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WAVE PROPAGATION  

THROUGH A NOZZLE WITH ELASTIC WALLS  
 
 

Elena Corina CIPU ∗ 
 

 
Se studiază propagarea micilor perturbaţii pentru o problemă simplă de 

curgere-structură. Este considerată curgerea unui fluid izentropic, compresibil,  
nevâscos printr-o doză cu pereţi elastici. În prezenţa structurii elementului frontieră 
al fluidului cercetăm influenţa numărului Mach al mişcării neperturbate asupra 
vitezei de propagare a undelor.  

 
Study of small perturbations propagation in a simple flow-structure problem 

shall be made. The flow of a compressible inviscid and isentropic fluid through a 
nozzle with elastic walls is presented. In presence of a coupling with a structural 
element bounding the fluid we investigate the influence of Mach number of the 
unperturbed flow on the speed of propagating waves.  
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Introduction 

 
 We study the propagation of small perturbations in a nozzle with parallel 
elastic walls (see [1], [2]). We consider a bi-dimensional inviscid, isentropic and 
compressible fluid flow through a nozzle with elastic walls. For initial time we 
suppose that the nozzle has straight walls. The study is divided in two parts. We 
study in first section the one-dimensional flow and in second the two-dimensional 
flow-structure interaction.  
 
 1. One-dimensional flow-structure problem 
 
 Denoting )t,x(c , the local speed of sound, )t,x(u  the fluid velocity in x 
direction and )t,x(H  the nozzle height, )t,x(u 0  shall be the initial fluid velocity. 
 The lateral section of the nozzle is illustrated in Fig 1.  
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Fig 1. Lateral section of the nozzle. 

 
 Under the hypothesis that the walls of the nozzle are so thin that the 
motion is governed by the linear beam equation (see [1]) the equations governing 
the flow are: 
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for γ  the specific heats ratio, D the bending stiffness, ip  the local pressure of the 
fluid, 0p  the outside ambient pressure and m the linear mass of the walls that 
shall be supposed unity. 
 The evolution of small perturbations for the system (1.1) is expressed by 
functions 'H,'u,'c  for 'ccc 0 += , 'uuu 0 += , 'HHH 0 += . The system for 
perturbations shall be obtained if we assume that prime quantities are small 
comparing with those in the unperturbed flow denoted with 000 ,, Huc  for 10 =p , 

10 =ρ . Dropping the prime notation for perturbations and using known relations: 
)1/(2
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γc  and the system of equations for perturbations is: 

 
 0/)()1/(2)1/(2 00000 =++−++− HHuHcucucc xtxxt γγ , 
 02))(1( 00 =++− xxt ccuuuγ , (1.2) 
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 We search for solutions through simple waves such that for 0, ≠ωk  
)(),( tkxtxc ωϕ −= , )(),( tkxtxu ωψ −= , )(),( tkxhtxH ω−= ,      (1.3) 

for )(, )1( RC∈ψϕ , )()4( RCh∈ . From (1.2) with ( ) )1/(12
00 /

−
=

γ
γcA  we find:  

 
 0/')(')1/(')(2 00000 =−++−− Hhkuckcku ωψγϕω , 
 0)1/('2')( 00 =−+− γϕψω kcku  . (1.4) 
 
 If 00 =−ωku  then .ct=ϕ , .ct=ψ , .cth =  expressing a permanent flow. 

We shall continue under the case 00 ≠−ωku  meaning 0u
k
≠

ω  in which phase 

velocity differs from the flow speed. We can write from (1.4): 
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 Solving differential equation (1.5)3 and denoting 
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 we shall find the 

fundamental solutions:  
 λξϕ sin1= , λξϕ cos2= , αξϕ sin3 = , αξϕ cos4= ; (1.6)  

for 
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 λξϕ sin1= , λξϕ cos2= , αξϕ e=3 , αξϕ −= e4 ; (1.8) 
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or λξϕ sin1= , λξϕ cos2= , BA += ξϕ3 , for 
ω

δω
−

=
0

2

ku
. (1.10) 

 In order to investigate the influence of Mach number of the unperturbed 
flow on the speed of propagating waves we shall make graphical representations 
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of level curves for the function
ω

δωω
−

−=
0

2),(
ku

kf . We shall use the 

following constants: 4.10 =c , 4025.1=γ , D  of order 310− , Mach number 
]13,0[/ 000 ∈= cuM  and  ]1,1[/ −∈kω .    Representations are made in Figs 2. 

and 3. 

 
Fig. 2. Variation of D D=0.001, D=0.005 for fixed 5.00 =M  

 

 
a) 005.00 =M  b) 05.00 =M  
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c) 95.00 =M  d) 130 =M  

Fig. 3. Variation of Mach number for fixed D=0.001. 
 
 From Figs 2. and 3. we conclude that the domain 0/ <kω  reduces once 
Mach number is increasing.  
 For tkx ωξ −=  we found bounded general solution for (1.3)1: 

),(cos
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for 
ω

δω
−

>
0

2

ku
, and in case 

ω
δω
−

<
0

2

ku
 the local speed of sound becomes:  
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ω , 
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321 )(cos)(sin),( tkxeFtkxFtkxFtxc ωαωλωλ +−+−+−= , ω>> 0k  (1.12) 

)(
321 )(cos)(sin),( tkxeFtkxFtkxFtxc ωαωλωλ −+−+−= , ω<< 0k . 

 Then from (1.5) after integration we can write: 
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 Using initial conditions: )(),( xctxc oC= , )(),( 0 xUutxu = , )(),( 0 xfHtxH = , 
and boundary conditions we can express the constants of integration. Also from 
these conditions one obtains a compatibility relation between initial conditions for 

existence of motion through simple waves: )()(
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 ))(())(1/()( 01
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020 xfHCkukcCxUu −−−=− ωγ . (1.14) 
 
Remarks: 
1. If .)( ctxU =  or .)( ctxf =  then .)(.,)( ctxCctxf ==  or .)(.,)( ctxCctxU ==   
Looking for solution which has: εoctxc =),( , 0),( =txu , ε0),( HtxH =  or 

εoctxc =),( , ε0),( utxu = , 0),( =txH , )10( 2−= Oε  we find  
 CckxFkxFkxFxkF 04321 cossincossin =+++ ααλλ , 
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2. Boundary conditions could be imposed if we consider the domain ],0[ Lx∈ , 
)](,0[ xHy∈  at each t: 0),(),0( == tLHtH , 0),(),0( == tLHtH xxxx . 

 Considering also the case .)(.,)( ctxUctxf ≠≠ we look for the constants 

iF , i=1,2,3,4 in order to obtain the general solution. 
 
 2. Bi-dimensional flow-structure problem 
 
 The fluid velocity has now two components, on x and y direction. The 
fluid flow is sketched in Fig. 4. 

 
Fig. 4. Lateral section of the nozzle. 

 
 We consider a potential flow, with the potential ),,( tyxφ  and flow velocity 
vector viuV GGG

+= 0 , ),(),( yxvuv φφ==
G . The equations governing the flow are: 

 

 0/)2()1( 2
00

2
0 =+−+− cuM ttxtyyxx φφφφ , 

 )(2 000 xtixxxxtt uppDHH φφρ +=−=+  on ),(2 txHy = , (2.1) 
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where )0,( 0u  is the velocity vector in the unperturbed flow and H,φ  bounded 
functions for ±∞→y  (see [3], [4], [5]).  
 
Remarks: 
1. For bi-dimensional inviscid, isentropic and compressible fluid the pressure and 
mass density could be written as: )1/(2

0
2

0 )/)2/)(1(1( −+−+= γγφγ cVpp t , 
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on ),(2 txHy =  becomes: )/)2
2
1(1( 2

000 …++−= cuupp tφγ  from where 

)( 000 xt upp φφρ +=− . 
2. Boundary condition on the surface ),(2 txHy =  must be imposed for potential 
obtained from velocity in x direction: xty HuH 0+=φ . 
 For function H we shall consider initial and boundary conditions:  

),()0,( 0 xfHxH =  and 0),(),0( == tLHtH , 0),(),0( == tLHtH xxxx . 
 
 Looking for motion through simple waves we consider:  

)(),,( 21 tykxkFtyx ωφ −+= , )(),( 1 txkhtxH ω−= , )()2( RCF ∈ , )()4( RCh∈ . 
 From (2.1) we find:  
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 For 0'' ≠F one find the dispersion equation:  
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 In order to solve equation (2.1)1 we change the variables ),( tx  through 
),( ηξ  with: tcux )( 00 +−=ξ , tcux )( 00 −−=η  obtaining a new equation:  

 04 =+ yyφφξη , ),,( yηξφφ = .  (2.3) 
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that will be solved considering a separation of variables ),( ηξ  from y variables: 

)(),( yFηξϕφ = . We find K
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′′
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, 0>K  for bounded solutions 

on y.  
 Then yByAyF λλ 2cos2sin)( +=  and 02 =− ϕλϕξη . Solution obtained 
for 0=λ  is ηξηξϕ DC +=),(  and for 0≠λ  is =),( ηξϕ  

)()( ηξληξλ +−+ += DeCe . We can write the solution of (2.1)1: 
 

 ]2cos2sin][[),,( )(2)(2 00 yByADeCetyx tuxtux λλφ λλ ++= −−− . (2.4) 
 
We remark that for solution (2.4) of (2.1)1 we have 00 =+ xt u φφ . 
 Solving equation (2.1)2 we obtain for function ),( txH  the problem: 
 
 0=+ xxxxtt DHH , ),0(],0[ ∞×= LD ,  

 
.0),(),0(,0),(),0(

),()0,( 0
====

=
tLHtHtLHtH

xfHxH

xxxx
 (2.5) 

Considering a separation of variables )()(),( tTxXtxH = α=−=
′′

⇒
X

XD
T
T )4(

 

and for 0>α we can write 0)/(,0 )4( =+=−′′ XDXTT αα . 

 With 2//4 Dαβ = , general solution for (2.5) is:  
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tt QePetT αα −+=)( , 0=P , for a bounded solution on t. (2.6) 
 
Solution for equation (2.5)1 is: 
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 From conditions (2.5)2 we find: 
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and (2.7) )4/(12 ππ kthCC +−=⇒  for each k.  
 The general solution for (2.5) is:  
 

++−+−= ∑
∞

=
)/)4/(()/)4/{cos((),(

1
LxkshLxkMtxH

k
k ππππ  (2.9) 

tk
L

D

eLxkchLxkkth
2

2
)

4
(2

)}/)4/(()/)4/sin(()4/(
ππ

ππππππ
+−−

+−+−+−+ . 
with kM  determined from )()0,( 0 xfHxH =  for which: 
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                          )}/)4/(()/)4/sin(()4/( LxkchLxkkth ππππππ +−+−+−+ . 
 

Conclusions 
 
 For one-dimensional case was investigated the influence of Mach number of 
the unperturbed flow upon the speed of propagating waves (presented in Figs 2 
and 3). 
 For the bi-dimensional case instead of a discussion of the dispersion 
equation we have studied the solution for potential using condition on the 
boundary: xty HuH 0+=φ  on ),(2 txHy = , and initial conditions on velocity. 
The velocity field is expressed by: 
 
 ]2cos2sin][[2 )(2)(2 00 yByADeCeu tuxtux

x λλλφ λλ +−== −−− , 

 ]2sin2cos][[2 )(2)(2 00 yByADeCev tuxtux
y λλλφ λλ −+== −−− . 
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