
U.P.B. Sci. Bull., Series C, Vol. 71, Iss. 4, 2009 ISSN 1454-234x

EFFICIENT GAUSSIAN ELIMINATION ON A 2D SIMD
ARRAY OF PROCESSORS WITHOUT COLUMN

BROADCASTS

Mugurel Ionuţ ANDREICA1

În această lucrare se prezintă o metodă eficientă de implementare a
eliminării Gaussiene pentru o matrice de dimensiuni n·m (m≥n), folosind o
arhitectură SIMD ce constă dintr-o matrice de n·m procesoare. Algoritmul descris
constă în 2·n-1=O(n) iteraţii, oferind astfel o creştere de viteză optimă faţă de
versiunea serială. O particularitate a algoritmului este că nu necesită realizarea
operaţiei de broadcast decât pe liniile, nu şi pe coloanele, matricii de procesoare.
Lucrarea prezintă, de asemenea, o serie de extensii şi aplicaţii ale algoritmului de
eliminare Gaussiană.

This paper presents an efficient method for implementing the Gaussian
elimination technique for an n·m (m≥n) matrix, using a 2D SIMD array of n·m
processors. The described algorithm consists of 2·n-1=O(n) iterations, which
provides an optimal speed-up over the serial version. A particularity of the
algorithm is that it only requires broadcasts on the rows of the processor matrix and
not on its columns. The paper also presents several extensions and applications of
the Gaussian elimination algorithm.

Keywords: parallel Gaussian elimination, SIMD, 2D processor array

1. Introduction

The Gaussian elimination algorithm applied to an n·m (m≥n) matrix A
consists of transforming the matrix into an equivalent upper triangular matrix B
(i.e. B(i,j)=0, for j<i). The Gaussian elimination algorithm is a fundamental tool
in a vast range of domains, like linear algebra (solving systems of linear equations
[13], computing the rank of a matrix, computing the inverse of a matrix),
geometry or scientific computing (molecular physics, geology, earthquakes). A
serial version of the Gaussian elimination algorithm is presented below :
SerialGauss(A,n):
for i=1 to n-1 do

// the search and swap stage
 find a suitable (row,column) pair (r,c) (i≤r≤n, i≤c≤m), such that |A(r,c)|>0.

swap rows i and r in the matrix A

1 Assist., Computer Science and Engineering Department, Politehnica University POLITEHNICA
of Bucharest, Romania, email: mugurel.andreica@cs.pub.ro

84 Mugurel Ionuţ Andreica

swap columns i and c in the matrix A
// the reduction stage
for j=i+1 to n do
 vaux=A(j,i)/A(i,i)
 for k=i to m do
 A(j,k)=A(j,k)-vaux·A(i,k)

 At the end of the algorithm, the matrix A is an upper triangular matrix. A
suitable (row, column) pair (r,c) (i≤r≤n, i≤c≤n) is usually considered the one with
the largest absolute value |A(r,c)|, because of numerical stability reasons. There
are cases, however, when any (row,column) pair (r,c) is suitable, as long as
|A(r,c)|>0. In such cases, we need to perform the swaps only if A(i,i)=0.

Because of its huge theoretical and practical importance, many parallel
approaches for the Gaussian elimination technique were proposed. In [1, 2, 3],
parallel Gaussian implementations using OpenMP and running on multiple
processors (cores), as well as distributed implementations using MPI and running
on multiple computing nodes were analyzed. Generating optimal task schedules
for Gaussian elimination on MIMD machines was achieved in [4]. In [5],
communication efficiency aspects of parallelizing the Gaussian elimination
technique were considered. A systolic array implementation for dense matrices
over GF(p) (the Galois field) was given in [6]. In [7], a Gaussian elimination
algorithm over a synchronous architecture was presented, which is similar in
several ways with the solution presented in this paper. Although the algorithm in
[7] does not require any kind of broadcast mechanisms, it assumes that
communication is possible between neighbouring processors located on the same
row or column (at most 4 neighbours).

However, many of the mentioned parallel implementations seem to ignore
the possibility that, at the ith iteration of the algorithm, the entry A(i,i) might be
zero. This is because parallelizing the search and swap stage is more difficult.
Such a hardness result was obtained in [8]. The time complexity of the serial
algorithm is O(n2·m) (or O(n3) if m=O(n)) even if we do not search for a suitable
entry A(r,c) at every iteration (and, thus, we perform no swaps). However, in the
parallel case, the reduction stage is easy to parallelize, while the search and swap
stage is not.

This paper proposes a novel approach for implementing the Gaussian
elimination for an n·m (m≥n) matrix, using a SIMD 2D array of n·m processors (n
rows with m processors each). The approach does not try to parallelize directly the
serial algorithm, like many of the existing parallel solutions do; instead, it uses a
different technique which allows matrix rows to slide past each other and reach
their correct position in the final, upper triangular matrix. The solution does not
search for the entry with the largest absolute value when setting the value A(i,i)
and, because of this, it might not be numerically stable. However, it does permit
row reorderings, due to the sliding mechanism, thus working under more realistic

Efficient Gaussian elimination on a 2D SIMD array of processors without column broadcasts 85

conditions than many other existing parallel solutions. Another particularity of the
solution described in this paper is that it only requires mechanisms for
broadcasting data on a row of processors and not on its columns, while several
other parallel Gaussian elimination approaches require both row and column
broadcasts. Since the broadcast requirements are reduced, the processor
interconnection architecture can be simplified, thus reducing some of the
architectural costs. Section 2 of this paper contains the description of the parallel
algorithm and architecture, as well as a formal proof of correctness, based on
induction over the number of rows of processors. Section 3 presents some
validation results through simulations. In Section 4 several extensions and
applications of the Gaussian elimination method are presented and in Section 5 we
conclude and discuss future work.

2. Description of the Parallel Algorithm

The n·m processors are arranged into an n·m grid (n rows with m
processors per row). Each processor (i,j) (located on row i and column j) is
connected to the processor on the row below it and on the same column.
Processors on the nth row are connected to those on the first row. On each row i,
processor (i,i) is a special processor and there are extra connections which allow
processor (i,i) to broadcast data to all the other processors in its row. Each
processor (i,j) has 6 registers: tmp(i,j), tmp2(i,j), f(i,j), cnt(i,j), state(i,j) and
state_changed(i,j). tmp(*,*) and tmp2(*,*) are used for temporary storage; f(i,j) is
used for storing the final value of the entry on row i and column j of the triangular
matrix obtained as a result of the algorithm. cnt(i,j) is a counter and is
incremented after each iteration of the algorithm (cnt(i,j) is identical for all the
processors and could be implemented as a single shared register, instead of n·m
distributed registers). state(i,j) stores the state of the processor. If (state(i,j)=1),
then the value stored in f(i,j) is the final value of the (i,j) entry of the resulting
triangular matrix; otherwise (if state(i,j)=0), f(i,j) contains no meaningful value.
The states of all the processors on the same row i are identical; thus, a single
shared register for each row could be used. state_changed(i,j) is a boolean register
which holds the value true if the state of the processor changed during the current
iteration. Except for these registers, each processor stores its row and column (i
and j) in two special read-only registers.

In the beginning of the algorithm, entry (i,j) of the initial matrix is stored
in tmp(i,j), cnt(*,*) and state(*,*) are set to 0 and state_changed(*,*) are set to
false. We will perform 2·n-1 iterations. At each iteration, the tmp value of each
processor (i,j) is transferred to the tmp value of the processor (i+1,j) (processor
(n,j) transfers the data to processor (1,j)). All the transfers occur simultaneously,
as in any SIMD computer. After the data transfer, each processor performs a

86 Mugurel Ionuţ Andreica

series of computations, described by the function Compute (see below). The
algorithm works as follows. At each iteration t (1≤t≤2·n-1), only the processors on
rows i≤t perform meaningful computations (this is enforced by the test cnt(i,j)≥i in
the pseudocode below). If the state of the processors on row i is 0, then we verify
if the current row stored in the tmp(i,*) values could be the final row to be stored
on row i of the resulting upper triangular matrix. Processor (i,i) performs this test,
by comparing |tmp(i,i)| against 0. If (|tmp(i,i)|>0), then we can store the current
tmp(i,*) values into the f(i,*) values, because the condition that the entry (i,i) is
non-zero is fulfilled. The processor (i,i) broadcasts a changed state announcement
to all the other processors on row i. If this announcement is 1 (|tmp(i,i)|>0), then
the new state of the processors (i,j) becomes 1 and the tmp(i,*) values are copied
into the corresponsing f(i,*) values; after this, tmp(i,*) is set to 0; if the
announcement is 0, then no more computations are performed by the processors
on row i during the current iteration.
Compute(processor (i,j)):
cnt(i,j)=cnt(i,j)+1
if (cnt(i,j)≥i) then

if (state(i,j)=1) then
 if (i=j) then

 tmp2(i,i)=tmp(i,i)/f(i,i)
 broadcast tmp2(i,i) to all the processors (i,j) on row i, with i≠j
else // i≠j

 tmp2(i,j)=the value broadcasted by processor (i,i)
tmp(i,j)=tmp(i,j)-tmp2(i,j)·f(i,j)

else // (state(i,j)=0)
 if (i=j) then

 if (|tmp(i,i)|>0) then
 broadcast true to all the processors (i,j) on row i, with i≠j
 state_changed(i,i)=true

 else
 broadcast false to all the processors (i,j) on row i, with i≠j

else // i≠j
 state_changed(i,j)=the value broadcasted by processor (i,i)
 if (state_changed(i,j)=true) then
 state(i,j)=1

state_changed(i,j)=false
 f(i,j)=tmp(i,j)
 tmp(i,j)=0

If, at the beginning of the iteration, the state of the processors on row i is
1, then the values stored in tmp(i,*) are processed accordingly. The value
tmp2(i,i)=tmp(i,i)/f(i,i) is computed by processor (i,i) and then broadcasted to all
the other processors on row i (which store it in their own tmp2 register).
Afterwards, each value tmp(i,j) (1≤j≤m) is decreased by tmp2(i,j)·f(i,j). As a result
of this, tmp(i,i) becomes 0. At the next iteration, the processors on the row below
row i receive the decremented tmp(i,*) values of the processors on row i.

Efficient Gaussian elimination on a 2D SIMD array of processors without column broadcasts 87

We will prove the following statement: the tmp(i,j) values received by a
row i of processors at an iteration t≥i are zero for 1≤j≤i-1. The proof is based
on induction over the row i of processors. The base case consists of i=1 where it
is obvious that the statement holds. Let’s assume that the statement holds for the
first i-1 rows of processors and we will now try to prove it for the ith row, too.

Let’s analyze all the possible cases. If, at the beginning of the previous
iteration, state(i-1,*)=1, then according to the algorithm, the entry tmp(i-1,i-1)
was decremented to 0. The entries tmp(i-1,j) (1≤j≤i-2) were zero and they were
further decremented by tmp2(i-1,j)·f(i-1,j). However, the statement is valid for
row i-1 and any previous iteration t≥i-1 and, thus, also for the iteration t’ when the
state of row i-1 changed from 0 to 1. At iteration t’, the values f(i-1,j) (1≤j≤i-2)
were set to tmp(i-1,j), which were equal to 0. Thus, we have f(i-1,j)=0 (1≤j≤i-2)
and, as a consequence, the tmp(i-1,j) (1≤j≤i-2) values were, in fact, not
decremented at all. So, at the end of the previous iteration, all the tmp(i-1,j)
(1≤j≤i-1) values were 0, after which they were transferred to the row i of
processors. We also have to analyze the case where state(i-1,*)=0 at the
beginning of the previous iteration. If, in the previous iteration, the row of
processors i-1 changed its state from 0 to 1, then it set all the tmp(i-1,*) values to
0 and these were then received by the next row of processors; thus, the statement
holds. The only case left is when, at the beginning of the previous iteration,
state(i-1,*)=0 and it does not change to 1. In this case, the tmp(i-1,*) values are
not changed – they are transferred at row i as they are. Since the statement holds
for the rows up to i-1, we have tmp(i-1,j)=0 (1≤j≤i-2). However, because the state
of the previous row of processors did not change to 1, we must also have tmp(i-
1,i-1)=0. This concludes the proof.

Using the statement proved above, it is easy to conclude that the final
values f(i,j) are 0 (1≤j≤i-1) and, thus, the obtained matrix is upper-triangular. We
only have one problem left. It is possible that, after 2·n-1 iterations, some rows of
processors are still in state 0. If a row i of processors is still in state 0, then none
of the remaining matrix rows have non-zero values in the ith column (and, thus,
the initial matrix is singular). Considering that every remaining matrix row also
has a zero entry in every column j, where row j of processors is in state 1, this
means that every remaining matrix row is full of zeroes. We have two choices.
We can either report that the determinant is zero (in case it should have been non-
zero), or we can set f(i,j)=0 for all the processors with state(i,j)=0 after the 2·n-1
iterations. From the point of view of a SIMD implementation, at the beginning of
each iteration, after performing the data transfers, we select all the processors and
let them increment the counter cnt(i,j). Then, we select all the processors (i,i)
with state(i,i)=1 and cnt(i,i)≥i and let them compute the value tmp2(i,i) and
broadcast it to the other processors in their row. Afterwards, we select all the
processors (i,j) with i≠j, state(i,j)=1 and cnt(i,j)≥i and let them receive the value

88 Mugurel Ionuţ Andreica

broadcasted by the processor (i,i) on their row. After this, we select all the
processors (i,j) with state(i,j)=1 and cnt(i,j)≥i and let them modify the value
tmp(i,j) accordingly. In the second part of the iteration we select all the processors
(i,i) with state(i,i)=0, |tmp(i,i)|>0 and cnt(i,i)≥i and let them perform the
broadcast of the changed state announcement (1) to their row of processors and
the assignment state_changed(i,i)=true. Afterwards we select all the processors
(i,i) with state(i,i)=0, |tmp(i,i)|=0 and cnt(i,i)≥i and let them perform the
broadcast of the changed state announcement (0). We then select all the
processors (i,j) with i≠j, state(i,j)=0 and cnt(i,j)≥i and let them receive the
changed state announcement broadcasted by the processor (i,i) on their row. After
this, we select all the processors (i,j) with state_changed(i,j)=true and cnt(i,j)≥i
and we let them perform the assignments state(i,j)=1, f(i,j)=tmp(i,j), the clearance
to 0 of tmp(i,j) and the clearance to false of the register state_changed(i,j).

A sample architecture on which the previously described algorithm can
run is depicted in Fig. 1.

Fig. 1. A sample SIMD 2D array of processors with n=m=4.

3. Validation through Simulations

The described parallel algorithm was implemented using the Parallaxis
parallel programming language [9]. A suite of tests were performed, which were
meant to verify the correctness of the parallel implementation. Because of this, a
serial Gaussian elimination algorithm was also implemented and both algorithms
were executed on 20 n·(n+1) randomly generated matrices, with n ranging from 1
to 50. Since the parallel and serial implementations are based on slightly different
sequences of actions, the outputs of the two algorithms were not identical.

Efficient Gaussian elimination on a 2D SIMD array of processors without column broadcasts 89

However, by interpreting the two output matrices as the (augmented) matrices of
two systems of linear equations and solving these systems, we obtained two sets
of values of the n variables. After sorting the sets, both algorithms should have
obtained the same sequence of values of the variables. During testing, any
singular matrix that occured was discarded and another matrix was regenerated
instead. Furthermore, the determinants of the upper-triangular matrices obtained
by both algorithms were also computed (the determinant is equal to the product of
the elements on the main diagonal of a lower- or upper-triangular matrix) and
their absolute values were compared against each other (because of row
reorderings, the sign of the determinant may change, but not its absolute value).
Since the obtained matrices may have more than n columns, the determinant was
computed considering only the first n columns. In order to accurately compute the
determinant, a library for large real numbers was used [10] (because the
determinant’s value exceeded the standard double or long double types). For each
of the 20 matrices, all the tests were passed : the same determinants (in absolute
value) and the same values of the variables were obtained.

4. Extensions and Applications of the Gaussian Elimination Method

The function Compute, presented in Section 2, can be extended, for
instance, by considering that all the values of the initial matrix are integers and
that all the operations (addition, subtraction, multiplication, division) are
performed modulo a (prime) number M. It is easy to perform addition, subtraction
and multiplication modulo M (we first compute the result R normally, and then
take its remainder, i.e. R mod M). The division operation requires the existence of
a multiplicative inverse. The multiplicative inverse of a number x is the number x-1

such that x·x-1=1 (mod M). x-1 can be computed by using the extended Euclidean
algorithm [11]. A somewhat easier case occurs when M=2. In this case, addition
and subtraction are equivalent to xor, multiplication is equivalent to and, and
division is easy (since we only divide a number x by 1, the result is always x).

A matrix operation which is related to the Gaussian elimination operation
is matrix multiplication. Multiplying two k-by-k (square) matrices can be easily
performed in O(k3) time or, if we use Strassen’s algorithm [12], in O(k2.807) time.
Matrix multiplication has applications in many domains. We will consider next an
application to Combinatorics. Let's consider the set of sequences whose elements
belong to the set {1,…,k}, for which we are given a binary k-by-k "transition"
matrix T(i,j). If T(i,j)=1, then the element j can be located right after element i in
the sequence (if T(i,j)=0, it cannot). We want to compute the number of (valid)
sequences with n elements (mod M). The straight-forward dynamic programming
solution is the following. We compute S(l,j)=the number of (valid) sequences
with l elements whose last element is j (1≤j≤k). We have S(1,j)=1. For l>1, we

90 Mugurel Ionuţ Andreica

have S(l,j)=the sum of the values (T(i,j)·S(l-1,i)) (1≤i≤k). The answer is the sum of
the values S(n,i) (1≤i≤k). The time complexity is O(n·k2). In order to improve the
time complexity (to O(k3·log(n)+k2)), we will consider the k-element column
vectors SC(l), where SC(l)(j)=S(i,j). We have SC(l)=T·SC(l-1). Thus, SC(n)=Tn-1·
SC(1). By efficiently raising the transition matrix T at the (n-1)-th power (e.g. by
using repeated squaring), we obtain an efficient method of computing the column
vector SC(n) and the answer (the sum of the values SC(n)(i), with 1≤i≤k). A
second efficient method (O(k4·log(n))) to compute the number of valid sequences
of length n is to compute the values S(i,l,j)=the number of sequences of length 2l,
for which the first element is i and the last element is j. We have S(i,0,i)=1 and
S(i,0,j≠i)=0. For l>0, S(i,l,j)=the sum of the values S(i,l-1,p)·T(p,q)·S(q,l-1,j), with
1≤p≤k and 1≤q≤k. Afterwards, we write the number n as a sum of powers of 2, i.e.
n=2pow(0)+…+2pow(B). We will compute the values U(i,l,j)=the number of
sequences starting with i, ending with j, and whose length is 2pow(0)+…+2pow(l).
Obviously, we have U(i,0,j)=S(i,pow(0),j). For l≥1, we have U(i,l,j)=the sum of
the values U(i,l-1,p)·T(p,q)·S(q,pow(l),j), with 1≤p≤k and 1≤q≤k. The answer is
the sum of the values U(i,B,j) (1≤i≤k and 1≤j≤k). In both methods, all the
arithmetic operations are perfomed modulo M.

An interesting application of the Gaussian elimination method is the
following. We consider N numbers A(i) (0≤A(i)≤2B-1, 1≤i≤N). We want to find a
subset {i1, …, ik} of {1, …, N}, such that A(i1) xor A(i2) xor ... xor A(ik) is
maximum (k may be any number). Let’s denote this maximum value by XM. We
will compute XM bit by bit (from the bit B-1, the most significant one, down to
the bit 0, the least significant one). Let’s assume that we computed the values
BV(B-1), BV(B-2), ..., BV(i+1) of the bits B-1, ..., i+1 of XM and we now want to
compute BV(i). In order to achieve this, we will use the following transformation.
We will obtain a system of equations in base 2, having B-i equations and N
unknown variables. The N unknown variables, x(1), ..., x(N) can be either 0 or 1.
If x(j)=1 (1≤j≤N), then i belongs to the subset we want to compute; otherwise, i
does not belong to this subset. The coefficients of this system, c(p,q) (i≤p≤B-1,
1≤q≤N), are: c(p,q)=the pth bit of A(q). This way, equation p has the following
structure: c(p,1)·x(1) xor c(p,2)·x(2) xor ... xor c(p,N)·x(N)=c(p, N+1), where: c(p,
N+1)=BV(p) (i+1≤p≤B-1) and c(p, i)=1. We will run the Gaussian elimination
method on the extended matrix of the system of linear equations (which has B-i
rows and N+1 columns), where all the operations are performed modulo 2
(addition and subtraction are equivalent with xor, multiplication is equivalent with
and, and division is not necessary). However, we will never consider column N+1
as a candidate for swapping with another column. After performing the Gaussian
elimination, the extended matrix of the system (c(*,*)) will have 1 on the main
diagonal from row i up to a row q (i-1≤q≤B-1) (rows are numbered from i to B-1)
and 0 on the rows q+1, ..., B-1. Under the main diagonal, the matrix will contain

Efficient Gaussian elimination on a 2D SIMD array of processors without column broadcasts 91

only 0 elements. The system of linear equations has a solution if we have
c(j,N+1)=0 on all the rows j=q+1, ..., B-1. If the system has a solution, then
BV(i)=1, otherwise BV(i)=0. This way, we can compute XM bit by bit. The subset
of indices {i1, …, ik} is computed from the solution of the last system of equations.
The time complexity of this algorithm is O(B3·N). We can reduce the time
complexity to O(B2·N), as follows. We notice that the system of equations
corresponding to the bit i has the first B-i-1 rows identical to those of the system
of equations corresponding to the previous bit (i+1). Thus, we will keep the
matrix obtained as a result of the Gaussian elimination performed at the bit i+1, to
which we add a new row, corresponding to the bit i (the jth value of this row is
equal to the ith bit corresponding to A(o(j)), where o(j) is the index corresponding
to column j, 1≤j≤N; initially, o(j)=j, but we have to swap o(j) and o(k) whenever
we swap the columns j and k between them; the (N+1)st value of the row is 1). Let
r(i+1) be the row corresponding to the row added when considering the bit i+1. If
BV(i+1)=0 then we will set c(r(i+1),N+1)=not c(r(i+1),N+1) (i.e. we change its
value into the opposite one). We will also store the first row q(i+1) where
c(q(i+1),q(i+1))=0 (i.e. there were no more 1 elements on row q(i+1) or below
it). We will reduce the newly added row by subtracting from it all the rows having
a 1 on their main diagonal position. Then, if this row contains any 1 elements, we
will swap it with the row q(i+1); afterwards, we will swap the column q(i+1) with
a column C containing a 1 element on the reduced newly added row and we will
set q(i)=q(i+1)+1. If, after being reduced, the newly added row contains no 1
elements, we set q(i)=q(i+1). Note that this time we considered that the rows
were numbered from 1 to B-i. Checking if BV(i)=1 can be performed in O(B) time
(by considering every row h from q(i)+1 to B-i and checking that c(h,N+1)=0).
We will set r(i) to the index of the matrix row on which the newly added row is
located. By using this improvement we basically perform only one Gaussian
elimination over the whole course of the algorithm. Thus, the time complexity
becomes only O(B2·N). Fig. 2 depicts the extended matrix on which the Gaussian
elimination is performed.

A problem which is very similar to the previous one, and yet it has a
totally different solution is the following. We consider a sequence of N natural
numbers A(i) (0≤A(i)≤2B-1, 1≤i≤N). We want to find a contiguous subsequence
A(i), ..., A(j) (A(i), …, A(j) are located on consecutive positions in the sequence),
such that A(i) xor A(i+1) xor ... xor A(j) is maximum. We will compute the prefix
xors (similar to the well-known prefix sums): X(0)=0 and X(1≤i≤N)=X(i-1) xor
A(i). Then, we will maintain a trie (a prefix tree), in which we will introduce, one
step at a time, these prefix xors. Each prefix xor will be interpreted as a binary
string with B elements. The first element of the string will be the most significant
bit (the bit B-1), which will be followed by the second most significant bit, and so
on, until the least significant bit (the bit 0). Initially, we will introduce in the trie

92 Mugurel Ionuţ Andreica

the string corresponding to X(0). We will traverse the sequence from 1 to N, and
for each position i, we will compute the largest xor of a contiguous subsequence
ending at position i. Let’s consider BV(i, B-1), ..., BV(i, 0) to be the bits of the
largest xor of a contiguous subsequence ending at position i. We will traverse the
binary string corresponding to A(i) (which consists of B bits) with an index j,
starting from the bit B-1, down to the bit 0. We will denote by A(i,j) the jth bit of
A(i). At the same time, we will maintain a pointer pnod to a node of the trie,
which will be initialized to the trie’s root. At every bit j, we verify if pnod has an
edge labelled with (1-A(i,j)) towards one of his sons. If it does, then BV(i,j)=1 and
we set pnod to the son corresponding to the edge labelled with (1-A(i,j)). If pnod
does not have such an edge, then BV(i,j)=0 and we set pnod to the son
corresponding to the edge labelled with A(i,j). After computing BV(i,*) we will
insert the string corresponding to X(i) in the trie. The result will be the largest
value among those corresponding to the strings BV(i,*) (interpreted as numbers
having B bits). The time complexity of this algorithm is O(N·B).

Fig. 2. The matrix on which the Gaussian elimination is performed.

The problem can be extended by considering the following constraints: the
length of the computed sequence must be at least L and at most U (1≤L≤U≤N). In
this case, we will have to remove some prefix xors from the trie. To be more
exact, we will proceed like in the previous algorithm. When we reach the position
i and we want to compute BV(i,*), we perform the following action: if i>U, then
we remove from the trie the string corresponding to X(i-U-1). We will compute
BV(i,*) only if i≥L; after computing BV(i,*) (i≥L), we will insert into the trie the
string corresponding to X(i-L+1). In order to be able to remove strings from a trie,
we will store for each trie node pnod the number of strings which contain this
node (when we add a new string, we increment by 1 the counters of all the nodes
encountered along the path from the root, and when we remove a string, we
decrement by 1 the counters of the same nodes visited when the node was
inserted). If, at some point, the counter of a node pnod (different from the trie’s

Efficient Gaussian elimination on a 2D SIMD array of processors without column broadcasts 93

root) becomes 0, we can remove the edge (labelled with E) between pnod and its
parent (this way, pnod’s parent will not have pnod as a son or an edge labelled
with E anymore). The time complexity in this case stays the same (i.e. O(N·B)).
We notice that, although this problem and the previous one were apparently very
similar, the algorithmic techniques required for obtaining a solution are quite
different (we didn’t use any Gaussian elimination for this problem).

Another application of the Gaussian elimination method is the following.
We consider an undirected graph with N vertices. There is a light bulb in every
vertex. The bulb in vertex i is initially in a state SI(i) (SI(i)=1 means “on”, and
SI(i)=0 means “off”). Every vertex i also has a cost C(i)≥0 which needs to be paid
if we want to modify its state (from on to off, or from off to on). We want to bring
every bulb i into a final state SF(i) (which may be identical to SI(i)), by
performing a sequence of the following type of actions: we touch the bulb i (and
we pay the cost C(i)) – as a consequence of this action, the state of the bulb i and
of all the neighbouring bulbs are changed (but we do not have to pay anything for
the neighbouring bulbs). We want to find a strategy which brings the bulbs to
their final states, such that the total cost is minimum. The general case can be
solved as follows. We notice that we never have to touch the same bulb twice. We
will associate a variable x(i) to every bulb i, which will be either 0 or 1,
representing the number of times the bulb i was touched. We will construct a
system of linear equations in base 2. We will have an equation for each bulb i
(1≤i≤N): c(i,1)·x(1) xor c(i,2)·x(2) xor ... xor c(i,N)·x(N)=c(i,N+1). The
coefficients c(i,j) will be 1 for j=i and for those bulbs j for which the edge (i,j)
exists in the graph; for the other bulbs j, the coefficients c(i,j) will be 0;
c(i,N+1)=SI(i) xor SF(i). We will use the Gaussian elimination technique on this
system of equations, where all the operations will be performed modulo 2.
Afterwards, the extended matrix c(*,*) of the system will have 1 elements on the
main diagonal on the first PR rows (PR is obtained after running the elimination
method), and the last N-PR rows will have c(i,j)=0 (PR+1≤i≤N, 1≤j≤N). If we
have c(i,N+1)=1 (for some PR+1≤i≤N), then the problem has no solution.
Otherwise we have N-PR free variables – the ones corresponding to the last N-PR
columns. We must pay attention that during the algorithm, the columns may be
swapped among each other, such that the last N-PR columns do not necessarily
correspond to the initial variables x(PR+1), ..., x(N). For the N-PR free variables
we will have to try every possible combination of assigning values to them (there
are 2N-PR possibilities overall). For every combination we will compute the values
of the other PR variables (the bound variables). Once we compute the values of all
the variables x(1), ..., x(N), the cost of the strategy is
CS=C(1)·x(1)+...+C(N)·x(N). We will choose the strategy with minimum cost
among all the 2N-PR possibilities.

This method could lead to a significant improvement upon a naïve

94 Mugurel Ionuţ Andreica

algorithm which tries each of the 2N possible combinations of assigning values to
the N variables. However, the degree of improvement depends on the structure of
the graph. For instance, let’s assume that the graph consists of P·Q vertices,
arranged on P rows and Q columns. Each vertex (i,j) (on row i, column j) is
adjacent to the vertices to the north, south, east and west (if these neighbours
exist). In this case, we can consider the 2Q (or 2P) possibilities of assigning values
to the variables of the vertices on the first row (first column). Let’s consider the
first row case (the first column case is handled similarly). After assigning values
to the variables of the vertices on the first row, we will traverse the other vertices
in increasing row order (with i from row 2 to P) and, for equal rows, in increasing
column order (with j from 1 to Q). The value of the variable x(i,j) is uniquely
determined by the values of the variables computed earlier. If the vertex (i-1,j) is
in its final state (considering the values x(*,*) of itself and of all of its neighbours
except for (i,j)), then x(i,j)=0; otherwise, x(i,j)=1. If the vertices on the last row
are not in their final states (considering the values x(*,*) of themselves and of all
of their neighbours), then the assignment of values to the variables of the vertices
on the first row did not lead to a solution. Otherwise, we obtained a solution and
we compute its cost (like before). Fig. 3 shows the structure of the PxQ graph.

Fig. 3. The structure of the PxQ graph in the first case.

Let’s consider now the same graph, where every vertex is adjacent to its
(at most) 4 diagonal neighbours. We will color every vertex (i,j) in white, if (i+j)
is even, or in black, if (i+j) is odd. This way, we obtained (at most) 2 connected
components, such that all the vertices of the same component have the same color.
For every component, we will split the vertices (i,j) in groups, according to the
values min{i,j} (all the vertices (i,j) with the same value of min{i,j} will belong to
the same group). We will consider every possibility of assigning values to the
variables of the vertices (i,j) for which min{i,j} is minimum among all the vertices
of the component. For each possibility, we will consider all the other groups in the
component, in increasing order of min{i,j}. For each such group, we will traverse
the vertices (i,j) for which j≤i from the lower-indexed row to the higher-indexed

Efficient Gaussian elimination on a 2D SIMD array of processors without column broadcasts 95

row, along the column j. Then we will traverse the vertices (i,j) for which i≤j from
the lower-indexed column to the higher-indexed column, along the row i. Every
time we reach a vertex (i,j), this vertex will have a neighbour (i’,j’) for which
min{i’,j’}=min{i,j}-1 and for which the vertex (i,j) is the last vertex whose
variable has not been assigned a value, yet. Thus, the variable x(i,j) will be
uniquely determined, based on the current state of (i’,j’) and its desired final state
(0, if the two states are the same, and 1 otherwise). Like in the previous case,
some initial assignments may not lead to a solution (if some vertices do not end
up in their desired final states).

One last case we consider here is that in which every vertex (i,j) is
adjacent to all of its (at most) 8 neighbours (on the same row, column, or
diagonal). In this case, we will assign values to the variables of the vertices on the
first row and column. For each assignment, we will traverse the vertices (i,j) like
in the previous case, according to min{i,j}. Basically, we traverse the vertices on
column 2 (from lower-indexed rows to higher-indexed rows), followed by the
vertices on row 2 (from lower-indexed columns to higher-indexed columns), and
so on. Like in the previous case, when we reach a vertex (i,j) during the traversal,
this vertex will have at least one neighbour (i’,j’) (with its variable assigned to
some value), for which (i,j) is the only neighbour whose value has not been
assigned, yet. Thus, x(i,j) will be uniquely determined. In this case, we have 2P+Q-1
possibilities for assigning variables to the vertices (i,j) on the first row and column
(those with min{i,j}=1).

A problem related to the previous ones is the following. We consider a
matrix with M rows and N columns. Each cell (i,j) of the matrix contains a bulb.
The bulb (i,j) is in the initial state SI(i,j) (1-on or 0-off) and must be brought into
its final state SF(i,j). The only operations we can perform are: changing the state
of all the bulbs on a row i, which costs CL(i)≥0 (1≤i≤M), and changing the state of
all the bulbs on a column j, which costs CC(j)≥0 (1≤j≤N). We want to find a
sequence of operations with minimum total cost such that, in the end, every bulb
is in its final state. Like before, we notice that we never need to perform an
operation on a given row or column more than once. We will denote by xL(i)
(xC(j)) the variables which describe if we perform (1) or not (0) an operation on
the row i (column j). We will consider two cases. In the first case, we consider
that we do not perform an operation on row 1: xL(1)=0. We will traverse all the
bulbs (1,j) on the row 1 and, if SI(1,j)=SF(1,j), then we must not perform an
operation on column j (xC(j)=0); otherwise, we must perform an operation on
column j (xC(j)=1). Then, we traverse all the bulbs (i,1) on the column 1 (i≥2): if
SI(i,1) xor xC(1)=SF(i,1), then xL(i)=0; otherwise, xL(i)=1. Then we verify, for
every bulb (i,j), if SI(i,j) xor xL(i) xor xC(j)=SF(i,j). If the condition is true for
every bulb, then we obtained a solution and we compute its cost: CS=
CL(1)·xL(1)+...+CL(M)·xL(M)+CC(1)·xC(1)+...+CC(N)·xC(N). In the second

96 Mugurel Ionuţ Andreica

case we will consider xL(1)=1. In a similar manner we will compute the values
xC(j): if SI(1,j) xor xL(1)=SF(1,j), then xC(j)=0; otherwise, xC(j)=1. Then we
compute the values xL(i) (i≥2): if SI(i,1) xor xC(1)=SF(i,1), then xL(i)=0;
otherwise, xL(i)=1. As before, we verify if we obtained a solution. The minimum
cost is given by the minimum of the (at most) 2 possible solutions.

A strongly related problem is the following. We have the same input data
and objective, but we have a different set of operations that can be performed. An
operation consists of choosing a bulb (i,j) and changing the state of all the bulbs
on the row i and the column j (except for the bulb (i,j)). The cost of such an
operation is 1 – thus, we want to minimize the total number of operations required
for bringing every bulb in its final state. An operation in this problem is
equivalent to changing the state of a row, followed by that of a column (in the
terms of the previous problem). At first, we will consider that we can perform the
same operations like in the previous problem. Thus, using that solution, we obtain
(at most) two distinct solutions. The solution i (i=1,2) consists of changing the
states of the bulbs on the rows L(i,1), ..., L(i,nL(i)) and on the columns C(i,1), ...,
C(i,nC(i)). We will try to transform this solution into one which is compatible
with the operations allowed in this problem. We will construct pairs of the form
(row, column): (L(i,1), C(i,1)), ..., (L(i,K), C(i,K)), where K=min{nL(i), nC(i)}. A
pair (L(i,j), C(i,j)) means that the bulb (L(i,j), C(i,j)) is chosen for an operation. If
nL(i)>K, then the extra number of rows (nL(i)-K) must be even. We will form the
pairs (L(i,K+1), 1), (L(i,K+2), 1), ..., (L(i,nL(i)), 1) (i.e. we choose every bulb
(L(i,K+1), 1), ..., (L(i,nL(i)), 1) in an operation). If nC(i)>K, then (nC(i)-K) must
be even and we will choose the bulbs (1, C(i,K+1)), ..., (1,C(i,nC(i))) in an
operation. We will choose that solution i (i=1,2) for which we obtain the
minimum number of operations.

The problem of turning light bulbs on and off on a graph (where, when
touching a bulb, the states of the bulb and of all of its neighbours change), can be
solved without using the Gaussian elimination technique on graphs with special
structures, particularly graphs with a tree-like structure, like trees, trees of cycles
or graphs with bounded treewidth (when a suitable tree decomposition is also
given). In order to make an informed choice, we first need to recognize the class
to which the input graph belongs. Thus, graph recognition algorithms are
important in this situation. We will present next a simple graph recognition
algorithm for the class of trees of cycles.

A tree of cycles is an undirected graph with one of the following attributes:
• it is a cycle of any length K (K≥3)
• it is a graph obtained by attaching a cycle C of some length K (K≥3) to an

edge of a tree of cycles CT
Attaching a cycle to an edge e of a graph means replacing an edge of the

cycle with the edge e of the graph and replacing the two vertices of the cycle

Efficient Gaussian elimination on a 2D SIMD array of processors without column broadcasts 97

connected by the replaced edge by the two vertices of the graph connected by e.
Fig. 4 depicts the operation of attaching a cycle to a tree of cycles.

In order to decide if a given undirected graph is a tree of cycles, we will
perform the following operation repeatedly (for vertex i): if there exists a vertex i
with degree 2, and its neighbours are j and k, then we remove the vertex i from the
graph (and its two adjacent edges) and we introduce instead the edge j-k, if this
edge does not exist in the graph already. If the given graph is a tree of cycles then,
in the end, we will only have two vertices left (initially, the number of vertices of
the graph must be at least 3). In order to perform the described operation, we will
use a queue in which we will insert all the vertices which initially have degree 2.
Then, we will repeatedly extract vertices from the queue (as long as the queue is
not empty). Every time we extract a vertex i from the queue we perform the
operation for i. Thus, there exists the possibility of modifying the degrees of its
two neighbours j and k. If, after performing the operation for the vertex i, the
vertex j (k) ends up with degree 2 (before the operation it had a degree greater
than 2), we insert j (k) at the end of the queue. We now only need to use an
efficient data structure for checking quickly if two vertices are adjacent in the
graph, for finding the two neighbours of a vertex i, and for removing edges from
the graph. We can use, for instance, balanced trees, in which we store 2 pairs (i,j)
and (j,i) for each edge i-j which (currently) exists in the graph. This way, we can
check easily if a given edge exists in the tree, or we can easily remove a given
edge from the tree (by removing its two corresponding pairs). The two neighbours
j and k of a vertex i are found by searching for the two immediate successors of
the pair (i,-∞). The time complexity is, thus, O(n+m+m·log(m)), where n is the
(initial) number of vertices of the graph and m is the (initial) number of edges.

Fig. 4. Attaching a cycle to an edge of a tree of cycles.

5. Conclusions and Future Work

This paper presents a novel approach for implementing the Gaussian
elimination technique on a 2D SIMD array of processors. The algorithm consists
of 2·n-1 iterations and allows row reorderings, by allowing the matrix rows to

98 Mugurel Ionuţ Andreica

slide past each other. Both the (theoretical) formal proofs of correctness and the
(practical) results of the simulation tests validated the concept of the algorithm.
Moreover, the paper also introduced several extensions and applications of the
Gaussian elimination technique and compared the applications to similar
problems in which the Gaussian elimination method was not required for
computing the (optimal) solution.

As future work, the algorithm should be implemented on a real
architecture with n·m processors. Since real-life matrices have sizes which are
larger than the number of processors within mainstream parallel computers, a
modification of the algorithm in which every processor is responsible for multiple
entries of the matrix should be considered. A simple method to achieve this could
be to consider that there are n·m virtual processors and each real processor
simulates several « geographically clustered » virtual processors.

R E F E R E N C E S

[1] S.F. McGinn, R.E. Shaw, Parallel Gaussian Elimination using OpenMP and MPI, in
Proceedings of the 16th International Symposium on High Performance Computing Systems
and Applications, 2002, pp. 169-173

[2] P.R. Amestoy, I.S. Duff, J.-Y. L’excellent, X.S. Li, Analysis and Comparison of Two General
Sparse Solvers for Distributed Memory Computers, in ACM Transactions on Mathematical
Software, vol. 27, no. 4, 2001, pp. 388-421

[3] J.W. Demmel, J.R. Gilbert, X.S. Li, An Asynchronous Parallel Supernodal Algorithm for
Sparse Gaussian Elimination, in SIAM Journal on Matrix Analysis and Applications, vol.
20, no. 4, 1997, pp. 915-952

[4] R. Saad, An Optimal Schedule for Gaussian Elimination on an MIMD architecture, in Journal
of Computational and Applied Mathematics, vol. 185, no. 1, 2006, pp. 91-106

[5] A. Tiskin, Communication-Efficient Parallel Gaussian Elimination, in Lecture Notes in
Computer Science, vol. 2763, 2003, pp. 369-383

[6] B. Hochet, P. Quintin, Y. Robert, Systolic Gaussian Elimination Over GF(p) with Partial
Pivoting, in IEEE Transactions on Computers, vol. 38, no. 9, 1989, pp. 1321-1324

[7] V. Cristea, Algoritmi de prelucrare paralelă, Ed. Matrixrom, Bucureşti, 2002
[8] M. Leoncini, On the Parallel Complexity of Gaussian Elimination with Pivoting, in Journal of

Computer and System Sciences, vol. 53, no. 3, 1996, pp. 380-394
[9] T. Braunl, Parallaxis-III: a structured data-parallel programming language, in Proceedings of

the 16th International Conference on Algorithms and Architectures for Parallel Processing,
1995, pp. 43-52

[10] D.H. Bailey, H. Yozo, X.S. Li, B. Thompson, ARPREC: An Arbitrary Precision Computation
Package, Technical Report LBNL-53651, Lawrence Berkeley National Laboratory, 2002

[11] D.R. Stinson, Cryptography: Theory and Practice, CRC Press, 2005
[12] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, 2nd edition,

MIT Press and McGraw-Hill, 2001
[13] V.V. Jinescu, I. Popescu, Consideration about High-Pressure Reactors with Cylindrical

Symmetry, in U.P.B. Scientific Bulletin, Series D, vol. 71, iss. 1, 2009, pp. 45-55.

