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IMPLICIT ITERATION SCHEME WITH NUMERICAL ANALYSIS FOR

A FINITE FAMILY OF STRICTLY PSEUDOCONTRACTIVE MAPPINGS

Balwant Singh Thakur, Rajshree Dewangan, Alia Kurdi1

In this paper, we propose an implicit iteration scheme with perturbed mapping

for a finite family of strictly pseudocontractive mappings and establish weak and strong

convergence theorems. We report some preliminary computational results related to the

influence of parameters of the algorithm. Results in this paper extend and improve recent

results in the literature.
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1. Introduction

In the past five decades, iteration processes for numerical reckoning fixed points of

nonlinear mappings and their applications have been studied extensively by many authors.

In 2001, Xu and Ori [24] introduced an implicit iteration process to approximate a common

fixed point of a finite family of nonexpansive self mappings in a Hilbert space. In 2004,

Osilike [12] further extended the iteration process of Xu and Ori to a finite family of strictly

pseudocontractive self mappings in Banach spaces. In 2007, Acedo and Xu [1] proposed

a parallel iterative algorithm for strictly pseudocontractive mappings in the framework of

Hilbert spaces. Zeng and Yao [30] introduced in 2006 an implicit iteration process with

perturbed mapping, to approximate common fixed points of a finite family of nonexpansive

mappings. Ceng et al. [3] introduced in 2007 an implicit iteration process with perturbed

mapping G, for approximating common fixed points of a finite family of continuous pseu-

docontractive self-mappings. Our contribution in this paper is motivated and inspired by

the above described research, and proposes a new implicit iteration scheme, with perturbed

mapping, to approximate fixed point of a finite family of strictly pseudocontractive self-

mappings.

2. Mathematical preliminaries

Let E be a real Banach space and let J : E → 2E
∗
is the normalized duality mapping

defined by

J(x) = {f ∈ E∗ : ⟨x, f⟩ = ∥x∥ ∥f∥ ; ∥x∥ = ∥f∥} ∀ x ∈ E ,
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where E∗ denotes the dual space of E and ⟨·, ·⟩ denotes the generalized duality pairing. If

E∗ is strictly convex then J is single valued. We denote the single valued normalized duality

mapping by j. Let T : E → E be a mapping. We use F (T ) to denote the set of fixed points

of T ; that is, F (T ) = {x ∈ E : x = Tx}.
Let T be a mapping with domain D(T ) and range R(T ) in E. Mapping T is said

to be λ′-strictly pseudocontractive mapping in the sense of Browder-Petryshyn [2], if there

exists a constant 0 < λ′ < 1, j(x− y) ∈ J(x− y) such that

⟨Tx− Ty, j(x− y)⟩ ≤ ∥x− y∥2 − λ′ ∥x− y − (Tx− Ty)∥2 , ∀ x, y ∈ D(T ) . (2.1)

In Hilbert space inequality (2.1) is equivalent to the following inequality.

∥Tx− Ty∥2 ≤ ∥x− y∥2 + κ ∥x− y − (Tx− Ty)∥2 ,

where κ = (1− 2λ′) < 1, and we can assume also that κ ≥ 0, so that κ ∈ [0, 1).

The class of strictly pseudocontractive mappings includes the class of nonexpansive

mappings. A nonexapansive mapping is strictly pseudocontractive mapping for κ = 0. A

mapping T is said to be nonexpansive if ∥Tx− Ty∥ ≤ ∥x− y∥ , for all x, y inD(T ). A strictly

pseudocontractive mapping is pseudocontractive mapping for κ = 1. The class of strictly

pseudocontractive mappings falls between the class of nonexpansive mappings and the class

of pseudocontractive mappings: Karaka and Yildirim [9], Thakur et al. [18, 19, 20, 21, 23],

Yao et al. [28].

Inequality (2.1) is equivalent to

⟨(I − T )x− (I − T )y, j(x− y)⟩ ≥ λ′∥(I − T )x− (I − T )y∥2. (2.2)

It can be seen from (2.2) that every strictly pseudocontractive mapping is L-Lipschitzian

with L ≥ 1 + 1
λ′ .

Mapping T is pseudocontractive [2, 10], if there exists j(x− y) ∈ J(x− y) such that

⟨Tx− Ty, j(x− y)⟩ ≤ ∥x− y∥2 , ∀ x, y ∈ D(T ) ; (2.3)

and T is strongly pseudocontractive, if there exists a constant β ∈ (0, 1), j(x−y) ∈ J(x−y)

such that

⟨Tx− Ty, j(x− y)⟩ ≤ β∥x− y∥2 , ∀ x, y ∈ D(T ).

Recall that T is strongly accretive, if there exists a constant δ ∈ (0, 1), j(x − y) ∈
J(x− y) such that

⟨Tx− Ty, j(x− y)⟩ ≥ δ∥x− y∥2 , ∀ x, y ∈ D(T ).

In 2001, Xu and Ori [24] introduced the implicit iteration process (2.4) to approximate

a common fixed point of a finite family of nonexpansive self mappings in Hilbert space. More

accurately, for arbitrary chosen x0 ∈ K, construct xn by the formula

xn = αnxn−1 + (1− αn)Tnxn , n ≥ 1 , (2.4)

where {αn} be a sequence in (0, 1) and Tn = Tn mod N .

Zeng and Yao [30] introduced an implicit iteration process (2.5) with perturbed map-

ping G, to approximate common fixed points of a finite family of nonexpansive mappings.

For an arbitrary initial point x0 ∈ H, the sequence {xn} is generated as follows:

xn = αnxn−1 + (1− αn)[Tnxn − λnµG(Tnxn)], n ≥ 1 , (2.5)
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where G : H → H is a κ-Lipschitzian and η-strongly monotone mapping for some constants

κ, η > 0, µ ∈
(
0, 2η

κ2

)
is a fixed number and {αn} ⊂ (0, 1), {λn} ⊂ [0, 1).

It is clear that if λn = 0, n ≥ 1, then the implicit iteration scheme (2.5) reduces to

the implicit iteration process (2.4).

Ceng et al. [3] introduced an implicit iteration process (2.6) with perturbed mapping

G, for approximation of common fixed points of finite family of continuous pseudocontractive

self-mapping. For an arbitrary chosen initial point x0 ∈ E, the sequence {xn} is generated

as follows:

xn = αn(xn−1 − λnG(xn−1)) + (1− αn)Tnxn, n ≥ 1, (2.6)

where G : E → E be a mapping which is both λ′-strictly pseudocontractive and δ-strongly

accretive with λ′ + δ ≥ 1, and {αn} ⊂ (0, 1), {λn} ⊂ [0, 1).

Clearly, if λn = 0, for all n ≥ 1, then the implicit iteration scheme (2.6) reduces to

the implicit iteration process (2.4).

Motivated and inspired by the above described contribution, we propose a new implicit

iteration scheme with perturbed mapping, to approximate fixed point of a finite family of

κi-strictly pseudocontractive self-mappings {Ti}Ni=1 as we will explain below.

Let E be a real Banach space and G : E → E be a perturbed mapping which is both

λ′-strictly pseudocontractive and δ-strongly accretive with λ′ + δ ≥ 1. For an arbitrary

initial point x0 ∈ E, the sequence {xn} is generated by

xn = αnxn−1 + (1− αn)
[
βn (xn − λG(xn)) + γn

N∑
i=1

µiTixn

]
, (2.7)

where {µi}Ni=1 is a sequence of weights satisfying
∑N

i=1 µi = 1, {αn} ⊂ (0, 1), {γn} ⊂ (0, 1],

{βn} ⊂ [0, 1) and λ ∈ [0, 1).

In this paper, we establish some strong and weak convergence theorems for a finite

family of strictly pseudocontractive mappings using implicit iteration scheme (2.7). Last

but not least, in Section 4 we illustrate our results on concrete examples and numerically

compute the fixed point. The results obtained in this paper improve and extend the results

of Xu and Ori [24], Ceng et al. [3], Chen et al. [5], Dewangan et al. [7, 8], Thakur et al.

[22], Yang et al. [25], Yao et al. [26, 27, 29], Zeng and Yao [30], Zhou [31] and some other

results in this direction.

To introduce our results, we need other definitions and results. In this respect, recall

that the norm of Banach space E is said to be Gáteaux differentiable (or E is said to be

smooth) if the limit

lim
t→0

∥x+ ty∥ − ∥x∥
t

(2.8)

exists for each x, y on the unit sphere S = {x ∈ E : ∥x∥ = 1} of E. Moreover, if for each

y in S the limit defined by (2.8) is uniformly attained for x ∈ S, we say that the norm of

E is uniformly Gâteaux differentiable. The norm of E is said to be Fréchet differentiable

if, for each x ∈ S, the limit (2.8) is attained uniformly for y ∈ S. The norm of E is said

to be uniformly Fréchet differentiable (or is said to be uniformly smooth) if the limit (2.8)

attained uniformly for (x, y) ∈ S × S. We know that if E is smooth then the normalized

duality mapping J is single valued and continuous from the strong topology to the weak*

topology.
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Definition 2.1 ([11]). A Banach space E is said to satisfy Opial’s condition if whenever

{xn} is a sequence in E which converges weakly to x, as n → ∞, then

lim sup
n→∞

∥xn − x∥ < lim sup
n→∞

∥xn − y∥ , for all y ∈ E, y ̸= x.

Lemma 2.1 ([14]). Let E be a real q-uniformly smooth Banach space which is also uniformly

convex. Let K be a nonempty closed convex subset of E and T : K → K be a strictly pseudo-

contractive mapping in the terminology of Browder-Petryshyn. Then (I − T ) is demiclosed

at zero, i.e. {xn} ∈ D(T ) such that {xn} converges weakly to x ∈ D(T ) and {(I − T )xn}
converges strongly to 0, then x− Tx = 0.

Lemma 2.2 ([13]). Let {an} , {bn} and {cn} be three sequences of nonnegative real numbers

satisfying the following condition:

an+1 ≤ (1 + bn)an + cn for all n ≥ n0 ,

where n0 is some nonnegative integer,
∑∞

n=0 bn < ∞ and
∑∞

n=0 cn < ∞. Then

(i) limn→∞ an exists;

(ii) if, in addition, there exists a subsequence {ani} ⊂ {an} such that ani → 0, then an → 0

as n → ∞.

Lemma 2.3 ([16]). Let {an} and {bn} be two sequences of nonnegative real numbers satis-

fying the inequality

an+1 ≤ an + bn for all n ≥ 1.

If
∑∞

n=0 bn converges, then limn→∞ an exists.

Lemma 2.4 ([6]). Let K be a nonempty closed convex subset of a smooth Banach space E

and let T : K → K be a strictly pseudocontractive mapping. Then the fixed point set F (T )

is a closed convex subset of E.

Lemma 2.5 ([3]). Let E be a smooth Banach space and G : E → E be both λ′-strictly

pseudocontractive and δ-strongly accretive with λ′ + δ ≥ 1. Then I − G is nonexpansive

mapping.

Proposition 2.1. Let E be a smooth Banach space and G : E → E be both λ′-strictly

pseudocontractive and δ-strongly accretive with λ′ + δ ≥ 1. Then Sλ = (I − λG) : E → E is

a pseudocontractive mapping, for 0 ≤ λ < 1.

Proof. Since Sλ(x) = x− λG(x), using Lemma 2.5 we have

⟨Sλ(x)− Sλ(y), j(x− y)⟩ = ⟨x− λG(x)− y + λG(y), j(x− y)⟩ ,

= ⟨(1− λ)x+ λ(I −G)x− (1− λ)y − λ(I −G)y, j(x− y)⟩ ,

≤ (1− λ) ∥x− y∥2 + λ ⟨(I −G)x− (I −G)y, j(x− y)⟩ ,

≤ (1− λ) ∥x− y∥2 + λ ∥(I −G)x− (I −G)y∥ ∥x− y∥ ,

≤ (1− λ) ∥x− y∥2 + λ ∥x− y∥ ∥x− y∥ ,

= ∥x− y∥2 ,

hence Sλ is a pseudocontractive mapping. �
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Lemma 2.6 ([31]). Let E be a smooth Banach space and K be a nonempty convex subset

of E. Ti : K → K is a κi-strictly pseudocontractive mapping for some 0 < κi < 1. Assume

that {µi}Ni=1 is a positive sequence such that
∑N

i=1 µi = 1. Set S =
∑N

i=1 µiTi, then

(i) S : K → K is a κ-strictly pseudocontractive mapping with κ = min{κi : 1 ≤ i ≤ N}.
(ii) If F =

∩N
i=1 F (Ti) ̸= ∅, then F (S) = F.

Lemma 2.7 ([4]). If J : E → 2E
∗
is a normalized duality mapping, then for all x, y ∈ E,

∥x+ y∥2 ≤ ∥x∥2 + 2 ⟨y, j(x+ y)⟩ , for all j(x+ y) ∈ J(x+ y).

Throughout the paper, we shall denote strong (respectively weak) convergence of the

sequence {xn} to x by xn → x (respectively xn ⇀ x) and for the weak ω-limit set of a

sequence {xn} in E, we shall use the following notation

ωω(xn) =
{
x ∈ E;

{
xnj

}
⇀ x, for some subsequence {nj} of {n}

}
.

3. Weak and strong convergence theorems

Lemma 3.1. Let E be a real smooth Banach space E, G : E → E be both λ′-strictly pseudo-

contractive and δ-strongly accretive with λ′ + δ ≥ 1 and Ti : E → E be a finite family of κi-

strictly pseudocontractive mappings, where i ∈ {1, 2, . . . , N} such that F =
∩N

i=1 F (Ti) ̸= ∅.
Suppose {αn}, {βn} and {γn} are real sequences satisfying the conditions 0 < a ≤ αn ≤ b <

1, 0 < a ≤ γn ≤ 1, βn + γn = 1 and
∑∞

n=1 βn < ∞. Let {xn} be a sequence generated by

(2.7). Then

(a) limn→∞ ∥xn − p∥ exists, for all p ∈ F;

(b) limn→∞ d(xn,F) exists, where d(xn,F) = infp∈F ∥xn − p∥ .

Proof. Let S =
∑N

i=1 µiTi, where µi > 0 for all 1 ≤ µi ≤ N such that
∑N

i=1 µi = 1. Then

by Lemma 2.6, S is a κ-strictly pseudocontractive mapping with κ = min{κi : 1 ≤ i ≤ N}
and F (S) = F.

Suppose p ∈ F, and using Proposition 2.1 and Lemma 2.6, we have

∥xn − p∥2 = ⟨αnxn−1 + (1− αn)[βn(xn − λG(xn)) + γnSxn]− p, j(xn − p)⟩ ,

= αn ⟨xn−1 − p, j(xn − p)⟩+ (1− αn) ⟨[βnSλ(xn) + γnSxn]− p, j(xn − p)⟩ ,

= αn ⟨xn−1 − p, j(xn − p)⟩+ (1− αn) ⟨βn(Sλ(xn)− p) + γn(Sxn − p), j(xn − p)⟩ ,

= αn ⟨xn−1 − p, j(xn − p)⟩+ (1− αn)βn ⟨Sλ(xn)− Sλ(p), j(xn − p)⟩

− (1− αn)βn ⟨λG(p), j(xn − p)⟩+ (1− αn)γn ⟨(Sxn − p), j(xn − p)⟩ ,

≤ αn ∥xn−1 − p∥ ∥xn − p∥+ (1− αn)βn ∥xn − p∥2

+ (1− αn)βnλ ∥G(p)∥ ∥xn − p∥+ (1− αn)γn ∥xn − p∥2

− (1− αn)γnκ ∥xn − p− (Sxn − p)∥2 ,

≤ αn ∥xn−1 − p∥ ∥xn − p∥+ (1− αn) ∥xn − p∥2

+ (1− αn)βnλ ∥G(p)∥ ∥xn − p∥ . (3.1)
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If ∥xn − p∥ = 0, the result follows. Next, let ∥xn − p∥ > 0. Then from (3.1), we have

∥xn − p∥ ≤ ∥xn−1 − p∥+ (1− αn)

αn
βnλ ∥G(p)∥ ,

≤ ∥xn−1 − p∥+ (1− a)

a
βnλ ∥G(p)∥ . (3.2)

Using condition
∑∞

n=1 βn < ∞ and by Lemma 2.3, we get that limn→∞ ∥xn − p∥ exists.

Since limn→∞ ∥xn − p∥ exists, so {xn} is bounded. Since G is L−Lipschitzian with

L ≥ 1 + 1
λ′ , so {G(xn)} is also bounded. Let ∥G(xn)∥ < M , for all n ≥ 1, for some M > 0.

Then by equation (3.2)

∥xn − p∥ ≤ ∥xn−1 − p∥+ (1− a)

a
βnλ ∥G(p)−G(xn−1) +G(xn−1)∥ ,

≤ ∥xn−1 − p∥+ (1− a)

a
βnλ ∥G(p)−G(xn−1)∥+

(1− a)

a
βnλ ∥G(xn−1)∥ ,

≤ ∥xn−1 − p∥+ (1− a)

a
βnλL ∥xn−1 − p∥+ (1− a)

a
βnλM,

=

[
1 +

(1− a)

a
βnλL

]
∥xn−1 − p∥+ (1− a)

a
βnλM.

Taking the infimum over all p ∈ F, we have

d(xn,F) ≤
[
1 +

(1− a)

a
βnλL

]
d(xn−1,F) +

(1− a)

a
βnλM.

By applying Lemma 2.2, we have limn→∞ d(xn,F) exists.

This completes the proof. �

Lemma 3.2. Let E be a real reflexive and smooth Banach space, G and Ti are as in Lemma

3.1 and all conditions of Lemma 3.1 are satisfied. Let S =
∑N

i=1 µiTi : E → E be a κ-strictly

pseudocontractive mapping. Let {xn} be a sequence generated from an arbitrary x0 ∈ E by

(2.7). Then limn→∞ ∥Sxn − xn∥ = 0.

Proof. Since E is smooth, the normalized duality mapping J is single-valued. Also, since

the mappings Ti : E → E are κi-strictly pseudocontractive for each i ∈ {1, 2, . . . , N}, we
deduce from (2.2) that

⟨(I − Ti)x− (I − Ti)y, j(x− y)⟩ ≥ κi∥(I − Ti)x− (I − Ti)y∥2 ,

for all x, y ∈ E, where κi ∈ (0, 1), for i ∈ {1, 2, . . . , N}.
Put κ = min1≤i≤N{κi}. Then κ ∈ (0, 1) and for each i ∈ {1, 2, . . . , N}

⟨(I − Ti)x− (I − Ti)y, j(x− y)⟩ ≥ κ∥(I − Ti)x− (I − Ti)y∥2,

for all x, y ∈ E. Since S =
∑N

i=1 µiTi : E → E is a κ-strictly pseudocontractive mapping

with κ = min{κi : 1 ≤ i ≤ N}, so we have

⟨(I − S)x− (I − S)y, j(x− y)⟩ ≥ κ∥(I − S)x− (I − S)y∥2, for all x, y ∈ E. (3.3)

Moreover, it is easy to see that each Ti (1 ≤ i ≤ N) is β-Lipschitzian with β ≥ 1 + 1
κ .

Hence all the conditions of Lemma 3.1 are satisfied. Thus, by Lemma 3.1 we conclude that
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limn→∞ ∥xn − p∥ exists, for all p ∈ F. Consequently, {xn} and {G(xn)} are bounded, due

to the fact that G is L-Lipschitzian with L ≥ 1 + 1
λ′ . Using equation (2.7), we have

xn = αnxn−1 + (1− αn) [βn (xn − λG(xn)) + γnSxn] ,

and

xn−1 =
1

αn
xn +

(
1− 1

αn

)
[βn (xn − λG(xn)) + γnSxn] , (3.4)

then

xn − xn−1 =

(
1− 1

αn

)
xn −

(
1− 1

αn

)
[βn (xn − λG(xn)) + γnSxn],

=

(
1− 1

αn

)
(1− βn)xn −

(
1− 1

αn

)
γnSxn +

(
1− 1

αn

)
βnλG(xn),

=

(
1− 1

αn

)
γn(xn − Sxn) +

(
1− 1

αn

)
βnλG(xn).

Now,

⟨xn − xn−1, j(xn − p)⟩ =
(
1− 1

αn

)
γn ⟨xn − Sxn, j(xn − p)⟩

+

(
1− 1

αn

)
βnλ ⟨G(xn), j(xn − p)⟩ . (3.5)

By Lemma 2.7 and using (3.3) and (3.5), we have

∥xn − p∥2 = ∥xn−1 − p+ xn − xn−1∥2 ,

≤ ∥xn−1 − p∥2 + 2 ⟨xn − xn−1, j(xn − p)⟩ ,

≤ ∥xn−1 − p∥2 + 2

(
1− 1

αn

)
γn ⟨xn − Sxn − (p− Sp), j(xn − p)⟩

+ 2

(
1− 1

αn

)
βnλ ⟨G(xn), j(xn − p)⟩ ,

≤ ∥xn−1 − p∥2 − 2

(
1− αn

αn

)
γn ⟨(I − S)xn − (I − S)p, j(xn − p)⟩

− 2

(
1− αn

αn

)
βnλ ⟨G(xn), j(xn − p)⟩ ,

≤ ∥xn−1 − p∥2 − 2

(
1− αn

αn

)
γnκ ∥xn − Sxn∥2

+ 2

(
1− αn

αn

)
βnλ ∥G(xn)∥ ∥xn − p∥ . (3.6)
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Thus from (3.6) and using conditions 0 < a ≤ αn ≤ b < 1, 0 < a ≤ γn ≤ 1 , we have

2

(
1− b

b

)
aκ ∥xn − Sxn∥2 ≤ 2

(
1− αn

αn

)
γnκ ∥xn − Sxn∥2 ,

≤ ∥xn−1 − p∥2 − ∥xn − p∥2

+ 2

(
1− αn

αn

)
βnλ ∥G(xn)∥ ∥xn − p∥ ,

≤ ∥xn−1 − p∥2 − ∥xn − p∥2

+ 2

(
1− a

a

)
βnλM ∥xn − p∥ . (3.7)

Since limn→∞ ∥xn − p∥ exists and
∑∞

n=1 βn < ∞, it follows that

lim
n→∞

∥xn − Sxn∥ = 0. (3.8)

This completes the proof. �

We now establish a weak convergence result:

Theorem 3.1. Let E be a uniformly convex Banach space satisfying Opial’s condition. Let

G, Ti and S are as in Lemma 3.2 and all conditions of Lemma 3.2 are satisfied. Then the

sequence {xn} generated by (2.7) converges weakly to a member of F.

Proof. Every uniformly convex Banach space is reflexive, also limn→∞ ∥xn − p∥ exists for

each p ∈ F by Lemma 3.1, thus {xn} is bounded. Hence {xn} is a bounded sequence

in reflexive space, therfore by Eberlein’s theorem {xn} has a subsequence {xnk
} which

converges weakly to some q ∈ E. Now, we prove that {xn} has a unique weak subsequential

limit in F. To prove this, let x∗ be the weak limit of another subsequence
{
xnj

}
of {xn}.

By Lemma 3.2,

lim
n→∞

∥xn − Sxn∥ = 0

and I − S is demiclosed with respect to zero by Lemma 2.1 and so we obtain q ∈ F. Again,

in the same way, we can prove that x∗ ∈ F. Since E satisfies Opial’s condition, it follows

from a standard argument that q = x∗. Thus {xn} converges weakly to a member of F, and

the proof is now complete. �

Theorem 3.2. Let E, G, Ti and S are as in Lemma 3.1 and all conditions of Lemma 3.1

are satisfied. Then the sequence {xn} generated by (2.7) converges strongly to a member of

F if and only if lim infn→∞ d(xn,F) = 0 .

Proof. The necessity of condition is obvious. Thus, we will only prove the sufficiency.

Let lim infn→∞ d(xn,F) = 0. Then by Lemma 3.1, we have

lim
n→∞

d(xn,F) = 0 .
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Next, we show that {xn} is a Cauchy sequence in E.

From equation (3.2), we have

∥xn+m − p∥ ≤ ∥xn+m−1 − p∥+ (1− a)

a
βn+mλ ∥G(p)∥ ,

≤ ∥xn+m−2 − p∥+ (1− a)

a
βn+m−1λ ∥G(p)∥+ (1− a)

a
βn+mλ ∥G(p)∥ ,

...

≤ ∥xn − p∥+
[
(1− a)

a
βn+1λ+

(1− a)

a
βn+2λ+ · · ·+ (1− a)

a
βn+mλ

]
∥G(p)∥ ,

≤ ∥xn − p∥+ (1− a)

a
λ ∥G(p)∥

n+m∑
i=n+1

βi . (3.9)

Now, using (3.9), we have

∥xn+m − xn∥ ≤ ∥xn+m − p∥+ ∥xn − p∥ ,

≤ 2 ∥xn − p∥+ (1− a)

a
λ ∥G(p)∥

n+m∑
i=n+1

βi,

≤ 2 ∥xn − p∥+ (1− a)

a
λ ∥G(p)−G(xn)∥

n+m∑
i=n+1

βi +
(1− a)

a
λ ∥G(xn)∥

n+m∑
i=n+1

βi,

≤

(
2 +

(1− a)

a
λL

n+m∑
i=n+1

βi

)
∥xn − p∥+ (1− a)

a
λM

n+m∑
i=n+1

βi .

Taking the infimum over all p ∈ F, we obtain

∥xn+m − xn∥ ≤

(
2 +

(1− a)

a
λL

n+m∑
i=n+1

βi

)
d(xn,F) +

(1− a)

a
λM

n+m∑
i=n+1

βi

→ 0 as n → ∞ .

This implies that {xn} is a Cauchy sequence. Since E is complete, therefore {xn} converges

to some q ∈ E. Since S is a strictly pseudocontractive mapping, by Lemma 2.4, F (S) is

closed. Again by Lemma 2.6, we have F (S) = F, so F is closed and hence q ∈ F, and his

completes the proof. �

We recall the following definitions:

Definition 3.1 ([15]). A mapping T : E → E with F (T ) ̸= ∅ is said to satisfy condition (A)

on E if there exists a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0 and f(r) > r

for all r ∈ (0,∞) such that for all x ∈ E,

∥x− Tx∥ ≥ f(d(x, F (T ))) ,

where d(x, F (T )) = infx∗∈F (T ) ∥x− x∗∥.

Definition 3.2 ([17]). A finite family Ti : E → E of self mappings, where i = {1, 2, . . . , N}
with F =

∩N
i=1 F (Ti) ̸= ∅ is said to satisfy condition (BS) on E if there exist f and d as in

Definition 3.1, such that

∥x− Sx∥ ≥ f(d(x,F)) for all x ∈ E
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where S =
∑N

i=1 µiTi and {µi}Ni=1 is a sequence of positive number such that
∑N

i=1 µi = 1.

Theorem 3.3. Let E, G, Ti and S are as in Lemma 3.2 and all conditions of Lemma 3.2

are satisfied and let finite family of Ti satisfies condition (BS). Then the sequence {xn}
generated by (2.7) converges strongly to a member of F.

Proof. By Lemma 3.1, limn→∞ ∥xn − p∥ exists and limn→∞ d(xn,F) exists, also by Lemma 3.2,

we have

lim
n→∞

∥xn − Sxn∥ = 0 .

Since finite family of Ti satisfies condition (BS), so we have

lim
n→∞

f(d(xn,F)) = 0 .

By the nature of f and the fact that limn→∞ d(xn,F) exists, we have

lim
n→∞

d(xn,F) = 0 ,

thus there exists a sequence say {x∗
j} in F and subsequence {xnj} of {xn} such that∥∥xnj − x∗

j

∥∥ ≤ 1

2j
, for j ≥ 1 .

From (3.2), we have∥∥xnj+1 − x∗
j

∥∥ ≤
∥∥xnj − x∗

j

∥∥+ (1− a)

a
βnj+1λ ∥G(p)∥

This implies that∥∥x∗
j+1 − x∗

j

∥∥ ≤
∥∥x∗

j+1 − xnj+1

∥∥+ ∥∥xnj+1
− x∗

j

∥∥ ≤ 1

2(j+1)
+

1

2j
+

(1− a)

a
βnj+1

λ ∥G(p)∥

Hence {x∗
j} is a Cauchy sequence and so converges to some x∗ in K. Since F is closed, x∗ is

in F and since limn→∞ ∥xn − x∗∥ exists. {xn} converges strongly to x∗.

This completes the proof. �

Let E be a Banach space. A mapping T : E → E is said to be semicompact, if for

any bounded sequence {xn} in E such that ∥xn − Txn∥ → 0 as n → ∞, there exists a

subsequence
{
xnj

}
⊂ {xn} such that xnj → x∗ ∈ K as j → +∞.

We now establish a strong convergence result using semicompact condition.

Theorem 3.4. Let E, G, Ti and S are as in Lemma 3.2 and all conditions of Lemma 3.2

are satisfied and let S =
∑N

i=1 µiTi be semicompact. Then the sequence {xn} generated

by (2.7) converges strongly to a member of F.

Proof. Since S =
∑N

i=1 µiTi is semicompact, we see that there exists a subsequence {xnk
}

of {xn} such that xnk
→ x∗. Notice that∥∥∥∥∥x∗ −

N∑
i=1

µiTix
∗

∥∥∥∥∥ ≤ ∥x∗ − xnk
∥+

∥∥∥∥∥xnk
−

N∑
i=1

µiTixnk

∥∥∥∥∥
+

∥∥∥∥∥
N∑
i=1

µiTixnk
−

N∑
i=1

µiTix
∗

∥∥∥∥∥
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Since S =
∑N

i=1 µiTi is Lipschitz continuous, we see from (3.8) that x∗ ∈ F (
∑N

i=1 µiTi) = F.

From Lemma 3.1, we know that limn→∞ ∥xn − p∥ exists for each p ∈ F. In view of xnk
→ x∗,

we find that

lim
n→∞

∥xn − x∗∥ = 0.

This completes the proof. �

4. Numerical experiments

We now consider an example to illustrate the theoretical result:

Example 4.1. Let R denote the set of real numbers with the usual norm. Let Tm : R → R,
m = 1, 2, . . . , N be a finite family of mappings defined by Tmx = −2mx.

Then

|x− Tmx− (y − Tmy)|2 = (2m+ 1)2|x− y|2 ,
and

⟨x− Tmx− (y − Tmy), x− y⟩ = (2m+ 1)|x− y|2 .
Then by (2.2), each Tm is strictly pseudocontractive mapping with unique fixed point x∗ = 0.

Let µr =
(
N−1
r−1

) (N−1)r−1

NN−1 , clearly
∑N

r=1 µr = 1, then by Lemma 2.6 we see that

S =
∑N

r=1 µrTr is strictly pseudocontractive mapping and F =
∩N

r=1 F (Tr) = F (S) = {0}.
Now,

Sx =

N∑
r=1

µrTrx = −
N∑
r=1

2rµr x = −

(
2

N∑
r=1

r

(
N − 1

r − 1

)
(N − 1)r−1

NN−1

)
x . (4.1)

Set G = I identity mapping, and let {xn} be the sequence defined by (2.7), then

xn = αnxn−1 + (1− αn) [βn(1− λ)xn + γnSxn] ,

using (4.1), we have

xn = αnxn−1 + (1− αn)

[
βn(1− λ)− γn

(
2

N∑
r=1

r

(
N − 1

r − 1

)
(N − 1)r−1

NN−1

)]
xn ,

after simplification, we get

xn =
αn[

1− (1− αn)
(
βn(1− λ)− γn

(
2
∑N

r=1 r
(
N−1
r−1

) (N−1)r−1

NN−1

))] xn−1 .

In order to examine the influence of parameters involved in the algorithm (2.7), we

take the following set of parameters:

i) αn =
1

n+ 4
, βn =

1

(n+ 2)3
,

ii) αn =
1

3n+ 5
, βn =

1

(2n+ 1)6
,

iii) αn =
1

2n+ 9
, βn =

1

(n+ 4)5/2
,

iv) αn =
1

7n+ 8
, βn =

1

(3n+ 2)5
,

v) αn =
1

5n+ 1
, βn =

1

(n+ 1)7/2
.
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Using the above set of parameters, we now examine influence of number of members

in the finite family. We set initial point x0 = 30 and take λ = 0.5. The stopping criterion

is ∥xn − x∗∥ ≤ 10−15. The respective number of iterations for different values of N are

reported in Table-1.

Next, we tested the algorithm for different initial points and different set of param-

eters. The parameters λ, N are fixed to 0.5 and 20 respectively. Each iteration starts

with a particular chosen x0 and stops whenever ∥xn − x∗∥ ≤ 10−15. Respective numbers of

iterations are given in Table-2.

Now, we test the algorithm for influence of λ. Set x0 = 30, N = 20 and the stopping

criterion is ∥xn − x∗∥ ≤ 10−15. Values of λ are chosen from (0, 1). Findings are reported in

Table-3.

Table-1 indicates that the new algorithm is quite efficient. Table-2 shows that the

algorithm is very stable and effective no matter what initial point is chosen. Table-3 shows

that the convergence is oblivious to the choice of λ.

5. Conclusion

In this part, we proposed a new implicit iteration scheme, with perturbed mapping,

to approximate fixed points of finite families of strictly pseudocontractive self-mappings. We

established some strong and weak convergence theorems for the iterates of a finite family of

strictly pseudocontractive mappings using our implicit iteration scheme. We illustrated our

results on concrete examples and numerically compute the fixed point. The results obtained

in this part improve and extend the results of Xu and Ori [24], Ceng et al. [3], Chen et al.

[5], Yang et al. [25], Zeng and Yao [30], Zhou [31] and some other results in this direction.
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Table 1. The influence of number of members in the family

Parameters Number of iterations for different values of N

N = 5 N = 10 N = 50 N = 100 N = 500 N = 1000

αn = 1
n+4 βn = 1

(n+2)3
γn = 1 − βn 9 8 6 6 5 5

αn = 1
3n+5 βn = 1

(2n+1)6
γn = 1 − βn 8 7 6 5 5 4

αn = 1
2n+9 βn = 1

(n+4)5/2
γn = 1 − βn 8 7 6 5 5 4

αn = 1
7n+8 βn = 1

(3n+2)5
γn = 1 − βn 7 6 5 5 4 4

αn = 1
5n+1 βn = 1

(n+1)7/2
γn = 1 − βn 8 7 6 5 5 4

Table 2. The influence of initial point

Parameters Number of iterations for different initial points

x0 = −50 x0 = −25 x0 = −5 x0 = 5 x0 = 25 x0 = 50

αn = 1
n+4 βn = 1

(n+2)3
γn = 1 − βn 7 7 7 7 7 7

αn = 1
3n+5 βn = 1

(2n+1)6
γn = 1 − βn 7 7 6 6 7 7

αn = 1
2n+9 βn = 1

(n+4)5/2
γn = 1 − βn 7 6 6 6 6 7

αn = 1
7n+8 βn = 1

(3n+2)5
γn = 1 − βn 6 6 6 6 6 6

αn = 1
5n+1 βn = 1

(n+1)7/2
γn = 1 − βn 7 6 6 6 6 7

Table 3. The influence of parameter λ

Parameters Number of iterations for different value of λ

λ = 0.90 λ = 0.75 λ = 0.60 λ = 0.45 λ = 0.30 λ = 0.15

αn = 1
n+4 βn = 1

(n+2)3
γn = 1 − βn 7 7 7 7 7 7

αn = 1
3n+5 βn = 1

(2n+1)6
γn = 1 − βn 7 7 7 7 7 7

αn = 1
2n+9 βn = 1

(n+4)5/2
γn = 1 − βn 6 6 6 6 6 6

αn = 1
7n+8 βn = 1

(3n+2)5
γn = 1 − βn 6 6 6 6 6 6

αn = 1
5n+1 βn = 1

(n+1)7/2
γn = 1 − βn 6 6 6 6 6 6


