
U.P.B. Sci. Bull., Series C, Vol. 86, Iss. 1, 2024                                                     ISSN 2286-3540 

PSO-LSTM BASED CONSTRUCTION SCHEDULE 

PREDICTION METHOD FOR SHIELD TUNNELING 

Xiao-Hong YIN1, Ran SONG 2, Zhi-Ding CHEN3*, Shang-Ge LI 4  

With the development of shield method in water conservancy and hydropower 

tunnel construction, the duration prediction of shield excavation faces more complex 

environment and variable influencing factors. In order to consider comprehensive 

factors such as environment, pre-construction and shield excavation segmentation, 

this paper proposes a shield excavation prediction method based on particle swarm 

optimization long and short-term memory neural network (PSO-LSTM), and 

optimizes the long and short-term memory neural network (LSTM) by particle swarm 

optimization algorithm (PSO) to solve the problems of difficult to determine 

parameters of LSTM neural network model, low training efficiency and poor 

accuracy. The engineering example shows that the average error of the proposed 

simulation model is only 5.32%, which is smaller than the average error of other 

models. The real data proving that the proposed method can effectively predict the 

duration of shield excavation, which provides new data support for shield excavation 

duration control and resource allocation.  

Keywords: shield tunneling; duration prediction; LSTM; PSO; construction 

schedules 

1. Introduction 

With the gradual development of shield method in the construction of water 

conservancy and hydropower tunnels [1], the duration prediction of shield 

tunneling faces more complex environment and variable influencing factors [2][3], 

and it will be challenging to reasonably arrange the working face and control the 

duration. The traditional schedule prediction is based on the consumption of 

machinery or labor hours to calculate the time required to complete a certain amount 

of work, in which the consumption of machinery or labor hours comes from 

historical data such as quotas and cost databases, but construction projects have 

their uniqueness and are greatly influenced by environment and site, so the 
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historical data cannot fully reflect the predicted construction projects. The proposed 

method of time-varying construction schedule prediction reflects the real-time 

nature of the project progress [4]. Recurrent network simulation technology is also 

gradually applied to construction progress prediction, and construction progress 

control is becoming more and more intelligent, such as gray prediction theory [5], 

BIM virtual optimization method [6], BP neural network prediction [7], etc. With 

the development of artificial intelligence, the excellent nonlinear mapping ability 

and generalization ability of machine learning methods [8][9] can effectively 

predict time series with nonlinear and time-varying characteristics, which provides 

an effective technical means to establish accurate schedule prediction methods. The 

above studies either predict the construction schedule at the planning stage [10] or 

offer some constructive suggestions on on-site construction management [11], and 

there is no research on predicting the progress of excavation in the actual 

construction environment during the construction process to determine whether the 

construction schedule is behind. Therefore, this paper adopts Particle swarm 

optimization (PSO) algorithm to determine the learning rate and number of neurons 

of Long short-term memory (LSTM) to build the prediction model of excavation 

progress, avoiding the shortcomings of LSTM model in which the relevant 

parameters are determined empirically and are highly subjective. The LSTM model 

can be used to predict the duration of shield excavation, and its applicability is 

verified by the process of shield excavation in the Pearl River Delta water allocation 

project. 

2. Shield tunneling progress prediction model 

2.1 Problems and needs 

Mapping models [12] are often established when predicting shield 

excavation considering factors such as geological type and operational parameters, 

and thus predicting construction progress, without considering the constraints of 

resource allocation and the effects of the actual environment (e.g., temperature and 

precipitation). On the other hand, according to the Supplementary Quotas for Water 

Resources Project Estimates (Tunnel Construction by Roadheader) issued by the 

General Institute of Hydropower and Water Resources Planning and Design and the 

Renewable Energy Quotations Station, the work content of T-2-2 cutter-type earth 

pressure balanced shield excavation and T-2-3 cutter-type cement balanced shield 

excavation includes "operating shield excavation, air supply and ventilation, 

measurement, dry excavation, maintenance, etc. ", the quotas divide the shield 

excavation into four different excavation sections: negative ring section, outgoing 

section, normal section and incoming section, which are considered separately. 

However, the commonly used shield excavation prediction model lacks the 
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consideration of segments and does not take into account the influence of the 

construction situation in the previous period on the current construction. 

In response to the above problems new demands are made on the progress 

prediction model for shield excavation: (1) the need to quantify and take into 

account the construction conditions of the previous period. (2) the need to 

effectively consider the impact of different excavation sections (negative loop, 

outgoing hole, normal, and incoming hole) on the construction progress. (3) the 

need to consider the constraints of resource allocation and quantify the 

environmental impact. 

In order to meet the above needs, this paper proposes a new simulation 

model for shield tunneling construction considering segments, as shown in Fig. 1, 

which accurately obtains the unit duration by establishing a high-precision 

prediction method for the time used to fix the tunneling distance, and incorporates 

influencing factors such as geological conditions, staffing, temperature and rainfall 

into the model to improve the accuracy of the simulation model and its application 

effect in engineering practice. The mathematical model consists of 3 parts. 

①Input: Define the model input parameters, which can be divided into two 

main parameter sets, factor parameters and algorithm parameters. The factor 

parameters include the influence of the previous period, the influence of different 

excavation sections, and the influence of the environment. 

②Model: PSO-LSTM method for predicting construction period. 

③Output: The output result of the progress simulation model is the stage 

duration. 
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Fig. 1. Algorithm flow chart 
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2.2 Screening of strongly correlated factors 

After the initial qualitative analysis to find the variables, the correlation 

degree analysis of the initially screened influencing factors was performed by the 

gray correlation method to further screen the strongly correlated influencing 

factors.  

Step 1: All data are dimensionlessly processed by the mean method, and the 

correlation coefficient of the ith sample of the tth factor and the corresponding 

construction efficiency is: 
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In equation (1), Y(i) is the ith sample of construction efficiency and   is the 

discrimination coefficient, which is taken as 0.5 here. 

Step 2: The correlation between the tth variable and construction efficiency 

is 
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 It is generally considered that when 0 ≤ 𝑟𝑡 ≤ 0.35, the correlation between 

factors is low. When0.35 ≤ 𝑟𝑡 ≤ 0.65, the correlation between factors is medium. 

When 0.65 ≤ 𝑟𝑡 ≤ 1, the correlation is strong. The factors with strong correlation 

with construction machinery construction efficiency are selected to establish the 

neural model. 

2.3 PSO-LSTM-based shield excavation duration prediction method 

The LSTM model can memorize the value of variable time length and 

transfer the information, which can better predict the duration change. In order to 

determine the parameters in the LSTM model, this chapter uses PSO to determine 

the learning rate and the number of neurons of the LSTM model to build the optimal 

structure for predicting the duration of shield excavation. 

2.3.1 Long and short-term memory neural network (LSTM) 

fundamentals  

Step 1: The forward propagation process is classified according to the 

LSTM cell structure. 

① Input gates: 

( )1tanht a t a t aa W x U out b−=  +  +   (3) 

( )1t i t i t ii W x U out b −=  +  +  (4) 

In Eqs. (3) and (4), xt is each influence factor at time t,and outt is the output 

at time t-1 from the previous time at time t. Wa is the weight, Ua represents the 

degree of influence at time t-1, and  ba represents the error not represented by the 
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influence factor, and the three variables keep changing with the back propagation 

in training. 

② Forgetting gate： 

( )1t f t f t ff W x U out b −=  +  +  (5) 

In Eq. (5), σ is the activation function, which determines the discard and 

retention of information by 0~1, the closer to 0 the more biased the discard. Wf, Uf 

and  bf are the weights, which keep changing with back propagation in training. 

③ Output gates. 

( )1t o t o t oo W x U out b −=  +  +   (6) 

In Eq. (6), 𝑥𝑡 is each influence factor affecting shield excavation at moment t. 

𝑜𝑢𝑡𝑡 is the cumulative excavation length at t-1. 𝑊𝑜, 𝑈𝑜 and  𝑏𝑜 are weights, which 

keep changing with back propagation in training. Then Cell state and cell output 

are：
1t t t t tstate a i f state −= + ， ( )tanht t tout state o=  

 

Fig. 2. Structural unit diagram of LSTM model 

 

Step 2: The backpropagation process of the model is shown in Fig. 2 of the 

structural unit, and the error variables are trained by backtraining. According to 

new old

L
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



= − , which new weights can be introduced and brought to the next 

time step for repeated training. 

2.3.2 PSO-LSTM method and process for predicting work hours 

As mentioned before, the LSTM model uses gradient descent to set the weight 

bias, where the learning rate and the number of neurons in the hidden layer are the 

key parameters. These parameters are generally determined empirically, which 

makes the efficiency and accuracy of the model fluctuate widely. In this paper, we 

use PSO algorithm to optimize the learning rate and the number of neurons in the 

hidden layer of LSTM, and the PSO algorithm has good performance and can obtain 

the results faster. The specific steps are as follows. 
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Step 1: Construct the input matrix. 

Construct the input matrix. The LSTM model can memorize the values of 

variable time length and transmit the information, and the continuous efficiency 

time efficiency can be added to better predict the change of duration. m before the 

moment t is used as the sample, and m is determined by the AIC criterion. 
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n
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  (7) 

In Eq. (7), k is the number of influencing factors, n is the number of samples, 

RSS is the residual sum of squares, and k is m when the AIC is smallest. then the 

input matrix can be obtained as follows. 
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In Eq. (8), X is the input matrix of the digging efficiency prediction model. 𝑦𝑖 

is the digging time at the ith moment, which is determined by the previous m 

digging decreases and 𝑥𝑖. And 𝑥𝑖 is the other influencing factors at the ith moment. 

Step 2: Randomly generate the positions and velocities of the population 

particles, where the positions of the particles are set as two-dimensional vectors 

representing the learning rate and the number of neurons of the LSTM model. 

Step 3: Set the fitness function as 
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In Eq.(9), 𝑦𝑖 is the predicted unit duration and ˆ
iy  is the predicted unit duration. 

Step 4: Population update. The positions and velocities of the particles within 

the population are updated by comparing the fitness. 
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In Eq. (10), w is the inertia factor, and the larger w is, the stronger the global 

capability, which is obtained based on the decreasing weight strategy by the number 

of iterations. pi
t is the individual optimal setup parameter at time t, i.e., the 

individual optimal setup parameter at time t. pg
t  is the global optimal setup 

parameter at time t. In Eq. (11),  xi
t is the two-dimensional vector of the particle's 

position, learning rate and number of neurons; vi
t is the particle's velocity. 

Step 5: Set the optimal parameters and use the LSTM model to predict the unit 

duration of 50m of tunnelling, and project the time required to complete a tunnel 
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with a known total tunnel length. 

3. Engineering Example 

The shield tunneling of the Pearl River Delta Water Resources Allocation 

Project is used as the research object to carry out a simulation model study of shield 

tunneling construction. The project is located in the south of China, which is warm 

and rainy, with abundant light and heat, long summer and short frost period. 

Throughout the year, the rainy season is from April to June, and the weather is hot 

and typhoon-prone from July to September. The total length of the tunnel is 1690m, 

the diameter of the tunnel is 4.1m, the shield machine is a mud-water balance shield, 

and the planned construction period is 294 days. 

3.1 Data Acquisition and Processing 

3.1.1 Data source 

The data are obtained from the Pearl River Delta Water Resources 

Allocation Project, China. And the Pearl River Delta Water Resources Allocation 

Project diverts water from the Xijiang River system in Guangdong Province to the 

eastern part of the Pearl River Delta for the purpose of solving the problem of water 

shortage for urban life and production in Nansha District, Guangzhou, Shenzhen 

and Dongguan City, and the total length of the water transmission line is 113.1 

kilometers. The project adopts the method of deep-buried shield construction, 

which is built underground at a depth of 40 meters to 60 meters. 

The temperature and precipitation data at the construction site are selected 

and integrated and averaged into the daily temperature and daily precipitation for 

completing the unit length of excavation. For example, in the negative ring section, 

it took a total of 23 days to dig 50m, and a total of 57.2mm precipitation was 

received in these 23 days, so the average daily precipitation was 2.47mm 

(57.2÷23=2.47). The segment data is determined according to the "Supplementary 

Quotas for Estimated Budget of Water Resources Process (Tunnel Construction by 

Roadheader)" (Water General [2007] No. 118) issued by the Ministry of Water 

Resources. The geological situation, manual according to the actual record to obtain 

the average value of the excavation of 50m, data collation can be seen that the shield 

excavation in the normal section of the most time, the geological situation is also 

more consistent, shield excavation to 425-850m when the precipitation is more.  

3.1.2 Correlation analysis of influencing factors  

The gray correlation between factors such as segmentation, geology, 

precipitation, temperature, workers and average duration of 50m per excavation is 

calculated and the results are shown in Fig. 3. Except for temperature, the 

correlation degree of all factors is greater than 0.8, which is used to establish LSTM 

neural network as a strong influencing factor. Generally speaking, temperature is 

an important factor affecting tunneling efficiency, but the correlation between here 
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and shield tunneling efficiency is not strong, probably because the temperature 

peaks and valleys at the construction site do not differ much, and the temperature 

is moderate and less undulating throughout the year, so it has less influence on 

shield tunneling. 

3.2 Duration prediction 

3.2.1 Parameter Setting 

The optimal learning rate and number of neurons are obtained by training 

test with PSO-LSTM model. The particle population is set to 20, the maximum 

number of iterations is 30, the range of neurons is 1-50, the range of learning rate 

of gradient descent is 0.1-0.9, and the initial velocity and position are determined 

randomly.  
 

 
Fig. 1. Gray correlation   

 

Fig. 2. PSO-LSTM model training results 
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The number of hidden layers is 1. The training is performed with the above 

data, and the results are shown in Fig. 2. The particle swarm converged at the 60th 

iteration, and the optimal parameters for the PSO-LSTM model were a learning rate 

of 0.236 and the number of neurons of 26. 

3.2.2 Duration prediction 

As shown in Fig. 3, when the training data accounts for 60% of the total, the 

difference between the time used for 50m of shield boring and the actual is large; 

while the larger the percentage of training data, i.e., the more training data, the 

smaller the difference between the time used for 50m of shield boring and the 

actual. In other words, as the construction progresses, the prediction of the model 

will gradually approach the actual. Based on the predicted unit time of tunnelling, 

the total duration of a tunnel at the completion of 1690m of tunnelling can be 

obtained, with the training data accounting for 90% of the total duration being the 

closest to the actual duration. 

 
Fig.3  Comparison of predicted time for shield tunneling 50m 

 

3.3 Comparison and Discussion Analysis 

3.3.1 Comparison of prediction methods 

The tunnel boring was analyzed, and the relative errors at 60%, 70%, 80% 

and 90% of the total tunnel length were calculated for the completed boring length, 

i.e., 10%-40% of the predicted total tunnel length, and the results are shown in 

Table 1. 
Table 1 

Training results and relative error 

Percentage of 

training data 
No.1 No.2 No.3 No.4 No.5 

Average 

duration 

Relative 

error 

60% 308.43 308.87 303.32 298.96 301.14 304.14 9.70% 

70% 353.90 351.30 355.79 352.51 353.44 353.39 4.92% 

80% 345.29 359.49 340.76 364.46 349.97 352.00 4.51% 

90% 343.09 345.34 343.90 344.74 344.46 344.31 2.22% 
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The average relative error of the PSO-LSTM model prediction results is 

5.32%, and the difference between the 5 training results is not significant, the 

amount of training data has more influence on the training results: the error of 

training results decreases with the increase of training data, and the error is larger 

when the training data accounts for 60%, which is 9.7%; the error of training results 

is stable at about 5% when the training data accounts for 70% and 80%; the error 

of training results when the training data accounts for At 90% of the training data, 

the result error is the smallest, only 2.22%. The comparison with other models is 

shown in Fig. 4. 

 
Fig. 4. Comparison of prediction results of different models 

 

(1) Comparing the average relative errors of the prediction results of the 

four models of nonlinear regression, BP neural network, and Gaussian process 

regression, it can be found that the PSO-LSTM model has the smallest error and 

the most stable prediction. (2) The accuracy of nonlinear regression depends on the 

function selection and the prediction is not stable. (3) The BP model approximates 

the minimum error by gradient descent method and has the problems of slow 

convergence and local optimization. (4) The Gaussian process regression model has 

a large relative error when the training data is small, and when the training data is 

sufficient, although the relative error of the prediction results is smaller than that of 

the PSO-LSTM model, the computational efficiency of this model is low due to the 

computational complexity of the Gaussian regression model. 

3.3.2 Segmentation impact on schedule 

The impact of segmentation on the duration is shown in Fig. 5, and the analysis 

shows that:  

(1) in the impact layer geology, the unit duration from short to long is normal 

section, negative ring section and inlet section; in the waterway, the unit duration 

from short to long is outgoing section, normal section and negative ring section; the 

average unit duration is outgoing section, normal section, negative ring section and 

inlet section; (2) when the staffing is similar, the unit duration also has the above 
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rule: from long to short is outgoing section, normal section, inlet section and 

negative ring section.  

 
Fig. 5. Impact of segmentation on the construction period 

 

(3) The unit time consumption of mud and water balance shield in 4m 

diameter tunnel is from small to large: normal section (0.1532 days/m), negative 

ring section (0.1704 days/m), inlet section (0.2839 days/m), outlet section (0.3617 

days/m); (4) The unit time consumption of outlet section and normal section in the 

quota is larger than the actual time consumption, because the quota is the social (4) 

The table time consumption of the outgoing hole section and normal section in the 

quota is larger than the actual time consumption because the quota is the average 

level of the society and the enterprise construction efficiency is higher; the table 

time consumption of the negative ring section and the incoming hole section is 

smaller than the quota because the negative ring section includes the parts of the 

cart down the well and the pipeline connection, which is less efficient; the incoming 

hole section has to consider the construction of the receiving well and there is 

downtime, which is less efficient. 

3.3.3 Model Application 

The long shield excavation cycle and complex objective environment make 

the construction duration difficult to predict. The proposed shield excavation 

duration simulation model can effectively predict the duration of shield excavation, 

which provides new data support for reasonable layout of working face, 

arrangement of personnel and machinery allocation and control of duration. 

To illustrate the effectiveness of the method proposed in this paper, the start 

time and planned duration of different tunnels and the predicted duration according 

to the prediction model are shown in Table 2 for this water transmission project as 

an example. Due to force majeure factors such as epidemics, the actual progress 

differs greatly from the schedule, and the start time is also different from the plan, 
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which makes us only compare the prediction accuracy of the model by comparing 

the actual duration. 

Table 2 
Projected duration of different tunnels 

No. 
Planned start 

time 

Planned 

duration 

Actual start 

time 

Simulated 

duration 

Actual 

duration 

Relative 

error 

1 2020/9/8 674 2020/9/20 715 713 0.28% 

2 2020/10/8 674 2020/10/24 621 617 0.65% 

3 2020/11/28 601 2021/1/4 591 589 0.34% 

4 2020/12/8 596 2020/12/15 618 611 1.15% 

5 2020/12/15 629 2021/2/16 524 504 3.97% 

7 2021/4/20 498 2021/4/14 493 467 5.57% 

8 2021/5/5 483 2021/3/19 478 467 2.36% 

9 2021/3/9 408 2021/3/11 481 473 1.69% 
 

From Table 2, we can know that the overall prediction result of the tunnel 

with serial number 7 is relatively not very good. The diameter of the tunnel is 6m, 

the total length of the tunnel is 2394m, and the shield machine is a soil-pressure 

balance shield machine. Analyzing the process of the shield machine, we can find 

that in addition to the normal maintenance and grouting, there are long periods of 

shutdowns for rectification, and there are 4 shutdowns for rectification during the 

excavation period, with an average shutdown time of 12 days each time. These 

stoppages are not caused by construction but by inspection and other artificial 

influences, which did not occur in the subsequent construction, thus resulting in an 

error of 5.32%. 

Based on the prediction method proposed in this paper, on the one hand, the 

end time can be calculated based on the actual start time and the predicted duration, 

and if the duration requirement cannot be met, the working surface can be increased 

and the construction organization can be adjusted in time to shorten the duration. 

On the other hand, the resource allocation can be adjusted according to the model 

prediction, so as to reduce the waste of resources when the schedule requirement is 

met. 

4. Conclusion 

In view of the difficulty of shield excavation duration prediction, a shield 

excavation duration prediction method based on PSO-LSTM is proposed, which is 

compared and verified with other prediction models in an engineering example of 

shield construction in the Pearl River Delta, and the following conclusions are 

obtained. 
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(1) The efficient search and global optimum capability of the particle swarm 

optimization algorithm is used to optimize the LSTM neural network model, which 

improves the training efficiency and accuracy of the LSTM model and thus 

achieves the prediction of the shield boring duration. 

(2) Shield excavation duration is related to shield excavation segments, 

geological conditions, staffing, rainfall and other factors, among which segments 

(negative ring, outgoing hole, normal, incoming hole) have the greatest impact on 

the duration, and a good articulation of each segment in the actual construction is 

conducive to shortening the duration and improving the construction efficiency. 

The PSO-LSTM-based shield excavation duration prediction model 

proposed in this paper provides data support for shield excavation construction 

schedule control and provides new ideas for shield excavation schedule 

management and resource allocation. In addition, further research is needed on the 

influencing factors of step size in the LSTM neural network model. In further 

research, it is hoped to consider the influencing factors of unconventional behavior 

without affecting the simplicity of the model. 
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