

SPECTRAL EQUIVALENCE OF S -SPECTRAL OPERATORS

Mariana ZAMFIR¹, Ioan BACALU²

În această lucrare studiem proprietatea de spectral echivalență a unei clase speciale de operatori, operatorii S -spectrali (definiți și introdusi de I. Bacalu în [5], [6], [7]), punând în evidență legătura dintre acest tip de operatori și această proprietate. Una dintre trăsăturile importante ale familiei operatorilor decompozabili (spectrali, scalari, spectrali (scaleri) generalizați, A -scaleri) este transportul proprietăților spectrale de la un operator la altul prin intermediul echivalenței spectrale ([9], [10]). În cazul familiei operatorilor S -spectrali, majoritatea proprietăților spectrale se păstrează. Precum se știe, pentru operatorii spectrali T_1, T_2 spectral echivalenți, proprietățile spectrale ale lui T_1 se transferă la T_2 . Pentru operatorii S -spectrali, acest rezultat rămâne parțial adevărat, dar spectral echivalența nu este "echivalentă" cu egalitatea S -măsurilor spectrale; această egalitate implică o proprietate mai slabă numită echivalență S -spectrală, care de fapt este naturală în acest caz.

In this paper, we study the spectral equivalence property of a special class of operators, namely S -spectral operators (defined and introduced by I. Bacalu in [5], [6], [7]), highlighting the link between S -spectral operators and spectral equivalence. One of the essential characteristics of the class of decomposable (spectral, scalar, generalized spectral (scalar), A -scalar) operators is the transfer of the spectral properties from one operator to another using spectral equivalence ([9], [10]). The family of S -spectral operators preserves the most interesting properties of spectral operators. As is known, for the spectral operators T_1, T_2 which are spectral equivalent, the spectral properties of T_1 transfer to T_2 . For S -spectral operators, this fact remains partially true, but the spectral equivalence is not "equivalent" to equality of S -spectral measures; this equality involves only a weaker property called S -spectral equivalence, which is natural in this case.

Keywords: spectral space; spectral (S -spectral) measure; spectral (S -spectral) operator; spectral (S -spectral) equivalence.

MSC2000: 47B47, 47B40.

1. Introduction

Let X be a Banach space, let $\mathbf{B}(X)$ be the algebra of all linear bounded operators on X , let \mathcal{P}_X be the set of all projectors on X and let \mathcal{B}_S be the family of all Borelian sets B of the complex plane \mathbb{C} which have the property that $B \cap S = \emptyset$ or

¹ Assistant Prof., Department of Mathematics and Computer Science, Technical University of Civil Engineering of Bucharest, Romania, e-mail: zamfirvmariana@yahoo.com

² Associate Prof., Faculty of Applied Sciences, University POLITEHNICA of Bucharest, Romania, e-mail: dragosx@yahoo.com

$B \supset S$, where S is a compact set of \mathbb{C} . If $T \in \mathbf{B}(X)$ and Y is a linear (closed) subspace of X invariant to T , let us denote by $T|Y$ the restriction of T to Y and by \dot{T} the operator induced by T in the quotient space $\dot{X} = X/Y$. We also denote by $\sigma(T)$ ($\rho(T) = \mathbb{C} \setminus \sigma(T)$) the spectrum (the resolvent set) of T and by $R(\lambda, T) = (\lambda I - T)^{-1}$, with $\lambda \in \rho(T)$, the resolvent of T .

An operator $T \in \mathbf{B}(X)$ is said to have the *single-valued extension property* (SVEP) if for any analytic function $f : D_f \rightarrow X$ (where $D_f \subset \mathbb{C}$ is an open set), with $(\lambda I - T)f(\lambda) \equiv 0$ it results that $f(\lambda) \equiv 0$ ([9], [10], [12]).

For an operator $T \in \mathbf{B}(X)$ that has SVEP and for $x \in X$, we consider the set $\rho_T(x)$ of all elements $\lambda_0 \in \mathbb{C}$ such that there is a X -valued analytic function $\lambda \rightarrow x(\lambda)$ defined in a neighborhood of λ_0 which verifies the relation $(\lambda I - T)x(\lambda) \equiv x$; $x(\lambda)$ is unique, $\rho_T(x)$ is open and $\rho(T) \subset \rho_T(x)$. We take $\sigma_T(x) = \mathbb{C} \setminus \rho_T(x) = \mathbb{C} \setminus \rho_T(x)$ and $X_T(F) = \{x \in X; \sigma_T(x) \subset F\}$, where $F \subset \mathbb{C}$ is closed. $\rho_T(x)$ is called the *local resolvent set of x with respect to T* and $\sigma_T(x)$ is the *local spectrum of x with respect to T* ([3], [9], [17]).

Let $T \in \mathbf{B}(X)$ and let Y be a closed subspace of X . We recall that Y is a *spectral maximal space* of T if it is an invariant subspace to T such that for any other subspace Z of X , invariant to T , the inclusion $\sigma(T|Z) \subset \sigma(T|Y)$ implies the inclusion $Z \subset Y$ ([10], [13]).

An operator $T \in \mathbf{B}(X)$ is *decomposable* if for any finite open covering $\{G_i\}_{i=1}^n$ of $\sigma(T)$, there is a system $\{Y_i\}_{i=1}^n$ of spectral maximal spaces of T such that $\sigma(T|Y_i) \subset G_i$ ($i = 1, 2, \dots, n$) and $X = Y_1 + Y_2 + \dots + Y_n$ ([10], [13]). An operator $T \in \mathbf{B}(X)$ is *strongly decomposable* if $T|Y$ is decomposable for any spectral maximal space Y of X ([3], [4]).

In order to study the link between S – spectral operator and spectral equivalence, we need several notions from the theory of residually spectral decompositions brought up by F.H. Vasilescu in [17], [18], [19].

An open set $\Omega \subset \mathbb{C}$ is said to be a *set of analytic uniqueness* for $T \in \mathbf{B}(X)$ if for any open set $\omega \subset \Omega$ and any analytic function $f_0 : \omega \rightarrow X$ satisfying the equation $(\lambda I - T)f_0(\lambda) \equiv 0$, it follows that $f_0(\lambda) \equiv 0$ in ω . For $T \in \mathbf{B}(X)$ there is a

unique *maximal open set* Ω_T of analytic uniqueness ([17], 2.1.). We shall denote by $S_T = \mathbb{C} \setminus \Omega_T = \mathbb{C} \setminus \Omega_T$ and call it the *analytic spectral residuum of T* ([17], [19]).

For $x \in X$, a point λ is in $\delta_T(x)$ if in a neighborhood V_λ of λ there is at least an analytic function f_x (called T -associated to x) such that $(\mu I - T)f_x(\mu) \equiv x$, for all $\mu \in V_\lambda$. We shall put

$$\gamma_T(x) = \mathbb{C} \delta_T(x), \rho_T(x) = \delta_T(x) \cap \Omega_T, \sigma_T(x) = \mathbb{C} \rho_T(x) = \gamma_T(x) \cup S_T \text{ and}$$

$$X_T(F) = \{x \in X; \sigma_T(x) \subset F\}$$

where $S_T \subset F \subset \mathbb{C}$ ([17]).

An operator $T \in \mathbf{B}(X)$ has SVEP if and only if $S_T = \emptyset$; then we have $\sigma_T(x) = \gamma_T(x)$ and there is in $\rho_T(x) = \delta_T(x)$ a unique analytic function $x(\lambda)$, T -associated to x , for any $x \in X$. We shall recall that if $T \in \mathbf{B}(X)$, $S_T \neq \emptyset$ and $X_T(F)$ is closed, for $F \subset \mathbb{C}$ closed, $S_T \subset F$, then $X_T(F)$ is a spectral maximal space of T and $\sigma(T|X_T(F)) \subset F$ ([17], Propositions 2.4. and 3.4.).

2. Preliminaries

Definition 2.1. A family of open sets $G_S \cup \{G_i\}_{i=1}^n$ is said to be an S -covering of the closed set $\sigma \subset \mathbb{C}$ if $G_S \cup \left(\bigcup_{i=1}^n G_i \right) \supset \sigma \cup S$ and $\overline{G}_i \cap S = \emptyset$ ($i = 1, 2, \dots, n$) (where $S \subset \mathbb{C}$ is also closed) ([17]).

Definition 2.2. Let $T \in \mathbf{B}(X)$ and let $S \subset \sigma(T)$ be a compact set. T is called S -decomposable (respectively, strongly S -decomposable) if for any finite open S -covering $G_S \cup \{G_i\}_{i=1}^n$ of $\sigma(T)$, there is a system $Y_S \cup \{Y_i\}_{i=1}^n$ of spectral maximal spaces of T such that

i) $\sigma(T|Y_S) \subset G_S, \sigma(T|Y_i) \subset G_i$ ($i = 1, 2, \dots, n$),

ii) $X = Y_S + \sum_{i=1}^n Y_i$ (respectively, $Z = (Z \cap Y_S) + \sum_{i=1}^n (Z \cap Y_i)$, where

Z is any spectral maximal space of T) ([5], [6], [8]).

Obviously, for $S = \emptyset$ we obtain a decomposable operator ([13]), respectively a strongly decomposable operator ([4]).

Definition 2.3. For $T_1, T_2 \in \mathbf{B}(X)$, not necessarily permutable, we use the notation $(T_1 - T_2)^{[n]} = \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} T_1^k T_2^{n-k}$.

We say that $T_1, T_2 \in \mathbf{B}(X)$ are *spectral equivalent* (or *quasi-nilpotent equivalent*) ([9], [10]) and write $T_1 \sim T_2$ if

$$\lim_{n \rightarrow \infty} \left\| (T_1 - T_2)^{[n]} \right\|^{\frac{1}{n}} = 0 \text{ and } \lim_{n \rightarrow \infty} \left\| (T_2 - T_1)^{[n]} \right\|^{\frac{1}{n}} = 0.$$

This relation is reflexive, symmetric and transitive.

To show the relevance and the necessity of studying the spectral equivalence property for the family of S – decomposable operators (in particular, S – spectral operators), we emphasize the consistency of this class, in the sense of how many and varied are the subfamilies that compose it: the restrictions and the quotients (with respect to an invariant subspace or a spectral maximal space) of decomposable (unitary, self-adjoint, normal, spectral (scalar), generalized spectral (scalar), A -scalar, A -unitary) operators are S – decomposable; the perturbations and the direct sums composed by one decomposable operator and another operator are S – decomposable; the subdecomposable (subnormal, subscalar) operators are S – decomposable (practically, S -normal, S -scalar), as restrictions of decomposable (normal, scalar) operators; the quasinormal operators (i.e. T commutes with T^*T), being subnormal, are S – decomposable; for cosubnormal operators (i.e. T^* is subnormal), the adjointable operators T^* are S -decomposable; Cesaro operators are subscalar, hence S – scalar; the operators which admit scalar dilatations or A – scalar dilatations are S – decomposable. M. Putinar showed that the hiponormal operators are subscalar, hence S -decomposable ([16]). In fact, E.J. Albrecht and J. Eschmeier showed that any operator is the quotient of a restriction or the restriction of a quotient of decomposable operators ([1]), thus any operator is S – decomposable or similar to an S – decomposable operator.

In what follows, we mention briefly the important results for decomposable and spectral operators, respectively for S – decomposable operators $T_1, T_2 \in \mathbf{B}(X)$: if $T_1 \sim T_2$, then $\sigma(T_1) = \sigma(T_2)$ and $S_{T_1} = S_{T_2}$ ([9], [10], [7]); if $T_1 \sim T_2$ and $S_{T_1} \neq \emptyset, S_{T_2} \neq \emptyset$, then $\gamma_{T_1}(x) = \gamma_{T_2}(x)$, for $x \in X$ ([7]); if $T_1 \sim T_2$ and T_1 has SVEP, then T_2 has SVEP and $\sigma_{T_1}(x) = \sigma_{T_2}(x)$, for $x \in X$ ([9], [10]); if $T_1 \sim T_2$ and T_1 is decomposable (spectral), then T_2 is decomposable (spectral) and $X_{T_1}(F) = X_{T_2}(F)$, for $F \subset \mathbb{C}$ closed ([9], [10]); if $T_1 \sim T_2$ and T_1 is S – decomposable (strongly S – decomposable), then T_2 is S -decomposable

(respectively, strongly S – decomposable) and $X_{T_1}(F) = X_{T_2}(F)$, for $F \subset \mathbb{C}$, $F \supset S$ closed ([7]); if T_1, T_2 are decomposable (respectively, spectral with E_1, E_2 their spectral measures), then T_1 and T_2 are spectral equivalent if and only if $X_{T_1}(F) = X_{T_2}(F)$, for $F \subset \mathbb{C}$ closed (respectively, $E_1 = E_2$) ([9], [10]).

3. Spectral equivalence of the S – spectral operators

Definition 3.1. An application $E_S : \mathcal{B}_S \rightarrow \mathcal{P}_X$ is said to be an S – spectral measure if

- 1) $E_S(\mathbb{C}) = I, E_S(\emptyset) = 0$
- 2) $E_S(B_1 \cap B_2) = E_S(B_1)E_S(B_2), B_1, B_2 \in \mathcal{B}_S$
- 3) $E_S\left(\bigcup_{m=1}^{\infty} B_m\right)x = \sum_{m=1}^{\infty} E_S(B_m)x, B_m \in \mathcal{B}_S, B_p \cap B_m = \emptyset, m \neq p$
- 4) $\sup_{B \in \mathcal{B}_S} \|E_S(B)\| < \infty.$

An operator $T \in \mathbf{B}(X)$ will be said to be S – spectral if there is E_S an S – spectral measure such that the following conditions are verified:

- 5) $TE_S(B) = E_S(B)T, B \in \mathcal{B}_S$
- 6) $\sigma(T | E_S(B)X) \subset \overline{B}, B \in \mathcal{B}_S.$

For $S = \emptyset$, we obtain a spectral measure and a spectral operator ([12]).

Remark 3.1. An operator $T \in \mathbf{B}(X)$ is S – spectral if and only if it is a direct sum $T = T_1 \oplus T_2$, where T_1 is spectral and $\sigma(T_2) \subset S$.

Proof. Indeed, if T is S – spectral, then one can easily verify that the map $E : \mathcal{B} \rightarrow \mathcal{P}_X$ (where $\mathcal{B} = \mathcal{B}_{\emptyset}$) defined by $E(B) = E_S(B \cap \mathbb{C}S), B \in \mathcal{B}$ is a spectral measure for $T_1 = T | E_S(\mathbb{C}S)X$, hence $T = T_1 \oplus T_2$, where $T_2 = T | E_S(S)X$ and $\sigma(T_2) \subset S$.

Conversely, if $T_1 \in \mathbf{B}(X_1)$ is spectral and $T_2 \in \mathbf{B}(X_2)$ is not spectral, with $\sigma(T_1) \subset \sigma(T_2)$, by putting $S = \sigma(T_2)$, $X = X_1 \oplus X_2$ and $T = T_1 \oplus T_2$, it follows that the map $E_S : \mathcal{B}_S \rightarrow \mathcal{P}_X$ defined by the equalities $E_S(B) = E(B) \oplus 0$, if $B \cap S = \emptyset, B \in \mathcal{B}_S$ and $E_S(B) = E(B) \oplus I_2$, if $B \supset S, B \in \mathcal{B}_S$, is an S – spectral measure of T (where E is the spectral measure of T_1 and I_2 is the identity operator in X_2).

Lemma 3.1. *Let $T \in \mathbf{B}(X)$, let Y be an invariant subspace to T and let \dot{T} be the operator induced by T in the quotient space $\dot{X} = X / Y$. If T and \dot{T} have SVEP, then $X_T(\sigma(T|Y) \setminus \sigma(\dot{T})) \subset Y$.*

Proof. If $x \in X_T(\sigma(T|Y) \setminus \sigma(\dot{T}))$, we have $\sigma_T(x) \subset \sigma(T|Y) \setminus \sigma(\dot{T})$.

Because the equalities $S_T = \emptyset$ and $S_{\dot{T}} = \emptyset$ imply the relations $\gamma_T(x) = \sigma_T(x)$, $\gamma_{\dot{T}}(\dot{x}) = \sigma_{\dot{T}}(\dot{x})$ and $\sigma_{\dot{T}}(\dot{x}) \subset \sigma_T(x)$ ([7], Proposition 2.1.), then it follows that $\sigma_{\dot{T}}(\dot{x}) \subset \sigma_T(x) \cap \sigma(\dot{T}) \subset (\sigma(T|Y) \setminus \sigma(\dot{T})) \cap \sigma(\dot{T}) = \emptyset$, hence $\dot{x} = \dot{0}$, whence $x \in Y$.

In the following propositions, many examples of S – spectral operators can be obtained in general conditions, namely the restrictions and the quotients of spectral operators with respect to an invariant subspace.

Proposition 3.1. *Let $T \in \mathbf{B}(X)$ be a spectral (scalar) operator having the spectral measure E , let Y be a closed linear subspace invariant to T , let \dot{T} be the operator induced by T in $\dot{X} = X / Y$ and let $\varphi: X \rightarrow \dot{X}$ be the canonical application. Then $\dot{T} = \dot{T}_1 \oplus \dot{T}_2$, where $\dot{T}_1 = \dot{T} \mid \varphi(E(\sigma')X)$ is spectral (scalar) operator, $\dot{T}_2 = \dot{T} \mid \varphi(E(\sigma)X)$, $\sigma = \sigma(T|Y)$, $\sigma' = \sigma(\dot{T}) \setminus \sigma(T|Y)$ and $\sigma(\dot{T}_2) \subset S = \sigma(T|Y) \cap \sigma(\dot{T})$.*

Proof. The operator $T \mid E(\sigma')X$ is spectral (scalar) ([12], III, XV, 16) and since $Y \subset E(\sigma)X = X_T(\sigma)$, we have $Y \cap E(\sigma')X = \{0\}$. But $E(\sigma')X + Y = E(\sigma')X \oplus Y$ (because $E(\sigma')X + Y$ is closed; see [7], Lemma 1.1.13.), hence $\varphi(E(\sigma')X)$ can be identified with $E(\sigma')X$ and \dot{T}_1 with $T \mid E(\sigma')X$ ([7], Remark 1.1.15.), therefore \dot{T}_1 is spectral (scalar). It is easily to verify that $\varphi(X_T(\sigma)) = \dot{X}_{\dot{T}}(\sigma) = \dot{X}_{\dot{T}}(S)$ is a spectral maximal space of \dot{T} ([7], Theorem 1.1.19. and Corollary 1.1.20.), consequently $\sigma(\dot{T}_2) = \sigma(\dot{T} \mid \varphi(X_T(\sigma))) \subset S$.

Proposition 3.2. *Let $T \in \mathbf{B}(X)$ be a spectral (scalar) operator with its spectral measure E , let Y be an invariant subspace to T , let \dot{T} be the operator induced by T in $\dot{X} = X / Y$, with $X_T(\sigma) \subset Y$ (where $\sigma = \sigma(T|Y) \setminus \sigma(\dot{T})$). Let also*

$S = \sigma(T|Y) \cap \sigma(\dot{T})$ and let $T_Y = T|Y$. Then $T_Y|E(\sigma)Y$ and $T_Y|\overline{X_T(\sigma)}$ are spectral (scalar) operators and $T_Y = (T_Y|E(\sigma)Y) \oplus (T_Y|E(S)Y)$, where $\sigma(T_Y|E(S)Y) \subset \tilde{S} \cap \sigma(T_Y)$.

Proof. The set σ being open in $\sigma(T)$, there is a growing sequence of open sets $(\sigma_n)_{n \in \mathbb{N}}$ with $\sigma = \bigcup_{n \in \mathbb{N}} \sigma_n$; from the continuity of the measures $E(\cdot)x$ it results that $E(\sigma) = \lim_{n \rightarrow \infty} E(\sigma_n)$, therefore $E(\sigma_n)X = X_T(\sigma_n) \subset X_T(\sigma)$ implies $E(\sigma)X \subset \overline{X_T(\sigma)} \subset Y$. The closed subspaces $E(\sigma)X$ and $\overline{X_T(\sigma)}$ are invariant to T and to spectral measure E , hence $T_Y|E(\sigma)Y$ and $T_Y|\overline{X_T(\sigma)}$ are spectral (scalar) operators ([11]). From $Y \subset X_T(\sigma(T|Y)) = E(\sigma(T|Y))X$ it follows that $Y = E(\sigma(T|Y))Y = E(\sigma)Y + E(S)Y$, hence Y is invariant to $E(\sigma)$ and $E(S)$; consequently $E(\sigma)|Y$ and $E(S)|Y$ are projectors in Y , $E(\sigma)Y$ and $E(S)Y$ are closed subspaces and $Y = E(\sigma)Y \oplus E(S)Y$. We also obtain that

$$T_Y = (T_Y|E(\sigma)Y) \oplus (T_Y|E(S)Y) \text{ and} \\ \sigma(T_Y|E(S)Y) \subset \overline{\sigma(T|E(S)X)} \cap \sigma(T|Y) \subset \tilde{S} \cap \sigma(T|Y),$$

where $\tilde{S} = \mathbb{C} \setminus D^\infty$, D^∞ being the unbounded component of $\mathbb{C} \setminus S$, equivalent to the condition as $\mathbb{C} \setminus S = \mathbb{C} \setminus S$ to be connected.

Theorem 3.1. *Let $T \in \mathbf{B}(X)$ be a spectral operator and let Y be a closed subspace invariant to T such that $X_T(\sigma) \subset Y$, where $\sigma = \sigma(T|Y) \setminus \sigma(\dot{T})$ and $S = \tilde{S}$, where $S = \sigma(T|Y) \cap \sigma(\dot{T})$. Then $T|Y$ and \dot{T} are S – spectral operators.*

Proof. These assertions follow by Propositions 3.1., 3.2. and Remark 3.1.

Theorem 3.2. *Let $T \in \mathbf{B}(X)$ be an S – spectral operator and let E_S be its S – spectral measure. Then for any $F \subset \mathbb{C}$ closed such that $F \supset S$ we have*

$$E_S(F)X = X_T(F).$$

Proof. Since $\sigma(T|E_S(F)X) \subset F$, we obviously have $E_S(F)X \subset X_T(F)$.

Let us verify the inverse inclusion. Let $x \in X_T(F)$, hence $\rho_T(x) \supset \mathbb{C} \setminus F$. Let σ be a closed (compact) set such that $\sigma \cap F = \emptyset$. Let us proved that $E_S(\sigma)x = 0$. We consider an admissible system Γ of simple Jordan curves that

contains in "exterior" σ and leaves in "interior" the set F , hence $\Gamma \subset \mathbb{C} \setminus F \subset \rho_T(x)$. If $x(\lambda)$ is the analytic function defined on $\rho_T(x)$ such that $x = (\lambda I - T)x(\lambda)$, then $\int_{\Gamma} x(\lambda) d\lambda = 0$.

Hence we have the following relations:

$$\begin{aligned}
 E_S(\sigma)x &= \frac{1}{2\pi i} \int_{\|T\|+1} R(\lambda, T) E_S(\sigma) x d\lambda = \\
 &= \frac{1}{2\pi i} \int_{\|T\|+1} R(\lambda, T | E_S(\sigma)X) E_S(\sigma) x d\lambda = \\
 &= \frac{1}{2\pi i} \int_{\Gamma} R(\lambda, T | E_S(\sigma)X) E_S(\sigma) x d\lambda = \\
 &= \frac{1}{2\pi i} \int_{\Gamma} E_S(\sigma) R(\lambda, T | E_S(\sigma)X) x d\lambda = \\
 &= \frac{1}{2\pi i} \int_{\Gamma} E_S(\sigma) x(\lambda) d\lambda = E_S(\sigma) \frac{1}{2\pi i} \int_{\Gamma} x(\lambda) d\lambda = 0.
 \end{aligned}$$

The set $\mathbb{C} \setminus F$ being open we have $\mathbb{C} \setminus F = \bigcup_{n \in \mathbb{N}} \sigma_n$, with $\sigma_n \subset \mathbb{C}$ closed,

$\sigma_n \subset \sigma_{n+1}$ (also σ_n can be replaced with the compact sets $\sigma_n \cap \sigma(T)$, $n \in \mathbb{N}$); consequently

$$(I - E_S(F))x = E_S(\mathbb{C} \setminus F)x = E_S\left(\bigcup_{n \in \mathbb{N}} \sigma_n\right)x = \lim_{n \rightarrow \infty} E_S(\sigma_n)x = 0,$$

hence $x = E_S(F)x \in E_S(F)X$, whence $X_T(F) \subset E_S(F)X$.

Corollary 3.1. *Let $T \in \mathbf{B}(X)$ be an S -spectral operator and let E_S be one of its S -spectral measure. Then the map \mathcal{E}_S defined by the equality*

$$\mathcal{E}_S(F) = E_S(F)X, \text{ for } F \in \mathcal{F}_S$$

is the S -spectral capacity of the strongly S -decomposable operator T , where \mathcal{F}_S is the family of all closed sets $F \subset \mathbb{C}$ such that $F \cap S = \emptyset$ or $F \supset S$.

Proof. T being S -spectral, then it is strongly S -decomposable ([7], Proposition 1.4.11.), hence it admits an S -spectral capacity \mathcal{E}_S which is unique ([7], Theorem 2.5.5.). From the previous theorem, it follows that $E_S(F)X = X_T(F)$ if $F \supset S$ and $E_S(F)X = Y_F$ if $F \cap S = \emptyset$, where $E_S(F \cup S)X = E_S(F)X \oplus E_S(S)X = X_T(F \cup S) = Y_F \oplus X_T(S)$. In [7], Theorem 2.5.5.

and Corollary 2.5.6, it is proved that the S – spectral capacity of a strongly S – decomposable operator is given by the equalities $\mathcal{E}_S(F) = X_T(F)$, for $F \supset S$ and $\mathcal{E}_S(F) = Y_F$, for $F \cap S = \emptyset$, where the spectral maximal space Y_F is given by the relation $X_T(F \cup S) = Y_F \oplus X_T(S)$.

Remark 3.2. a) According to Theorem 3.2. and Corollary 3.1., it follows that if T is S – spectral and E_S is its S – spectral measure, then $E_S(F)X$ is a spectral maximal space of T , hence a subspace of X ultrainvariant to T , for any $F \in \mathcal{F}_S$.

b) From the assertion and the proof of the previous corollary it follows that $E_S(F)X = Y_F$, for $F \subset \mathbb{C}$ closed, $F \cap S = \emptyset$, where Y_F is the spectral maximal space of T given by the equalities $E_S(F \cup S)X = X_T(F \cup S) = Y_F \oplus X_T(S)$ and $\sigma(T|Y_F) \subset F$.

Theorem 3.3. *Let $T_1, T_2 \in \mathbf{B}(X)$. If T_1 is S – spectral and T_1, T_2 are spectral equivalent, then T_2 is S – spectral.*

Proof. Let E_S be the S – spectral measure of T_1 .

Since an S – spectral operator is strongly S – decomposable and the spectral equivalence transfers the property of S – decomposability (respectively strongly S – decomposability) from one operator to another (i.e. if T_1 is S – decomposable, respectively strongly S – decomposable, and $T_1 \sim T_2$, then T_2 is S – decomposable, respectively strongly S – decomposable), it results that T_2 is strongly S – decomposable and the spectral spaces of T_1 are also the spectral spaces of T_2 .

Therefore we have $X_{T_1}(F) = X_{T_2}(F)$, from $F \subset \mathbb{C}$ closed, $F \supset S$ and $Y_{1F} = Y_{2F}$, from $F \subset \mathbb{C}$ closed, $F \cap S = \emptyset$, where the spaces Y_{1F}, Y_{2F} are defined by the equality $X_{T_1}(S \cup F) = X_{T_1}(S) \oplus Y_{1F} = X_{T_2}(S) \oplus Y_{2F}$. According to Theorem 3.2., it follows that $E_S(F)X = X_{T_1}(F) = X_{T_2}(F)$, for $F \supset S$ and $E_S(F)X = Y_{1F} = Y_{2F}$, for $F \cap S = \emptyset$, where $E_S(F \cup S)X = E_S(F)X \oplus E_S(S)X = Y_{1F} \oplus X_{T_1}(S)$. It results that $E_S(F)X$ is spectral maximal space of both T_1 and T_2 , hence $E_S(F)X$ is invariant to T_1 and also to T_2 , for $F \in \mathcal{F}_S$.

The inclusion $T_2 E_S(F)X \subset E_S(F)X$ is equivalent to the equality

$$E_S(F)T_2 E_S(F) = T_2 E_S(F) \quad (1)$$

for any $F \subset \mathbb{C}$ closed, $F \supset S$ or $F \cap S = \emptyset$.

We first show that the equality (1) is verified, for any $G \subset \mathbb{C}$ open, $G \supset S$ or $G \cap S = \emptyset$ and then also for any Borelian set B , $B \supset S$ or $B \cap S = \emptyset$.

We use the fact that in a metric space every open set G is of type F_σ , i.e.

$G = \bigcup_{n=1}^{\infty} F_n$, with $F_n \subset F_{n+1}$, F_n closed, $F_n \supset S$ or $F_n \cap S = \emptyset$. Hence, for any

$G \subset \mathbb{C}$ open, $G \supset S$ or $G \cap S = \emptyset$ we have

$$\begin{aligned} E_S(G)T_2E_S(G) &= E_S\left(\lim_{n \rightarrow \infty} F_n\right)T_2E_S\left(\lim_{n \rightarrow \infty} F_n\right) = \\ &= \lim_{n \rightarrow \infty} E_S(F_n)T_2E_S(F_n) = \lim_{n \rightarrow \infty} T_2E_S(F_n) = T_2E_S\left(\lim_{n \rightarrow \infty} F_n\right) = \\ &= T_2E_S(G), \end{aligned}$$

Thus $E_S(G)T_2E_S(G) = T_2E_S(G)$.

From the relations $G = \mathbb{C} \setminus F = \mathbb{C} \setminus \mathbb{C} \setminus S = \mathbb{C} \setminus F$, $E_S(G) = E_S(\mathbb{C}) - E_S(F) = I - E_S(F)$ and from the previous equality we have successively

$$\begin{aligned} E_S(G)T_2E_S(G) &= (I - E_S(F))T_2(I - E_S(F)) = T_2E_S(G) = \\ &= T_2(I - E_S(F)) \\ T_2(I - E_S(F)) - E_S(F)T_2(I - E_S(F)) &= T_2(I - E_S(F)) \\ T_2 - T_2E_S(F) - E_S(F)T_2 + E_S(F)T_2E_S(F) &= T_2 - T_2E_S(F) \end{aligned}$$

and by reducing the terms it results that

$$E_S(F)T_2E_S(F) = E_S(F)T_2 \tag{2}$$

for $F \subset \mathbb{C}$ closed, $F \supset S$ or $F \cap S = \emptyset$.

From equalities (1) and (2), for $F \subset \mathbb{C}$, $F \supset S$ or $F \cap S = \emptyset$ we have

$$T_2E_S(F) = E_S(F)T_2.$$

For every $x \in X$ and $x^* \in X^* = \mathbf{B}(X, \mathbb{C})$, by using the regularity of the S -scalar measures $\langle E_S(\cdot)x, x^* \rangle$, $\langle T_2E_S(\cdot)x, x^* \rangle$, $\langle E_S(\cdot)T_2x, x^* \rangle$ we obtain

$$\langle T_2E_S(B)x, x^* \rangle = \langle E_S(B)T_2x, x^* \rangle$$

for any $B \in \mathcal{B}_S$ Borelian, hence

$$T_2E_S(B) = E_S(B)T_2. \tag{3}$$

It is known that if Y is a closed linear subspace of X invariant to $T \in \mathbf{B}(X)$, then $\|T|_Y\| \leq \|T\|$, therefore

$$\left\| \left[T_1 | E_S(B)X - T_2 | E_S(B)X \right]^{[n]} \right\|^{\frac{1}{n}} \leq \left\| (T_1 - T_2)^{[n]} \right\|^{\frac{1}{n}}.$$

But T_1 and T_2 are spectral equivalent and from the previous inequality it follows that $T_1 | E_S(B)X$ and $T_2 | E_S(B)X$ ($B \in \mathcal{B}_S$ Borelian) are spectral equivalent, thus their spectra are equal

$$\sigma(T_1 | E_S(B)X) = \sigma(T_2 | E_S(B)X), \quad B \in \mathcal{B}_S.$$

Because T_1 is S – spectral, we have $\sigma(T_1 | E_S(B)X) \subset \overline{B}$, therefore

$$\sigma(T_2 | E_S(B)X) \subset \overline{B}, \quad B \in \mathcal{B}_S. \quad (4)$$

According to relations (3) and (4) it results that T_2 is S – spectral.

Remark 3.3. We note that the proof from the case of spectral operators ([10]) can be easily adapted to obtain the previous proof from the case of S – spectral operators..

Using the similar result from the case of spectral operators, we remark that the assertion of Theorem 3.3. is a consequence of [11].

Indeed, since T_2 is spectral equivalent to T_1 and $T_1 = T_1 | E_S(\sigma)X \oplus T_1 | E_S(S)X$ (where $\sigma = \mathbb{C} \setminus S$) and the spectral equivalence property is transferred from operators to restrictions with respect to invariant subspaces, it follows that $T_1 | E_S(\sigma)X$ is spectral equivalent to $T_2 | E_S(\sigma)X$; hence $T_2 | E_S(\sigma)X$ is spectral since $T_1 | E_S(\sigma)X$ is spectral, $T_2 | E_S(S)X$ and $T_1 | E_S(S)X$ are spectral equivalent and their spectra are equal.

Therefore, $T_2 = T_2 | E_S(\sigma)X \oplus T_2 | E_S(S)X$ is a direct sum between a spectral operator and an operator with the spectrum in S , thus T_2 is S – spectral.

Theorem 3.4. *Let $T_1, T_2 \in \mathbf{B}(X)$ be two S – spectral operators which are spectral equivalent. Then their S – spectral measures E_{1S} and E_{2S} are equal, their spectral maximal spaces are equal, $X_{T_1}(F) = X_{T_2}(F)$, for $F \subset \mathbb{C}$ closed, $F \supset S$, respectively $Y_{1F} = Y_{2F}$, for $F \cap S = \emptyset$, where Y_{1F}, Y_{2F} are given by the equalities*

$$X_{T_1}(F \cup S) = Y_{1F} \oplus X_{T_1}(S), \quad X_{T_2}(F \cup S) = Y_{2F} \oplus X_{T_2}(S).$$

Proof. We remark that T_1, T_2 are strongly S – decomposable and their spectral spaces are equal. The arguments that were used in this proof are exactly the same as in the case of spectral operators ([9], [10], [12]) and the same as in the proof of Theorem 3.3.: the equalities $E_{1S}(F)X = X_{T_1}(F) = X_{T_2}(F) = E_{2S}(F)X$ (for

$F \subset \mathbb{C}$ closed, $F \supset S$), $E_{2S}(F)E_{1S}(F) = E_{1S}(F)$ (for $F \subset \mathbb{C}$ closed) and the fact that an open set G of a metric space (particularly \mathbb{C}) is of type F_σ (i.e.

$$G = \bigcup_{n=1}^{\infty} F_n, \quad F_n \subset F_{n+1}, \quad F_n \subset \mathbb{C} \text{ closed}.$$

We find the equality $E_{2S}(G)E_{1S}(G) = E_{1S}(G)$, for $G \subset \mathbb{C}$ open, with $G \supset S$ or $G \cap S = \emptyset$ and it follows that $E_{2S}(F)E_{1S}(F) = E_{2S}(F)$, thus $E_{1S}(F) = E_{2S}(F)$, for $F \subset \mathbb{C}$ closed, $F \supset S$ or $F \cap S = \emptyset$. Finally, to obtain the equality $E_{1S}(B) = E_{2S}(B)$, for $B \in \mathcal{B}_S$ Borelian, the regularity of the scalar measures $\langle E_{1S}(\cdot)x, x^* \rangle, \langle E_{2S}(\cdot)x, x^* \rangle$ is used.

We can verify the assertions of the theorem also in a simple and different manner, using similar arguments from the case of spectral operators ([10]): if $T_1, T_2 \in \mathbf{B}(X)$ are spectral operators and $T_1 \sim T_2$, then their spectral measures E_1, E_2 are equal ($E_1 = E_2$) and also their spectral spaces are equal ($X_{T_1}(F) = X_{T_2}(F)$, $F \subset \mathbb{C}$ closed). Indeed, T_1, T_2 being S -spectral, then they are strongly S -decomposable, hence the spectral spaces $X_{T_1}(F), X_{T_2}(F)$ are equal (for $F \supset S$) and the spaces Y_{1F}, Y_{2F} are also equal (for $F \cap S = \emptyset$), where Y_{1F}, Y_{2F} are defined by the equalities $X_{T_1}(F \cup S) = Y_{1F} \oplus X_{T_1}(S) = Y_{2F} \oplus X_{T_2}(S) = X_{T_2}(F \cup S)$.

According to Remark 3.1., the operators T_1, T_2 are direct sums:

$$T_1 = T_1' \oplus T_1'', \quad T_2 = T_2' \oplus T_2'',$$

where

$$T_1' = T_1 | E_{1S}(\sigma)X, \quad T_1'' = T_1 | E_{1S}(S)X$$

$$T_2' = T_2 | E_{2S}(\sigma)X, \quad T_2'' = T_2 | E_{2S}(S)X \quad (\sigma = \sigma(T_1) \setminus S = \sigma(T_2) \setminus S)$$

and T_1' and T_2' are spectral operators with the spectral measures $E_1' = E_{1S} | \mathcal{B}'_S$, $E_2' = E_{2S} | \mathcal{B}'_S$, where $\mathcal{B}'_S = \{B; B \in \mathcal{B}_S, B \cap S = \emptyset\}$.

Since the restrictions to the same invariant subspace of two spectral equivalent operators are also spectral equivalent, it results that T_1' is spectral equivalent to T_2' and according to [10], Corollary 2.2.4., these operators have the same spectral measures $E_1' = E_2'$, whence $E_{1S}(B) = E_{2S}(B)$, for $B \in \mathcal{B}_S$ Borelian, $B \cap S = \emptyset$. We use the same argument also for Borelian sets $B \in \mathcal{B}_S$, with $B \supset S$ noting that $B = (B \setminus S) \cup S$:

$$\begin{aligned}
E_{1S}(B) &= E_{1S}(B \setminus S) + E_{1S}(S) = E_1'(B \setminus S) + E_{1S}(S) = \\
&= E_2'(B \setminus S) + E_{2S}(S) = E_{2S}(B) \\
(\text{we have } E_{1S}(S)X &= X_{T_1}(S) == X_{T_2}(S) = E_{2S}(S)X).
\end{aligned}$$

For the case of spectral operators, as is known, two operators T_1 and $T_2 \in \mathbf{B}(X)$ are spectral equivalent if and only if their spectral measures are equal ([9], [10]). This fact seems not be true in the case of S – spectral operators; according to Theorems 3.3. and 3.4., the spectral equivalence transfers the property of an operator to be S – spectral to another operator and also implies the equality of the S – spectral measures; but conversely, the equality of the S – spectral measures does not really involve the spectral equivalence. Because we want also to fit these cases into a coherent theory, let us impose the concept of S – spectral equivalence (residually spectral equivalence or spectral equivalence modulo S).

Definition 3.2. Let $T_1, T_2 \in \mathbf{B}(X)$ be S – decomposable or S – spectral operators with $\sigma(T_1) = \sigma(T_2)$. We say that T_1, T_2 are *S – spectral equivalent* (or *spectral equivalent modulo S*) if for any spectral maximal space Y of T_1 or T_2 , with $\sigma(T_1|Y) \cap S = \emptyset$ or $\sigma(T_2|Y) \cap S = \emptyset$, the restrictions $T_1|Y$ and $T_2|Y$ are spectral equivalent.

Theorem 3.5. Let $T_1, T_2 \in \mathbf{B}(X)$ be S – spectral operators with the S – spectral measures E_{1S}, E_{2S} . If $E_{1S} = E_{2S}$, then T_1, T_2 are S – spectral equivalent. Moreover, if the "residual parts" $T_1'' = T_1|X_{T_1}(S)$ and $T_2'' = T_2|X_{T_2}(S)$ are spectral equivalent, then T_1 and T_2 are spectral equivalent (where T_1'' and T_2'' are defined in Remark 3.1, $X_{T_1}(S) = X_{T_2}(S) = E_{1S}(S)X = E_{2S}(S)X$).

Proof. For the case of spectral operators, if two spectral operators have their spectral measures equal, then they are spectral equivalent ([10], 2.2.4.).

We use this argument for the "spectral parts" $T_1' = T_1|E_{1S}(\sigma)X$ and $T_2' = T_2|E_{2S}(\sigma)X$ (where $\sigma = \sigma(T_1) \setminus S = \sigma(T_2) \setminus S$) which, according to Remark 3.1., are spectral operators. But the spectral measures E_1', E_2' of T_1' , respectively T_2' are restrictions of the S – spectral measures of T_1, T_2 , so they are also equal, $E_1' = E_2'$, hence it follows that T_1' is spectral equivalent to T_2' , whence T_1 and T_2 are S – spectral equivalent.

Moreover, if $T_1'' = T_1|X_{T_1}(S)$ and $T_2'' = T_2|X_{T_2}(S)$ are also spectral equivalent, then $T_1 = T_1' \oplus T_1''$ and $T_2 = T_2' \oplus T_2''$ are spectral equivalent.

4. Conclusions

The S – spectral operators belong to the class of S – decomposable operators defined by I. Bacalu ([5], [6], [8]) and occur mainly as restrictions and quotients of decomposable (respectively, spectral, normal, self-adjoint, etc.) operators.

In this paper, certain results of the spectral theory for spectral operators are generalized to S – spectral operators. In the case of S – spectral operators, we proved that the spectral equivalence transfers the property of an operator to be S – spectral to another operator and also the equality of the S – spectral measures (similar with the case of spectral operators). But conversely, the equality of the S – spectral measures of two S – spectral operators does not involve the spectral equivalence; this equality involves only a weaker property called the S – spectral equivalence, notion which was defined in this paper (see Definition 3.2.).

R E F E R E N C E S

- [1]. *E.J. Albrecht and J. Eschmeier*, Analytic functional models and local spectral theory, Proc. London Math. Soc., **75**, 1997, pp. 323-348.
- [2]. *C. Apostol*, Some properties of spectral maximal spaces and decomposable operators, Revue Roumaine Math. Pures et Appl., **12**, 1967, pp. 607-610.
- [3]. *C. Apostol*, Spectral decompositions and functional calculus, Revue Roumaine Math. Pures et Appl., **13**, 1968, pp. 1481-1528.
- [4]. *C. Apostol*, Restrictions and quotients of decomposable operators in a Banach space, Revue Roumaine Math. Pures et Appl., **13**, 1968, pp 147-150.
- [5]. *I. Bacalu*, S – decomposable operators in Banach spaces, Revue Roumaine Math. Pures et Appl., **20**, 1975, pp. 1101-1107.
- [6]. *I. Bacalu*, Some properties of decomposable operators, Revue Roumaine Math. Pures et Appl., **21**, 1976, pp. 177-194.
- [7]. *I. Bacalu*, S – decomposable operators, Bull. Math. Soc. Sci. Math., **20**, 1976, pp. 9-13.
- [8]. *I. Bacalu*, S – Spectral Decompositions, Ed. Politehnica Press, Bucharest, 2008.
- [9]. *I. Colojoară and C. Foiaş*, Quasi-nilpotent equivalence of not necessarily commuting operators, J. Mat. Mech., **15**, 1966, pp. 521-540.
- [10]. *I. Colojoară and C. Foiaş*, Theory of generalized spectral operators, Gordon Breach, Science Publ., New York-London-Paris, 1968.
- [11]. *H.R. Dowson*, Restriction of spectral operator, Proc. London Math. Soc., **15**, 1965, pp. 437-457.
- [12]. *N. Dunford and J.T. Schwartz*, Linear Operators, Interscience Publishers, New-York, Part I (1958), Part II (1963), Part III (1971).
- [13]. *C. Foiaş*, Spectral maximal spaces and decomposable operators in Banach Spaces, Archiv der Math., **14**, 1963, pp. 341-349.
- [14]. *R. Lange and S. Wang*, New Approaches in Spectral Decomposition, Amer. Math. Soc, 1992.
- [15]. *K.B. Laursen and M.M. Neumann*, An Introduction to Local Spectral Theory, London Math. Soc. Monographs New Series, Oxford Univ. Press., New-York, 2000.
- [16]. *M. Putinar*, Hyponormal operators are subscalar, J. Operator Theory, **12**, 1984, pp. 385-395.
- [17]. *F.H. Vasilescu*, Residually decomposable operators in Banach spaces, Tôhoku Mat. Journ., **21**, 1969, pp. 509-522.
- [18]. *F.H. Vasilescu*, Residually properties for closed operators on Fréchet spaces, Illinois J. Math., 1971, pp. 377-386.
- [19]. *F.H. Vasilescu*, Analytic Functional Calculus and Spectral Decompositions, D. Reidel Publishing Company, Dordrecht; Editura Academiei, Bucharest, 1982.