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EFFICIENT GAUSSIAN ELIMINATION ON A 2D SIMD 
ARRAY OF PROCESSORS WITHOUT COLUMN 

BROADCASTS 

Mugurel Ionuţ ANDREICA1 

În această lucrare se prezintă o metodă eficientă de implementare a 
eliminării Gaussiene pentru o matrice de dimensiuni n·m (m≥n), folosind o 
arhitectură SIMD ce constă dintr-o matrice de n·m procesoare. Algoritmul descris 
constă în 2·n-1=O(n) iteraţii, oferind astfel o creştere de viteză optimă faţă de 
versiunea serială. O particularitate a algoritmului este că nu necesită realizarea 
operaţiei de broadcast decât pe liniile, nu şi pe coloanele, matricii de procesoare. 
Lucrarea prezintă, de asemenea, o serie de extensii şi aplicaţii ale algoritmului de 
eliminare Gaussiană. 

This paper presents an efficient method for implementing the Gaussian 
elimination technique for an n·m (m≥n) matrix, using a 2D SIMD array of n·m 
processors. The described algorithm consists of 2·n-1=O(n) iterations, which 
provides an optimal speed-up over the serial version. A particularity of the 
algorithm is that it only requires broadcasts on the rows of the processor matrix and 
not on its columns. The paper also presents several extensions and applications of 
the Gaussian elimination algorithm. 
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1. Introduction 

The Gaussian elimination algorithm applied to an n·m (m≥n) matrix A 
consists of transforming the matrix into an equivalent upper triangular matrix B 
(i.e. B(i,j)=0, for j<i). The Gaussian elimination algorithm is a fundamental tool 
in a vast range of domains, like linear algebra (solving systems of linear equations 
[13], computing the rank of a matrix, computing the inverse of a matrix), 
geometry or scientific computing (molecular physics, geology, earthquakes). A 
serial version of the Gaussian elimination algorithm is presented below : 
SerialGauss(A,n): 
for i=1 to n-1 do 

// the search and swap stage 
 find a suitable (row,column) pair (r,c) (i≤r≤n, i≤c≤m), such that |A(r,c)|>0. 

swap rows i and r in the matrix A 
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swap columns i and c in the matrix A 
// the reduction stage 
for j=i+1 to n do 
 vaux=A(j,i)/A(i,i) 
 for k=i to m do 
  A(j,k)=A(j,k)-vaux·A(i,k) 

 At the end of the algorithm, the matrix A is an upper triangular matrix. A 
suitable (row, column) pair (r,c) (i≤r≤n, i≤c≤n) is usually considered the one with 
the largest absolute value |A(r,c)|, because of numerical stability reasons. There 
are cases, however, when any (row,column) pair (r,c) is suitable, as long as 
|A(r,c)|>0. In such cases, we need to perform the swaps only if A(i,i)=0. 

Because of its huge theoretical and practical importance, many parallel 
approaches for the Gaussian elimination technique were proposed. In [1, 2, 3], 
parallel Gaussian implementations using OpenMP and running on multiple 
processors (cores), as well as distributed implementations using MPI and running 
on multiple computing nodes were analyzed. Generating optimal task schedules 
for Gaussian elimination on MIMD machines was achieved in [4]. In [5], 
communication efficiency aspects of parallelizing the Gaussian elimination 
technique were considered. A systolic array implementation for dense matrices 
over GF(p) (the Galois field) was given in [6]. In [7], a Gaussian elimination 
algorithm over a synchronous architecture was presented, which is similar in 
several ways with the solution presented in this paper. Although the algorithm in 
[7] does not require any kind of broadcast mechanisms, it assumes that 
communication is possible between neighbouring processors located on the same 
row or column (at most 4 neighbours). 

However, many of the mentioned parallel implementations seem to ignore 
the possibility that, at the ith iteration of the algorithm, the entry A(i,i) might be 
zero. This is because parallelizing the search and swap stage is more difficult. 
Such a hardness result was obtained in [8]. The time complexity of the serial 
algorithm is O(n2·m) (or O(n3) if m=O(n)) even if we do not search for a suitable 
entry A(r,c) at every iteration (and, thus, we perform no swaps). However, in the 
parallel case, the reduction stage is easy to parallelize, while the search and swap 
stage is not. 

This paper proposes a novel approach for implementing the Gaussian 
elimination for an n·m (m≥n) matrix, using a SIMD 2D array of n·m processors (n 
rows with m processors each). The approach does not try to parallelize directly the 
serial algorithm, like many of the existing parallel solutions do; instead, it uses a 
different technique which allows matrix rows to slide past each other and reach 
their correct position in the final, upper triangular matrix. The solution does not 
search for the entry with the largest absolute value when setting the value A(i,i) 
and, because of this, it might not be numerically stable. However, it does permit 
row reorderings, due to the sliding mechanism, thus working under more realistic 
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conditions than many other existing parallel solutions. Another particularity of the 
solution described in this paper is that it only requires mechanisms for 
broadcasting data on a row of processors and not on its columns, while several 
other parallel Gaussian elimination approaches require both row and column 
broadcasts. Since the broadcast requirements are reduced, the processor 
interconnection architecture can be simplified, thus reducing some of the 
architectural costs. Section 2 of this paper contains the description of the parallel 
algorithm and architecture, as well as a formal proof of correctness, based on 
induction over the number of rows of processors. Section 3 presents some 
validation results through simulations. In Section 4 several extensions and 
applications of the Gaussian elimination method are presented and in Section 5 we 
conclude and discuss future work. 

2. Description of the Parallel Algorithm 

The n·m processors are arranged into an n·m grid (n rows with m 
processors per row). Each processor (i,j) (located on row i and column j) is 
connected to the processor on the row below it and on the same column. 
Processors on the nth row are connected to those on the first row. On each row i, 
processor (i,i) is a special processor and there are extra connections which allow 
processor (i,i) to broadcast data to all the other processors in its row. Each 
processor (i,j) has 6 registers: tmp(i,j), tmp2(i,j), f(i,j), cnt(i,j), state(i,j) and 
state_changed(i,j). tmp(*,*) and tmp2(*,*) are used for temporary storage; f(i,j) is 
used for storing the final value of the entry on row i and column j of the triangular 
matrix obtained as a result of the algorithm. cnt(i,j) is a counter and is 
incremented after each iteration of the algorithm (cnt(i,j) is identical for all the 
processors and could be implemented as a single shared register, instead of n·m 
distributed registers). state(i,j) stores the state of the processor. If (state(i,j)=1), 
then the value stored in f(i,j) is the final value of the (i,j) entry of the resulting 
triangular matrix; otherwise (if state(i,j)=0), f(i,j) contains no meaningful value. 
The states of all the processors on the same row i are identical; thus, a single 
shared register for each row could be used. state_changed(i,j) is a boolean register 
which holds the value true if the state of the processor changed during the current 
iteration. Except for these registers, each processor stores its row and column (i 
and j) in two special read-only registers. 

In the beginning of the algorithm, entry (i,j) of the initial matrix is stored 
in tmp(i,j), cnt(*,*) and state(*,*) are set to 0 and state_changed(*,*) are set to 
false. We will perform 2·n-1 iterations. At each iteration, the tmp value of each 
processor (i,j) is transferred to the tmp value of the processor (i+1,j) (processor 
(n,j) transfers the data to processor (1,j)). All the transfers occur simultaneously, 
as in any SIMD computer. After the data transfer, each processor performs a 
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series of computations, described by the function Compute (see below). The 
algorithm works as follows. At each iteration t (1≤t≤2·n-1), only the processors on 
rows i≤t perform meaningful computations (this is enforced by the test cnt(i,j)≥i in 
the pseudocode below). If the state of the processors on row i is 0, then we verify 
if the current row stored in the tmp(i,*) values could be the final row to be stored 
on row i of the resulting upper triangular matrix. Processor (i,i) performs this test, 
by comparing |tmp(i,i)| against 0. If (|tmp(i,i)|>0), then we can store the current 
tmp(i,*) values into the f(i,*) values, because the condition that the entry (i,i) is 
non-zero is fulfilled. The processor (i,i) broadcasts a changed state announcement 
to all the other processors on row i. If this announcement is 1 (|tmp(i,i)|>0), then 
the new state of the processors (i,j) becomes 1 and the tmp(i,*) values are copied 
into the corresponsing f(i,*) values; after this, tmp(i,*) is set to 0; if the 
announcement is 0, then no more computations are performed by the processors 
on row i during the current iteration. 
Compute(processor (i,j)): 
cnt(i,j)=cnt(i,j)+1 
if (cnt(i,j)≥i) then 

if (state(i,j)=1) then 
 if (i=j) then 

 tmp2(i,i)=tmp(i,i)/f(i,i) 
 broadcast tmp2(i,i) to all the processors (i,j) on row i, with i≠j 
else // i≠j 

   tmp2(i,j)=the value broadcasted by processor (i,i) 
tmp(i,j)=tmp(i,j)-tmp2(i,j)·f(i,j) 

else // (state(i,j)=0) 
 if (i=j) then 

 if (|tmp(i,i)|>0) then 
   broadcast true  to all the processors (i,j) on row i, with i≠j 
   state_changed(i,i)=true 

 else 
   broadcast false to all the processors (i,j) on row i, with i≠j 

else // i≠j 
   state_changed(i,j)=the value broadcasted by processor (i,i) 
  if (state_changed(i,j)=true) then 
   state(i,j)=1 

state_changed(i,j)=false 
   f(i,j)=tmp(i,j) 
   tmp(i,j)=0 

If, at the beginning of the iteration, the state of the processors on row i is 
1, then the values stored in tmp(i,*) are processed accordingly. The value 
tmp2(i,i)=tmp(i,i)/f(i,i) is computed by processor (i,i) and then broadcasted to all 
the other processors on row i (which store it in their own tmp2 register). 
Afterwards, each value tmp(i,j) (1≤j≤m) is decreased by tmp2(i,j)·f(i,j). As a result 
of this, tmp(i,i) becomes 0. At the next iteration, the processors on the row below 
row i receive the decremented tmp(i,*) values of the processors on row i. 
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We will prove the following statement: the tmp(i,j) values received by a 
row i of processors at an iteration t≥i are zero for 1≤j≤i-1. The proof is based 
on induction over the row i of processors. The base case consists of i=1 where it 
is obvious that the statement holds. Let’s assume that the statement holds for the 
first i-1 rows of processors and we will now try to prove it for the ith row, too.  

Let’s analyze all the possible cases. If, at the beginning of the previous 
iteration, state(i-1,*)=1, then according to the algorithm, the entry tmp(i-1,i-1) 
was decremented to 0. The entries tmp(i-1,j) (1≤j≤i-2) were zero and they were 
further decremented by tmp2(i-1,j)·f(i-1,j). However, the statement is valid for 
row i-1 and any previous iteration t≥i-1 and, thus, also for the iteration t’ when the 
state of row i-1 changed from 0 to 1. At iteration t’, the values f(i-1,j) (1≤j≤i-2) 
were set to tmp(i-1,j), which were equal to 0. Thus, we have f(i-1,j)=0 (1≤j≤i-2) 
and, as a consequence, the tmp(i-1,j) (1≤j≤i-2) values were, in fact, not 
decremented at all. So, at the end of the previous iteration, all the tmp(i-1,j) 
(1≤j≤i-1) values were 0, after which they were transferred to the row i of 
processors. We also have to analyze the case where state(i-1,*)=0 at the 
beginning of the previous iteration. If, in the previous iteration, the row of 
processors i-1 changed its state from 0 to 1, then it set all the tmp(i-1,*) values to 
0 and these were then received by the next row of processors; thus, the statement 
holds. The only case left is when, at the beginning of the previous iteration, 
state(i-1,*)=0 and it does not change to 1. In this case, the tmp(i-1,*) values are 
not changed – they are transferred at row i as they are. Since the statement holds 
for the rows up to i-1, we have tmp(i-1,j)=0 (1≤j≤i-2). However, because the state 
of the previous row of processors did not change to 1, we must also have tmp(i-
1,i-1)=0. This concludes the proof. 

Using the statement proved above, it is easy to conclude that the final 
values f(i,j) are 0 (1≤j≤i-1) and, thus, the obtained matrix is upper-triangular. We 
only have one problem left. It is possible that, after 2·n-1 iterations, some rows of 
processors are still in state 0. If a row i of processors is still in state 0, then none 
of the remaining matrix rows have non-zero values in the ith column (and, thus, 
the initial matrix is singular). Considering that every remaining matrix row also 
has a zero entry in every column j, where row j of processors is in state 1, this 
means that every remaining matrix row is full of zeroes. We have two choices. 
We can either report that the determinant is zero (in case it should have been non-
zero), or we can set f(i,j)=0 for all the processors with state(i,j)=0 after the 2·n-1 
iterations. From the point of view of a SIMD implementation, at the beginning of 
each iteration, after performing the data transfers, we select all the processors and 
let them increment the counter cnt(i,j). Then, we  select all the processors (i,i) 
with state(i,i)=1 and cnt(i,i)≥i and let them compute the value tmp2(i,i) and 
broadcast it to the other processors in their row. Afterwards, we select all the 
processors (i,j) with i≠j, state(i,j)=1 and cnt(i,j)≥i and let them receive the value 
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broadcasted by the processor (i,i) on their row. After this, we select all the 
processors (i,j) with state(i,j)=1 and cnt(i,j)≥i and let them modify the value 
tmp(i,j) accordingly. In the second part of the iteration we select all the processors 
(i,i) with state(i,i)=0, |tmp(i,i)|>0 and cnt(i,i)≥i and let them perform the 
broadcast of the changed state announcement (1) to their row of processors and 
the assignment state_changed(i,i)=true. Afterwards we select all the processors 
(i,i) with state(i,i)=0, |tmp(i,i)|=0 and cnt(i,i)≥i and let them perform the 
broadcast of the changed state announcement (0). We then select all the 
processors (i,j) with i≠j, state(i,j)=0 and cnt(i,j)≥i and let them receive the 
changed state announcement broadcasted by the processor (i,i) on their row. After 
this, we select all the processors (i,j) with state_changed(i,j)=true and cnt(i,j)≥i 
and we let them perform the assignments state(i,j)=1, f(i,j)=tmp(i,j), the clearance 
to 0 of tmp(i,j) and the clearance to false of the register state_changed(i,j). 

A sample architecture on which the previously described algorithm can 
run is depicted in Fig. 1. 

 
Fig. 1. A sample SIMD 2D array of processors with n=m=4. 

3. Validation through Simulations 

The described parallel algorithm was implemented using the Parallaxis 
parallel programming language [9]. A suite of tests were performed, which were 
meant to verify the correctness of the parallel implementation. Because of this, a 
serial Gaussian elimination algorithm was also implemented and both algorithms 
were executed on 20 n·(n+1) randomly generated matrices, with n ranging from 1 
to 50. Since the parallel and serial implementations are based on slightly different 
sequences of actions, the outputs of the two algorithms were not identical. 
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However, by interpreting the two output matrices as the (augmented) matrices of 
two systems of linear equations and solving these systems, we obtained two sets 
of values of the n variables. After sorting the sets, both algorithms should have 
obtained the same sequence of values of the variables. During testing, any 
singular matrix that occured was discarded and another matrix was regenerated 
instead. Furthermore, the determinants of the upper-triangular matrices obtained 
by both algorithms were also computed (the determinant is equal to the product of 
the elements on the main diagonal of a lower- or upper-triangular matrix) and 
their absolute values were compared against each other (because of row 
reorderings, the sign of the determinant may change, but not its absolute value). 
Since the obtained matrices may have more than n columns, the determinant was 
computed considering only the first n columns. In order to accurately compute the 
determinant, a library for large real numbers was used [10] (because the 
determinant’s value exceeded the standard double or long double types). For each 
of the 20 matrices, all the tests were passed : the same determinants (in absolute 
value) and the same values of the variables were obtained. 

4. Extensions and Applications of the Gaussian Elimination Method 

The function Compute, presented in Section 2, can be extended, for 
instance, by considering that all the values of the initial matrix are integers and 
that all the operations (addition, subtraction, multiplication, division) are 
performed modulo a (prime) number M. It is easy to perform addition, subtraction 
and multiplication modulo M (we first compute the result R normally, and then 
take its remainder, i.e. R mod M). The division operation requires the existence of 
a multiplicative inverse. The multiplicative inverse of a number x is the number x-1 

such that x·x-1=1 (mod M). x-1 can be computed by using the extended Euclidean 
algorithm [11]. A somewhat easier case occurs when M=2. In this case, addition 
and subtraction are equivalent to xor, multiplication is equivalent to and, and 
division is easy (since we only divide a number x by 1, the result is always x). 

A matrix operation which is related to the Gaussian elimination operation 
is matrix multiplication. Multiplying two k-by-k (square) matrices can be easily 
performed in O(k3) time or, if we use Strassen’s algorithm [12], in O(k2.807) time. 
Matrix multiplication has applications in many domains. We will consider next an 
application to Combinatorics. Let's consider the set of sequences whose elements 
belong to the set {1,…,k}, for which we are given a binary k-by-k "transition" 
matrix T(i,j). If T(i,j)=1, then the element j can be located right after element i in 
the sequence (if T(i,j)=0, it cannot). We want to compute the number of (valid) 
sequences with n elements (mod M). The straight-forward dynamic programming 
solution is the following. We compute S(l,j)=the number of (valid) sequences 
with l elements whose last element is j (1≤j≤k). We have S(1,j)=1. For l>1, we 
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have S(l,j)=the sum of the values (T(i,j)·S(l-1,i)) (1≤i≤k). The answer is the sum of 
the values S(n,i) (1≤i≤k). The time complexity is O(n·k2). In order to improve the 
time complexity (to O(k3·log(n)+k2)), we will consider the k-element column 
vectors SC(l), where SC(l)(j)=S(i,j). We have SC(l)=T·SC(l-1). Thus, SC(n)=Tn-1· 
SC(1). By efficiently raising the transition matrix T at the (n-1)-th power (e.g. by 
using repeated squaring), we obtain an efficient method of computing the column 
vector SC(n) and the answer (the sum of the values SC(n)(i), with 1≤i≤k). A 
second efficient method (O(k4·log(n))) to compute the number of valid sequences 
of length n is to compute the values S(i,l,j)=the number of sequences of length 2l, 
for which the first element is i and the last element is j. We have S(i,0,i)=1 and 
S(i,0,j≠i)=0. For l>0, S(i,l,j)=the sum of the values S(i,l-1,p)·T(p,q)·S(q,l-1,j), with 
1≤p≤k and 1≤q≤k. Afterwards, we write the number n as a sum of powers of 2, i.e. 
n=2pow(0)+…+2pow(B). We will compute the values U(i,l,j)=the number of 
sequences starting with i, ending with j, and whose length is 2pow(0)+…+2pow(l). 
Obviously, we have U(i,0,j)=S(i,pow(0),j). For l≥1, we have U(i,l,j)=the sum of 
the values U(i,l-1,p)·T(p,q)·S(q,pow(l),j), with 1≤p≤k and 1≤q≤k. The answer is 
the sum of the values U(i,B,j) (1≤i≤k and 1≤j≤k). In both methods, all the 
arithmetic operations are perfomed modulo M. 

An interesting application of the Gaussian elimination method is the 
following. We consider N numbers A(i) (0≤A(i)≤2B-1, 1≤i≤N). We want to find a 
subset {i1, …, ik} of {1, …, N}, such that A(i1) xor A(i2) xor ... xor A(ik) is 
maximum (k may be any number). Let’s denote this maximum value by XM. We 
will compute XM bit by bit (from the bit B-1, the most significant one, down to 
the bit 0, the least significant one). Let’s assume that we computed the values 
BV(B-1), BV(B-2), ..., BV(i+1) of the bits B-1, ..., i+1 of XM and we now want to 
compute BV(i). In order to achieve this, we will use the following transformation. 
We will obtain a system of equations in base 2, having B-i equations and N 
unknown variables. The N unknown variables, x(1), ..., x(N) can be either 0 or 1. 
If x(j)=1 (1≤j≤N), then i belongs to the subset we want to compute; otherwise, i 
does not belong to this subset. The coefficients of this system, c(p,q) (i≤p≤B-1, 
1≤q≤N), are: c(p,q)=the pth bit of A(q). This way, equation p has the following 
structure: c(p,1)·x(1) xor c(p,2)·x(2) xor ... xor c(p,N)·x(N)=c(p, N+1), where: c(p, 
N+1)=BV(p) (i+1≤p≤B-1) and c(p, i)=1. We will run the Gaussian elimination 
method on the extended matrix of the system of linear equations (which has B-i 
rows and N+1 columns), where all the operations are performed modulo 2 
(addition and subtraction are equivalent with xor, multiplication is equivalent with 
and, and division is not necessary). However, we will never consider column N+1 
as a candidate for swapping with another column. After performing the Gaussian 
elimination, the extended matrix of the system (c(*,*)) will have 1 on the main 
diagonal from row i up to a row q (i-1≤q≤B-1) (rows are numbered from i to B-1) 
and 0 on the rows q+1, ..., B-1. Under the main diagonal, the matrix will contain 
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only 0 elements. The system of linear equations has a solution if we have 
c(j,N+1)=0 on all the rows j=q+1, ..., B-1. If the system has a solution, then 
BV(i)=1, otherwise BV(i)=0. This way, we can compute XM bit by bit. The subset 
of indices {i1, …, ik} is computed from the solution of the last system of equations. 
The time complexity of this algorithm is O(B3·N). We can reduce the time 
complexity to O(B2·N), as follows. We notice that the system of equations 
corresponding to the bit i has the first B-i-1 rows identical to those of the system 
of equations corresponding to the previous bit (i+1). Thus, we will keep the 
matrix obtained as a result of the Gaussian elimination performed at the bit i+1, to 
which we add a new row, corresponding to the bit i (the jth value of this row is 
equal to the ith bit corresponding to A(o(j)), where o(j) is the index corresponding 
to column j, 1≤j≤N; initially, o(j)=j, but we have to swap o(j) and o(k) whenever 
we swap the columns j and k between them; the (N+1)st value of the row is 1). Let 
r(i+1) be the row corresponding to the row added when considering the bit i+1. If 
BV(i+1)=0 then we will set c(r(i+1),N+1)=not c(r(i+1),N+1) (i.e. we change its 
value into the opposite one). We will also store the first row q(i+1) where 
c(q(i+1),q(i+1))=0 (i.e. there were no more 1 elements on row q(i+1) or below 
it). We will reduce the newly added row by subtracting from it all the rows having 
a 1 on their main diagonal position. Then, if this row contains any 1 elements, we 
will swap it with the row q(i+1); afterwards, we will swap the column q(i+1) with 
a column C containing a 1 element on the reduced newly added row and we will 
set q(i)=q(i+1)+1. If, after being reduced, the newly added row contains no 1 
elements, we set q(i)=q(i+1). Note that this time we considered that the rows 
were numbered from 1 to B-i. Checking if BV(i)=1 can be performed in O(B) time 
(by considering every row h from q(i)+1 to B-i and checking that c(h,N+1)=0). 
We will set r(i) to the index of the matrix row on which the newly added row is 
located. By using this improvement we basically perform only one Gaussian 
elimination over the whole course of the algorithm. Thus, the time complexity 
becomes only O(B2·N). Fig. 2 depicts the extended matrix on which the Gaussian 
elimination is performed. 

A problem which is very similar to the previous one, and yet it has a 
totally different solution is the following. We consider a sequence of N natural 
numbers A(i) (0≤A(i)≤2B-1, 1≤i≤N). We want to find a contiguous subsequence 
A(i), ..., A(j) (A(i), …, A(j) are located on consecutive positions in the sequence), 
such that A(i) xor A(i+1) xor ... xor A(j) is maximum. We will compute the prefix 
xors (similar to the well-known prefix sums): X(0)=0 and X(1≤i≤N)=X(i-1) xor 
A(i). Then, we will maintain a trie (a prefix tree), in which we will introduce, one 
step at a time, these prefix xors. Each prefix xor will be interpreted as a binary 
string with B elements. The first element of the string will be the most significant 
bit (the bit B-1), which will be followed by the second most significant bit, and so 
on, until the least significant bit (the bit 0). Initially, we will introduce in the trie 
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the string corresponding to X(0). We will traverse the sequence from 1 to N, and 
for each position i, we will compute the largest xor of a contiguous subsequence 
ending at position i. Let’s consider BV(i, B-1), ..., BV(i, 0) to be the bits of the 
largest xor of a contiguous subsequence ending at position i. We will traverse the 
binary string corresponding to A(i) (which consists of B bits) with an index j, 
starting from the bit B-1, down to the bit 0. We will denote by A(i,j) the jth bit of 
A(i). At the same time, we will maintain a pointer pnod to a node of the trie, 
which will be initialized to the trie’s root. At every bit j, we verify if pnod has an 
edge labelled with (1-A(i,j)) towards one of his sons. If it does, then BV(i,j)=1 and 
we set pnod to the son corresponding to the edge labelled with (1-A(i,j)). If pnod 
does not have such an edge, then BV(i,j)=0 and we set pnod to the son 
corresponding to the edge labelled with A(i,j). After computing BV(i,*) we will 
insert the string corresponding to X(i) in the trie. The result will be the largest 
value among those corresponding to the strings BV(i,*) (interpreted as numbers 
having B bits). The time complexity of this algorithm is O(N·B). 

 
Fig. 2. The matrix on which the Gaussian elimination is performed. 

The problem can be extended by considering the following constraints: the 
length of the computed sequence must be at least L and at most U (1≤L≤U≤N). In 
this case, we will have to remove some prefix xors from the trie. To be more 
exact, we will proceed like in the previous algorithm. When we reach the position 
i and we want to compute  BV(i,*), we perform the following action: if i>U, then 
we remove from the trie the string corresponding to X(i-U-1). We will compute 
BV(i,*) only if i≥L; after computing BV(i,*) (i≥L), we will insert into the trie the 
string corresponding to X(i-L+1). In order to be able to remove strings from a trie, 
we will store for each trie node pnod the number of strings which contain this 
node (when we add a new string, we increment by 1 the counters of all the nodes 
encountered along the path from the root, and when we remove a string, we 
decrement by 1 the counters of the same nodes visited when the node was 
inserted). If, at some point, the counter of a node pnod (different from the trie’s 
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root) becomes 0, we can remove the edge (labelled with E) between pnod and its 
parent (this way, pnod’s parent will not have pnod as a son or an edge labelled 
with E anymore). The time complexity in this case stays the same (i.e. O(N·B)). 
We notice that, although this problem and the previous one were apparently very 
similar, the algorithmic techniques required for obtaining a solution are quite 
different (we didn’t use any Gaussian elimination for this problem). 

Another application of the Gaussian elimination method is the following. 
We consider an undirected graph with N vertices. There is a light bulb in every 
vertex. The bulb in vertex i is initially in a state SI(i) (SI(i)=1 means “on”, and 
SI(i)=0 means “off”). Every vertex i also has a cost C(i)≥0 which needs to be paid 
if we want to modify its state (from on to off, or from off to on). We want to bring 
every bulb i into a final state SF(i) (which may be identical to SI(i)), by 
performing a sequence of the following type of actions: we touch the bulb i (and 
we pay the cost C(i)) – as a consequence of this action, the state of the bulb i and 
of all the neighbouring bulbs are changed (but we do not have to pay anything for 
the neighbouring bulbs). We want to find a strategy which brings the bulbs to 
their final states, such that the total cost is minimum. The general case can be 
solved as follows. We notice that we never have to touch the same bulb twice. We 
will associate a variable x(i) to every bulb i, which will be either 0 or 1, 
representing the number of times the bulb i was touched. We will construct a 
system of linear equations in base 2. We will have an equation for each bulb i 
(1≤i≤N): c(i,1)·x(1) xor c(i,2)·x(2) xor ... xor c(i,N)·x(N)=c(i,N+1). The 
coefficients c(i,j) will be 1 for j=i and for those bulbs j for which the edge (i,j) 
exists in the graph; for the other bulbs j, the coefficients c(i,j) will be 0; 
c(i,N+1)=SI(i) xor SF(i). We will use the Gaussian elimination technique on this 
system of equations, where all the operations will be performed modulo 2. 
Afterwards, the extended matrix c(*,*) of the system will have 1 elements on the 
main diagonal on the first PR rows (PR is obtained after running the elimination 
method), and the last N-PR rows will have c(i,j)=0 (PR+1≤i≤N, 1≤j≤N). If we 
have c(i,N+1)=1 (for some PR+1≤i≤N), then the problem has no solution. 
Otherwise we have N-PR free variables – the ones corresponding to the last N-PR 
columns. We must pay attention that during the algorithm, the columns may be 
swapped among each other, such that the last N-PR columns do not necessarily 
correspond to the initial variables x(PR+1), ..., x(N). For the N-PR free variables 
we will have to try every possible combination of assigning values to them (there 
are 2N-PR possibilities overall). For every combination we will compute the values 
of the other PR variables (the bound variables). Once we compute the values of all 
the variables x(1), ..., x(N), the cost of the strategy is 
CS=C(1)·x(1)+...+C(N)·x(N). We will choose the strategy with minimum cost 
among all the 2N-PR possibilities. 

This method could lead to a significant improvement upon a naïve 
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algorithm which tries each of the 2N possible combinations of assigning values to 
the N variables. However, the degree of improvement depends on the structure of 
the graph. For instance, let’s assume that the graph consists of P·Q vertices, 
arranged on P rows and Q columns. Each vertex (i,j) (on row i, column j) is 
adjacent to the vertices to the north, south, east and west (if these neighbours 
exist). In this case, we can consider the 2Q (or 2P) possibilities of assigning values 
to the variables of the vertices on the first row (first column). Let’s consider the 
first row case (the first column case is handled similarly). After assigning values 
to the variables of the vertices on the first row, we will traverse the other vertices 
in increasing row order (with i from row 2 to P) and, for equal rows, in increasing 
column order (with j from 1 to Q). The value of the variable x(i,j) is uniquely 
determined by the values of the variables computed earlier. If the vertex (i-1,j) is 
in its final state (considering the values x(*,*) of itself and of all of its neighbours 
except for (i,j)), then x(i,j)=0; otherwise, x(i,j)=1. If the vertices on the last row 
are not in their final states (considering the values x(*,*) of themselves and of all 
of their neighbours), then the assignment of values to the variables of the vertices 
on the first row did not lead to a solution. Otherwise, we obtained a solution and 
we compute its cost (like before). Fig. 3 shows the structure of the PxQ graph. 

 
Fig. 3. The structure of the PxQ graph in the first case. 

Let’s consider now the same graph, where every vertex is adjacent to its 
(at most) 4 diagonal neighbours. We will color every vertex (i,j) in white, if (i+j) 
is even, or in black, if (i+j) is odd. This way, we obtained (at most) 2 connected 
components, such that all the vertices of the same component have the same color. 
For every component, we will split the vertices (i,j) in groups, according to the 
values min{i,j} (all the vertices (i,j) with the same value of min{i,j} will belong to 
the same group). We will consider every possibility of assigning values to the 
variables of the vertices (i,j) for which min{i,j} is minimum among all the vertices 
of the component. For each possibility, we will consider all the other groups in the 
component, in increasing order of min{i,j}. For each such group, we will traverse 
the vertices (i,j) for which j≤i from the lower-indexed row to the higher-indexed 
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row, along the column j. Then we will traverse the vertices (i,j) for which i≤j from 
the lower-indexed column to the higher-indexed column, along the row i. Every 
time we reach a vertex (i,j), this vertex will have a neighbour (i’,j’) for which 
min{i’,j’}=min{i,j}-1 and for which the vertex (i,j) is the last vertex whose 
variable has not been assigned a value, yet. Thus, the variable x(i,j) will be 
uniquely determined, based on the current state of (i’,j’) and its desired final state 
(0, if the two states are the same, and 1 otherwise). Like in the previous case, 
some initial assignments may not lead to a solution (if some vertices do not end 
up in their desired final states). 

One last case we consider here is that in which every vertex (i,j) is 
adjacent to all of its (at most) 8 neighbours (on the same row, column, or 
diagonal). In this case, we will assign values to the variables of the vertices on the 
first row and column. For each assignment, we will traverse the vertices (i,j) like 
in the previous case, according to min{i,j}. Basically, we traverse the vertices on 
column 2 (from lower-indexed rows to higher-indexed rows), followed by the 
vertices on row 2 (from lower-indexed columns to higher-indexed columns), and 
so on. Like in the previous case, when we reach a vertex (i,j) during the traversal, 
this vertex will have at least one neighbour (i’,j’) (with its variable assigned to 
some value), for which (i,j) is the only neighbour whose value has not been 
assigned, yet. Thus, x(i,j) will be uniquely determined. In this case, we have 2P+Q-1 
possibilities for assigning variables to the vertices (i,j) on the first row and column 
(those with min{i,j}=1). 

A problem related to the previous ones is the following. We consider a 
matrix with M rows and N columns. Each cell (i,j) of the matrix contains a bulb. 
The bulb (i,j) is in the initial state SI(i,j) (1-on or 0-off) and must be brought into 
its final state SF(i,j). The only operations we can perform are: changing the state 
of all the bulbs on a row i, which costs CL(i)≥0 (1≤i≤M), and changing the state of 
all the bulbs on a column j, which costs CC(j)≥0 (1≤j≤N). We want to find a 
sequence of operations with minimum total cost such that, in the end, every bulb 
is in its final state. Like before, we notice that we never need to perform an 
operation on a given row or column more than once. We will denote by xL(i) 
(xC(j)) the variables which describe if we perform (1) or not (0) an operation on 
the row i (column j). We will consider two cases. In the first case, we consider 
that we do not perform an operation on row 1: xL(1)=0. We will traverse all the 
bulbs (1,j) on the row 1 and, if SI(1,j)=SF(1,j), then we must not perform an 
operation on column j (xC(j)=0); otherwise, we must perform an operation on 
column j (xC(j)=1). Then, we traverse all the bulbs (i,1) on the column 1 (i≥2): if 
SI(i,1) xor xC(1)=SF(i,1), then xL(i)=0; otherwise, xL(i)=1. Then we verify, for 
every bulb (i,j), if SI(i,j) xor xL(i) xor xC(j)=SF(i,j). If the condition is true for 
every bulb, then we obtained a solution and we compute its cost: CS= 
CL(1)·xL(1)+...+CL(M)·xL(M)+CC(1)·xC(1)+...+CC(N)·xC(N). In the second 
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case we will consider xL(1)=1. In a similar manner we will compute the values 
xC(j): if SI(1,j) xor xL(1)=SF(1,j), then xC(j)=0; otherwise, xC(j)=1. Then we 
compute the values xL(i) (i≥2): if SI(i,1) xor xC(1)=SF(i,1), then xL(i)=0; 
otherwise, xL(i)=1. As before, we verify if we obtained a solution. The minimum 
cost is given by the minimum of the (at most) 2 possible solutions. 

A strongly related problem is the following. We have the same input data 
and objective, but we have a different set of operations that can be performed. An 
operation consists of choosing a bulb (i,j) and changing the state of all the bulbs 
on the row i and the column j (except for the bulb (i,j)). The cost of such an 
operation is 1 – thus, we want to minimize the total number of operations required 
for bringing every bulb in its final state. An operation in this problem is 
equivalent to changing the state of a row, followed by that of a column (in the 
terms of the previous problem). At first, we will consider that we can perform the 
same operations like in the previous problem. Thus, using that solution, we obtain 
(at most) two distinct solutions. The solution i (i=1,2) consists of changing the 
states of the bulbs on the rows L(i,1), ..., L(i,nL(i)) and on the columns C(i,1), ..., 
C(i,nC(i)). We will try to transform this solution into one which is compatible 
with the operations allowed in this problem. We will construct pairs of the form 
(row, column): (L(i,1), C(i,1)), ..., (L(i,K), C(i,K)), where K=min{nL(i), nC(i)}. A 
pair (L(i,j), C(i,j)) means that the bulb (L(i,j), C(i,j)) is chosen for an operation. If 
nL(i)>K, then the extra number of rows (nL(i)-K) must be even. We will form the 
pairs (L(i,K+1), 1), (L(i,K+2), 1), ..., (L(i,nL(i)), 1) (i.e. we choose every bulb 
(L(i,K+1), 1), ..., (L(i,nL(i)), 1) in an operation). If nC(i)>K, then (nC(i)-K) must 
be even and we will choose the bulbs (1, C(i,K+1)), ..., (1,C(i,nC(i))) in an 
operation. We will choose that solution i (i=1,2) for which we obtain the 
minimum number of operations. 

The problem of turning light bulbs on and off on a graph (where, when 
touching a bulb, the states of the bulb and of all of its neighbours change), can be 
solved without using the Gaussian elimination technique on graphs with special 
structures, particularly graphs with a tree-like structure, like trees, trees of cycles 
or graphs with bounded treewidth (when a suitable tree decomposition is also 
given). In order to make an informed choice, we first need to recognize the class 
to which the input graph belongs. Thus, graph recognition algorithms are 
important in this situation. We will present next a simple graph recognition 
algorithm for the class of trees of cycles. 

A tree of cycles is an undirected graph with one of the following attributes: 
• it is a cycle of any length K (K≥3)  
• it is a graph obtained by attaching a cycle C of some length K (K≥3) to an 

edge of a tree of cycles CT 
Attaching a cycle to an edge e of a graph means replacing an edge of the 

cycle with the edge e of the graph and replacing the two vertices of the cycle 
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connected by the replaced edge by the two vertices of the graph connected by e. 
Fig. 4 depicts the operation of attaching a cycle to a tree of cycles. 

In order to decide if a given undirected graph is a tree of cycles, we will 
perform the following operation repeatedly (for vertex i): if there exists a vertex i 
with degree 2, and its neighbours are j and k, then we remove the vertex i from the 
graph (and its two adjacent edges) and we introduce instead the edge j-k, if this 
edge does not exist in the graph already. If the given graph is a tree of cycles then, 
in the end, we will only have two vertices left (initially, the number of vertices of 
the graph must be at least 3). In order to perform the described operation, we will 
use a queue in which we will insert all the vertices which initially have degree 2. 
Then, we will repeatedly extract vertices from the queue (as long as the queue is 
not empty). Every time we extract a vertex i from the queue we perform the 
operation for i. Thus, there exists the possibility of modifying the degrees of its 
two neighbours j and k. If, after performing the operation for the vertex i, the 
vertex j (k) ends up with degree 2 (before the operation it had a degree greater 
than 2), we insert j (k) at the end of the queue. We now only need to use an 
efficient data structure for checking quickly if two vertices are adjacent in the 
graph, for finding the two neighbours of a vertex i, and for removing edges from 
the graph. We can use, for instance, balanced trees, in which we store 2 pairs (i,j) 
and (j,i) for each edge i-j which (currently) exists in the graph. This way, we can 
check easily if a given edge exists in the tree, or we can easily remove a given 
edge from the tree (by removing its two corresponding pairs). The two neighbours 
j and k of a vertex i are found by searching for the two immediate successors of 
the pair (i,-∞). The time complexity is, thus, O(n+m+m·log(m)), where n is the 
(initial) number of vertices of the graph and m is the (initial) number of edges. 

 
Fig. 4. Attaching a cycle to an edge of a tree of cycles. 

5. Conclusions and Future Work 

This paper presents a novel approach for implementing the Gaussian 
elimination technique on a 2D SIMD array of processors. The algorithm consists 
of 2·n-1 iterations and allows row reorderings, by allowing the matrix rows to 
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slide past each other. Both the (theoretical) formal proofs of correctness and the 
(practical) results of the simulation tests validated the concept of the algorithm. 
Moreover, the paper also introduced several extensions and applications of the 
Gaussian elimination technique and compared the applications to similar 
problems in which the Gaussian elimination method was not required for 
computing the (optimal) solution. 

As future work, the algorithm should be implemented on a real 
architecture with n·m processors. Since real-life matrices have sizes which are 
larger than the number of processors within mainstream parallel computers, a 
modification of the algorithm in which every processor is responsible for multiple 
entries of the matrix should be considered. A simple method to achieve this could 
be to consider that there are n·m virtual processors and each real processor 
simulates several « geographically clustered » virtual processors. 
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