2
<lzn—1 =plI” = llzn = pll

+2(1;“)ﬂnwxn—pn. (3.7)

Since limy, 0 ||2n — p| exists and Y 2 | B, < oo, it follows that
nh_)n;o |z, — Sayn|| = 0. (3.8)
This completes the proof. O

We now establish a weak convergence result:

Theorem 3.1. Let E be a uniformly convex Banach space satisfying Opial’s condition. Let
G, T; and S are as in Lemma 3.2 and all conditions of Lemma 3.2 are satisfied. Then the
sequence {x,,} generated by (2.7) converges weakly to a member of F.

Proof. Every uniformly convex Banach space is reflexive, also lim,,_, ||z, — p|| exists for
each p € F by Lemma 3.1, thus {z,} is bounded. Hence {x,} is a bounded sequence
in reflexive space, therfore by Eberlein’s theorem {x,} has a subsequence {x,,} which
converges weakly to some ¢ € E. Now, we prove that {z,} has a unique weak subsequential
limit in F. To prove this, let * be the weak limit of another subsequence {xnj} of {z,}.
By Lemma 3.2,

lim ||z, — Sz,|| =0
n—oo

and I — S is demiclosed with respect to zero by Lemma 2.1 and so we obtain ¢ € F. Again,
in the same way, we can prove that z* € F. Since F satisfies Opial’s condition, it follows
from a standard argument that ¢ = *. Thus {z,} converges weakly to a member of F, and
the proof is now complete. |

Theorem 3.2. Let E, G, T; and S are as in Lemma 3.1 and all conditions of Lemma 3.1
are satisfied. Then the sequence {x,} generated by (2.7) converges strongly to a member of
F if and only if liminf,, o d(x,,F) =0.

Proof. The necessity of condition is obvious. Thus, we will only prove the sufficiency.
Let liminf, ,o d(2,,F) = 0. Then by Lemma 3.1, we have

lim d(z,,¥) =0.

n—oo
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Next, we show that {x,} is a Cauchy sequence in E.
From equation (3.2), we have

0=a)y AIGOI.

Hxn—i-m _p” < ||xn+m—1 _pH +

1—a (1—-a
< w2 = ol + T g a 0@+ s 10
1—-a 1-a 1-a
<hon -+ |00 g a2 e,
( n+m
<o~ ol + L jom Y 5 (3.9)
1=n+1
Now, using (3.9), we have
[Zntm — Tnll < |Zngm — pll + |20 — Pl
(1 n+m
< 2|z —pll + )\HG 0> 8
1=n—+1
(1 ) n+m n+m
< 2|an —pll + ——A[G(p) — G(zn)|| Z Bi + >\HG n)l Z Bi,
i=n+1 1=n+1

( n+m n+m
<2+ A-ay > &) lom =l + LD 30 > B

i=n—+1 1=n+1

Taking the infimum over all p € F, we obtain

n+m n+m
|Zn+m — Znll S( )‘L Z 52) (%0, F )\M Z Bi

i=n—+1 1=n—+1
—0 asn — 0.

This implies that {x,} is a Cauchy sequence. Since FE is complete, therefore {x,,} converges
to some ¢ € E. Since S is a strictly pseudocontractive mapping, by Lemma 2.4, F(S) is
closed. Again by Lemma 2.6, we have FI(S) = F, so J is closed and hence ¢ € F, and his
completes the proof. O

We recall the following definitions:

Definition 3.1 ([15]). A mapping T: E — E with F(T) # () is said to satisfy condition (A)
on F if there exists a nondecreasing function f: [0,00) — [0,00) with f(0) = 0 and f(r) > r
for all r € (0,00) such that for all z € E,

| = Txl| > f(d(z, F(T))),
where d(z, F(T)) = infg-cpery lz — 2%

Definition 3.2 ([17]). A finite family T;: E — FE of self mappings, where i = {1,2,..., N}
with F = ﬂz 1 F(T;) # 0 is said to satisfy condition (BS) on E if there exist f and d as in
Definition 3.1, such that

|z — Sz|| > f(d(z,F)) forallzeFE
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where S = vazl 1; Ty and {,ui}ijil is a sequence of positive number such that Zil i = 1.

Theorem 3.3. Let E, G, T; and S are as in Lemma 3.2 and all conditions of Lemma 3.2
are satisfied and let finite family of T; satisfies condition (BS). Then the sequence {x,}
generated by (2.7) converges strongly to a member of F.

Proof. By Lemma 3.1, lim,, o ||z, — pl| exists and lim,,_, o d(x,, F) exists, also by Lemma 3.2,
we have

lim ||z, — Sz,|| =0.
n—oo
Since finite family of T; satisfies condition (BS), so we have

m f(d(zn,F)) =0.

n— oo
By the nature of f and the fact that lim,,_, d(z,,F) exists, we have
lim d(z,,5) =0,
n—oo
thus there exists a sequence say {z}} in F and subsequence {z,,} of {x,} such that

1
’|xnj—x;||§§, for j>1.

From (3.2), we have

(1—a)

[nser = 25| < [lom, = 23] + By MIGO)]
a
This implies that
1 1 1-—
||x;7+1 - x;‘” < Hx;-%l ~ Tnjp ” + Hxnnl - xj“ < m + 27 + %5m+1/\ ||G(p)H

Hence {z}} is a Cauchy sequence and so converges to some z* in K. Since J is closed, z* is
in F and since lim,,_, o ||z, — 2*| exists. {z,} converges strongly to z*.
This completes the proof. O

Let E be a Banach space. A mapping T: E — E is said to be semicompact, if for
any bounded sequence {x,} in E such that ||z, — Tx,|| — 0 as n — oo, there exists a
subsequence {xnj} C {xy} such that z,;, — 2* € K as j — +o0.

We now establish a strong convergence result using semicompact condition.

Theorem 3.4. Let E, G, T; and S are as in Lemma 3.2 and all conditions of Lemma 3.2
are satisfied and let S = Zil w;T; be semicompact. Then the sequence {x,} generated
by (2.7) converges strongly to a member of F.

Proof. Since S = Zf\il w; T; is semicompact, we see that there exists a subsequence {z,, }
of {x,,} such that z,, — z*. Notice that

N
2% =Y Tt || < Jlat — @ || +
=1

N
i=1

N N
Z wiTixn, — Z wiTix™
=1 i=1

+




Implicit iteration scheme with numerical analysis 21

Since S = Zfil ;T is Lipschitz continuous, we see from (3.8) that 2* € F(Zfil wiT;)=3.
From Lemma 3.1, we know that lim,,_, ||z, — p|| exists for each p € F. In view of z,,, — z*,
we find that

nh%rrgo |z —2*| = 0.

This completes the proof. O

4. Numerical experiments
We now consider an example to illustrate the theoretical result:

Example 4.1. Let R denote the set of real numbers with the usual norm. Let T;,,: R — R,
m=1,2,..., N be a finite family of mappings defined by T;,z = —2muz.
Then
2 = Tt = (y = Tm)[* = 2m + 1)%[z —y?,
and
(@ =Tz — (y = Tny), —y) = 2m+ 1)z —y[*.
Then by (2.2), each T, is strictly pseudocontractive mapping with unique fixed point * = 0.

Let u = (V7)) Ot

S = Zivzl wr T, is strictly pseudocontractive mapping and F = ﬂivzl F(T,) = F(S) = {0}.
Now,

, clearly Zf,v:l W = 1, then by Lemma 2.6 we see that

N N N
N-1\(N-1)""1!
S(EZENTTT(I?:—§2T/JT(E:—<2Tz_:17"(’r_1>]V]V_l xT. (41)
Set G = I identity mapping, and let {z,,} be the sequence defined by (2.7), then
Tp = nZp-1 + (1 —ap) [Bn(l = Nz + v0S24]

using (4.1), we have

N r—1
Ty = QpZp—1 + (1 —ap) [Bn(l —A) — " (227« (]::11) (NN_N1)1>] Ty,

after simplification, we get
an

1= o) (Ba(1 =0 =30 (25 (V) Ot ) )| o

In order to examine the influence of parameters involved in the algorithm (2.7), we

Ty =

take the following set of parameters:

ii)O‘”:3nl+5’ ﬂ”:m’
) 0 = 5y e g
= s s G
KIS e S e e
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Using the above set of parameters, we now examine influence of number of members
in the finite family. We set initial point g = 30 and take A = 0.5. The stopping criterion
is ||z, —2*|] < 10715, The respective number of iterations for different values of N are
reported in Table-1.

Next, we tested the algorithm for different initial points and different set of param-
eters. The parameters A\, N are fixed to 0.5 and 20 respectively. Each iteration starts
with a particular chosen zg and stops whenever ||z,, — z*| < 107!, Respective numbers of
iterations are given in Table-2.

Now, we test the algorithm for influence of A. Set xy = 30, N = 20 and the stopping
criterion is ||z, — z*|| < 107!, Values of A are chosen from (0, 1). Findings are reported in
Table-3.

Table-1 indicates that the new algorithm is quite efficient. Table-2 shows that the
algorithm is very stable and effective no matter what initial point is chosen. Table-3 shows
that the convergence is oblivious to the choice of .

5. Conclusion

In this part, we proposed a new implicit iteration scheme, with perturbed mapping,
to approximate fixed points of finite families of strictly pseudocontractive self-mappings. We
established some strong and weak convergence theorems for the iterates of a finite family of
strictly pseudocontractive mappings using our implicit iteration scheme. We illustrated our
results on concrete examples and numerically compute the fixed point. The results obtained
in this part improve and extend the results of Xu and Ori [24], Ceng et al. [3], Chen et al.
[5], Yang et al. [25], Zeng and Yao [30], Zhou [31] and some other results in this direction.
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Science and Technology, India (MRP-2015).
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TABLE 1. The influence of number of members in the family
Parameters Number of iterations for different values of N
N=5| N=10 | N=50| N=100 | N =500 | N = 1000
Qn = ﬁ Bn = ﬁ Yn =1—Bn 9 8 6 6 5 5
a, = 3n1+5 Bn = m Yn =1—fBn 8 7 6 5 5 4
An = g | Bn = m Yn=1—Bn 8 7 6 5 5 4
an =g | B = m Yo =1-Bn 7 6 5 5 4 4
on =53t | Bn = W Yn=1-Pn 8 7 6 5 5 4
TABLE 2. The influence of initial point
Parameters Number of iterations for different initial points
xo=—50 | xp = —25 | o =—5 | xo =5 | xo =25 | xo =50
an = g Brn = W n=1—8n 7 7 7 7 7 7
Un = 5355 | Bn = m T =1-Pn 7 7 6 6 7 7
an = gikeg | Bn = m Yo =1—Bn 7 6 6 6 6 7
An = 7nl+s Bn = W Yn =1— Bn 6 6 6 6 6 6
Xn = 5n1+1 Bn = m Yn =1—Bn 7 6 6 6 6 7
TABLE 3. The influence of parameter A
Parameters Number of iterations for different value of A
A=090 | A=0.75 | AX=0.60 | A=0.45 | A=0.30 | A=0.15
an = g Bn = W Yo =1—Bn 7 7 7 7 7 7
a, = 3711_*_5 Brn = m Yn =1— Bn 7 7 7 7 7 7
an 2n1+9 Bn = m Yn =1—Bn 6 6 6 6 6 6
an = mgg | Bn = W Y =1—Bn 6 6 6 6 6 6
O‘":5n1+1 5n:m Yo =1—PBn 6 [§ 6 6 6 6




