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GEOMETRIC BROWNIAN MOTION AND
ORNSTEIN-UHLENBECK PROCESS MODELING BANKS’
DEPOSITS
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We propose two stochastic models for banks’ demand deposits,
based on the geometric Brownian Motion and on the Ornstein-Uhlenbeck
process. We formulate the problem in terms of optimal control in each model
and we find a relation between the value function and the cost function.
We calibrate data on banks’ deposits to three models (Brownian motion,
geometric Brownian motion and Ornstein- Uhlenbeck process). We compare
the goodness-of-fit using the Kolmogorov-Smirnov test.
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1. Introduction

Stochastic control has a wide range of applicability, from agriculture,
engineering, hidrology to computer science and economics. The 2008 financial
turmoil showed the need for new mathematical and realistic models to prevent
a future similar economic crisis. Mathematical finance offers mathematicians
new problems of research, as well as a very useful intuition on the phenomenon.

In this paper we provide a mathematical model for the optimal strat-
egy followed by one bank in the federal funds market. Such a strategy can
be used by a profit-seeking financial institution in order to satisfy its reserve
requirements and to maximize its profit in an idealized contemporaneous re-
serve requirement regime. The bank’s task is to find an optimal amount to
buy or to sell, at each time, while minimizing the cost of buying, selling and
holding funds. The reserve requirements represent a certain percent of the
demand deposits that the bank receives from its depositors. We consider that
the bank meets its reserve requirements if the excess reserve process (i.e. the
difference between the aggregate deposits and the required reserves) remains
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positive. If we model the excess reserve process as a stochastic diffusion pro-
cess, the problem turns into a stochastic control problem, as in [5]. We extend
a model based on a singular control problem for the Brownian motion from [6].
The theoretical model (based on the Brownian motion) was adapted for the
bank’s excess reserves in [3], and further developed in [1] and [2]. In com-
parison to [6], [3] and [2], we model the uncontrolled excess reserve process
as a geometric Brownian motion and as an Ornstein-Uhlenbeck process and
we prove that the problem formulation remains the same as in the Brownian
motion case. However, a formula for the optimal policy can not be obtained
by applying the Dynamic Programming Principle, since the latter is based on
modeling the controlled process (such a model was approached in [7]).

We calibrate the model to the data on banks’ deposits in order to check
how realistic our model is. We compare the goodness-of-fit of the Brownian
motion model from [3] and [2] with the proposed models in this paper. The
Kolmogorov-Smirnov test shows that all three models give a satisfactory fit,
meaning that the calibration to the data of almost 90% of the banks is not
rejected by the test. We obtain that the best fit for banks’ deposits is given by
the geometric Brownian motion, followed by the Ornstein-Uhlenbeck process;
the last fit is the Brownian motion.

The article is structured as follows: section [2| presents the general model
for the strategy followed by one bank in the federal funds market. In section
we propose a model in which the uncontrolled excess reserve process is modeled
by a geometric Brownian motion. Section [d] presents the analogous model based
on the Ornstein-Uhlenbeck process. In section [5 we present the results on the
calibration and on the goodness-of-fit tests.

2. The general model

We consider one bank that maintains an account with the Federal Re-
serve Bank. We assume that the bank can get funds from only two sources:
depositors (through demand deposits, i.e. deposits that must be available
if depositors need them) and the federal funds market (transactions in this
market imply buying or selling funds, with the payment of the corresponding
transaction costs). The bank tries to maximize its profits out of buying and
selling overnight (federal) funds, while meeting the reserve requirements. The
net deposit flow is an input in our system and it is modeled as a diffusion
process.

We propose an idealized contemporaneous reserve requirement regime,
with an infinite time horizon: the bank instantaneously modifies its reserve
account to the required percentage of the value of the deposits. The excess
reserve process (i.e. the difference between the deposits and the required re-
serves) can be used for transactions in the federal funds market. Therefore,
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modeling the deposit flow is equivalent to modeling the excess reserve pro-
cess. The optimal time and amount to buy or sell in the federal funds market
represent the output of an optimal control problem.

The bank is characterized by the following processes:

(1) A demand deposit process (D;):>o.
(2) A required reserve process (R;):>0, where Ry = ¢D; and 0 < ¢ < 1.
(3) An excess reserve process Xy = (1 — q)Dy.

Let (€2, F, P,) be a probability space rich enough to allow the continuous
excess reserves process X and P,(Xy = x) = 1. We consider F = (F}) to
be the completion of the augmented filtration generated by X (so that (F})
satisfies the usual conditions). Thus, the bank observes nothing except the
sample path of X. We assume Xy =2 > 0.

A standard, one-dimensional, Brownian motion is a continuous, adapted
process B = (By, F;,0 <t < 00), with the property that B;— By is independent
of Fs and is normally distributed with mean zero and variance ¢ — s.

We consider that the excess reserve process is a diffusion process modeled
by the following stochastic differential equation:

dXy = i(Xy)dt + 6(X:)dBy, (1)

where [i,6 are C? functions and B is a standard Brownian motion on the
previously defined filtered probability space (€2, F, (F})¢>0, Px).

The case when fi(.),5(.) > 0 are constants (Brownian motion with drift)
was discussed in [6], [3], and [2]. In this paper we will approach these cases:

(1) f(x) = px;6(x) = oz, (geometric Brownian motion);
(2) p(x) =0(p—x);0(x) =0 > 0,0 > 0, (Ornstein Uhlenbeck).

We denote by A > 0 the federal target rate, which is used as a discounting
rate in our model. The bank can continuously modify its excess reserve ac-
count, by selling or buying funds. There are three types of transaction costs in
our idealized market (similarly as in [6] and [3]): proportional transaction costs
of buying («), or selling funds (f); and a continuous holding cost, accumulated
at the rate h.X;.

We define:

r=h/A-p and c=h/A+a. (2)

Similarly as in [6], the ratio A/ can be interpreted as the cost of holding
a unit of federal funds forever as its excess reserves. Then 7 is the reward for
selling a unit of federal funds: the holding cost that would have been paid is
gained and the transaction cost for selling is lost. Similarly, the cost parameter
¢ is the cost of buying and holding a unit of federal funds.

Definition 2.1. A policy is defined as a pair of processes L and U such that

LU are F — adapted, right-continuous, increasing and positive. (3)
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The set of all policies that satisfy definition are denoted by S. In our
model for the federal funds market, L; and U; are the cumulative purchases
and sales of funds that the bank undertakes up to time ¢, in order to satisfy
the reserve requirements and to maximize its profit.

Definition 2.2. A controlled process associated to the policy (L,U ) is a process
Z=X+L-U.

In our model for one bank in the federal funds market, Z is the amount
of excess funds in the bank’s reserve account.

Definition 2.3. The policy (L,U) is said to be feasible if

Ly~ =Uy_ =0, (4)
P, {Z, > 0,vt} = 1,¥z >0, (5)
E, [/ e_)‘tdL} < 00,Vx >0, (6)
0
and .
E, {/ e_’\th} < o0o,Vx > 0. (7)
0

We denote by S’(ZE) the set of all feasible policies associated with the continuous
process X that starts at x.

Without loss of generality, as in [6], the last integrals are interpreted as

/ e™MdL = Lo + / e MdL (8)
0 (0,00)

and similarly for U. The definition allows a possible initial jump of the policy.

Definition 2.4. The cost function associated to the feasible policy (L,U) is

kru(z) = E, [/Oo e M(hZdt + adL + ﬁdU)} : x> 0. 9)
0

Definition 2.5. The control (L,U) is said to be optimal if ki () is minimal
among the cost functions kr y(x) associated with feasible policies (L,U), for
each x > 0.

The bank’s reserve management and profit-making problem is therefore
to find the optimal strategy ([A/, U ). The problem can be approached more
effectively using a value function. The problem of minimizing the cost can be
translated to the task of maximizing a value function. We proceed by defining
the value function. In the following sections we prove the equivalence of the
problems when the underlying process is modeled as a geometric Brownian
motion and as an Ornstein-Uhlenbeck process.
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Definition 2.6. Let ky, () be the cost function for a feasible policy (L,U) as
in[2.4 We define the value function to be

vpu(x) = B, {/ e M(rdU — ch)} : x>0, (10)
0
where r and ¢ are as in (@)

Buying federal funds generates a cost of ¢ times the transaction amount,

selling federal funds generates a reward of r times the amount that was sold.
The bank’s task turns to be to maximize the expected value of rewards received
minus costs incurred over an infinite horizon, subject to meeting reserve re-
quirements.
We notice that » < 0 would imply that it is never optimal to sell, i.e. U = 0.
In addition, r < ¢ is a no-arbitrage condition, for otherwise the bank can make
unlimited profits in a finite period of time. In order to exclude financial arbi-
trages and for the economical problem to make sense, we impose throughout
this paper the following assumption:

0<r<ec<oo. (11)

Modeling the excess reserve process as a Brownian motion with drift was
discussed in [6], [3], [2]. In section [3| and section [4| we focus on finding the
relation between the cost function and the value function when the excess re-
serve process is modeled by a geometric Brownian motion and by an Ornstein-
Uhlenbeck process, respectively. In this section we present the proposition for
the Brownian motion case from [6], for completion.

2.1. Brownian Motion case

Proposition 2.1. We consider that the excess reserve process is a diffusion
process modeled by the following:

dXt = ,LLdt + O'dBt, (12)
where w, o are constants and B s a standard Brownian motion as above. Then
kru(z) = ha /X + hu/ N — vy p(x),z > 0. (13)

3. Geometric Brownian motion case

We assume that the excess reserve process follows a geometric Brownian
motion: X; = Xoet' 7Bt where (B;); is a standard Brownian motion, u € R
and o > 0. By taking logarithms we obtain:

log(X:/Xo) = log(X;) — log(Xo) = pt + o B;.

Therefore, log(X;) = log(Xo)+ut+0 By is normal with mean pt+log(X),
and variance o%t. Consequently, for each t, X; has a lognormal distribution.

If (X;) follows a geometric Brownian motion then one can show, using
Ito’s Lemma, that X must satisfy the following stochastic differential equation:

dXt = /,I/Xtdt + O'XtdBt. (14)
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By applying expectation in , we obtain that EX; = fOt(EXS)dS—I—x.
By introducing the function u(t) = £ X;, and solving the differential equation
u'(t) = pu(t), u(0) = z, we deduce that EX, = ez, where Xy =z > 0.

Proposition 3.1. If (Xi)i>0 follows let kpu(x) be the cost function for
a feasible policy (L,U) as in definition 2.4 Also let vy (x) be the associated
value function as in definition[2.60,. We consider A > p. Then

kru(z) =hx/(A—p) —vu(z), x> 0. (15)

Proof. Without loss of generality, we can assume that Uy = Lo = 0 (the other
cases are similar, given ) Since Z = X + L — U, we have:

hE, ( / e’\ttht) = hE, ( / eMXtdt> + hE, < / e ML, — Ut)dt) :
0 0 0

(16)

Applying Fubini’s theorem (X is positive), we obtain:

E, ( / e—”Xtdt>= / e ME,(X,)dt.
0 0

Since X is a (u,0) geometric Brownian motion, E,(X;) = xe’. Using
the fact that A > p when computing the integral, we obtain:

/ e_’\tEx(Xt)dt:/ e Mektydt = — 2
0 0 A—p

From the last two formulas we conclude that

E, ( /0 e—”Xtdt) =5 - m (17)

Next, we recall the Riemann- Stieltjes integration by parts theorem, which
states that if two functions f, g are F'V (of finite variation), then:

/Ot fdg = f(t)g(t) — f(0)g(0) — /Otg(s)df(s),

Noticing that since L is increasing, L is F'V and applying the above-mentioned
theorem, we obtain, for each fixed T" > 0:

T T
/ e MdL = e MLy — MLy + X / e MLdt. (18)
0 0

Applying Fatou’s lemma twice and using and @, we obtain

T—o0 T—o00

T T T
E liminf(e ™ Ly + X / e M Lydt)] = E,[lim inf B, / e MdL] < liminf E, / e MdL
0 oo 0 0

T T
< lim sup Ex/ e MdL < E, lim Sup/ e MdL
0 0

T—o00 T—o0

= Ex/ e MdL < oo.
0
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It follows that e L, — 0 almost surely as t — oo. Indeed, if this were
not true, then, since e™*L, > 0 on a set of non-zero measure, we would have
fooo e ML,dt = co. We obtain therefore that

E [liminfr . (e Ly + A fOT e ML,dt)] becomes unbounded, and we get to a
contradiction.
Letting T" — o0 in and then taking F, on both sides, we obtain:

E, ( / e”Ltdt>:1Ex < / e“dL). (19)
0 A 0

We obtain a similar equation for U. Replacing it and , , in the
definition @ for kpy(x), we obtain:

kpo(z) = ha + (% +)E, (/OO eAtst) + (—g + B)E, (/OO e”dUt) :
0 0

A—p
O

Remark. Analogously as in the Brownian motion case, the first term
on the right-side of does not depend on the particular policy (L,U).
Therefore, for fixed x € (0, 00)

inf kpu(z)e sup wvpu(z),
(LU)eS(z) (L,U)eS(x)

where S(z) is defined in .

4. Ornstein-Uhlenbeck case

We assume that the excess reserve process follows an Ornstein-Uhlenbeck
process

dXt = 0(,& — Xt)dt + O'dBt,

where # > 0 is the mean reversion rate, u is the mean, ¢ > 0 the volatility,
and (B;):>o a standard Brownian motion.

In order to compute the mean of this process, we apply the Ito’s Lemma
for the function f(z,t) = xe?.

We obtain that df (X;,t) = 0X,e%dt + e dX; = Oue® dt + oe’dB,.

Therefore,

X,ef = Xo + 0u fot ePds + o fot e’ dB,,

X, = Xpe ¥ + (1l — 6791‘,) + Uf(f ea(S*t)dBS,

E. Xy =xe %+ pu(1 — e ).

Proposition 4.1. Let ki y(x) be the cost function for a feasible policy (L,U)
as in . Also let v,y (x) be the value function defined as in . Then

.
ko () = Wl +g + %1 —upu(z),z > 0. (20)
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Proof. Similarly as in the geometric Brownian motion case, we have:

ha(/ e”ZMQ::Mﬂ(/ﬁe'W&ﬁ)+hEm(/ eA%L—JLMg.
0 0 0

Further on, since E,X; = xe™% + p(1 — %), we obtain:

E, (/ e_’\tXtdt> = / e ME(X,)dt = / e M(xe ™ + pu(1 — e7))dt.
0 0 0

By applying Fubini’s theorem and using the fact that A > 0,6 > 0 when
computing the integral, we obtain:

E, Teixar) = T 21
(A ¢ t) Nt0 A (21)

Further on, the proof is identical to the proof in proposition [3.1} Finally, we
obtain:

() = WS () ( | e‘”st)H—;w)Ex ( | e—*tht> .
0 0
U

Remark. Analogously as in the geometric Brownian motion case, the
first two terms on the right-side of do not depend on the particular policy
(L,U). Therefore,

inf kpuy(z)e sup wvpu(z),
(L,U)eS(z) (L,U)eS(x)

where S(z) is defined in .

5. Application to the data on banks’ deposits

A very important aspect in mathematical finance is whether the proposed
models are realistic. In this section we calibrate the models to real data. We
assume that banks’ deposits evolve as a Brownian motion, geometric Brownian
motion and as an Ornstein-Uhlenbeck process, respectively. We calibrate all
these three models to our data. The question is which model fits the demand
deposits best? We test the goodness-of-fit and we present the results on the
Kolmogorov-Smirnov test.

5.1. Data description

Our data is obtained from WRDS (Wharton Research Data Services [}

For each commercial bank in the United States there is a record of
RCON2210 (demand deposit amounts- net of withdrawals) on the last busi-
ness day of each quarter between March 1991 and December 2000. The total
number of banks is 1221. We included in our data set only the banks which
had recorded non-zero total asset size and demand deposit amount, for all 40

Yhttp : / Jwrds — web.wharton.upenn.edu/wrds /ds /bank /banks/balance.cfm
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quarters between 1991 and 2000. The data excludes savings banks, savings and
loan associations, credit unions, investment banks, mutual funds, and credit
card banks.

5.2. Calibration

We model and calibrate the demand deposit process as a Brownian mo-
tion with drift, a geometric Brownian motion and as an Ornstein-Uhlenbeck
process. Further on, we present the formulas that we use. For a thorough
discussion on the estimators we refer to [4].

Let (Dy); be the demand deposit process for an arbitrary bank. We
denote by (B;)i>o a standard Brownian motion. Our data consists of m = 40
time-records of demand deposit amounts for each of the 1221 banks:

(Dz)izl,N;te[O:tl<t2<...<tm:T}-
The demand deposits are recorded for each bank on the last business day of
all quarters between March 1991 and December 2000. Therefore, further on,
we consider that demand deposits are recorded at m equidistant moments of
time, i.e. t; —t;_1 = ¢, for all j = 2, m. Consequently, t,, —t; = (m — 1)d.

5.2.1. Demand deposits as Brownian motions with drifts. Let (Dy);>o follow a
Brownian motion (BM) with drift ¢ and volatility o > 0, i.e.:

Dt = /,Lt—’—O'Bt

A unbiased estimate for the drift is 1 = = —

A good candidate for the volatility estimator is:

2
52 =y PuDuy) 1 (D Dy
— Luj=2 tm—t1 m—1  tm—t1

5.2.2. Demand deposits calibrated as geometric Brownian motions. Let (Dy);
follow a geometric Brownian motion (GB) with drift p and volatility o > 0,
i.e. D, = Dyett+oBt wwhere Dy > 0.

Using the fact that log(D) is a normal random variable and applying
Ito’s Lemma one can show that (D;);~o must satisfy the following equation:

th = [LDtdt + O'DtdBt.

Since demand deposits are recorded at m equidistant moments of time, a
log(D4,,, )—log(Dt,)
tm—t1 :

unbiased drift estimator is: ji =

A good volatility estimator is
~o _ x~m  (log(Dy;)—log(Dy;_,))? 1 (log(Dty,)—log(Dt;))?
o= Zj:2 Jtm—tl _ - m—1 tm—t1 .

5.2.3. Demand deposits calibrated as Ornstein- Uhlenbeck processes. We as-
sume that the demand deposit process (D;):>o follows an Ornstein-Uhlenbeck
process (OU), i.e.

dD; = 0(pn — Dy)dt + odBy,
where § > 0 is the mean reversion rate, p is the mean, and ¢ > 0 is the
volatility.
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Using the fact that ED; = Doe™® + pu(1 — e=%) and Var(D;) = & one
can find the parameter estimators using a least square regression:
1 — 206
20

The model parameters are given by:

__ __loga _ b _ —2loga
0= s =140 =C¢C 6(1—a?)"

Dy, =D, e +pul—e®) +o N(0,1) = aDy, , +b+cN(0,1).

5.3. Results on the Kolmogorov-Smirnov test

We have 1221 banks and 40 data points for each bank. We obtained
that the Kolmogorov Smirnov test did not reject 89% of the banks when cali-
brated to Brownian motion. More, the test did not reject the hypothesis of the
Ornstein- Uhlenbeck model for 92% of the banks. Finally, the best fit among
the three models is the geometric Brownian motion: the Kolmogorov- Smirnov
test did not reject 94% of the banks. Overall, the Kolmogorov-Smirnov test
did not show a significant discrepancy between the models and the data on
the banks’ deposits.
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