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SPECTRAL EQUIVALENCE OF S -SPECTRAL 
OPERATORS  

Mariana ZAMFIR1, Ioan BACALU2 
În această lucrare studiem proprietatea de spectral echivalenţă a unei clase 

speciale de operatori, operatorii S − spectrali (definiţi şi introduşi de I. Bacalu în 
[5], [6], [7]), punând în evidenţă legătura dintre acest tip de operatori şi această 
proprietate. Una dintre trăsăturile importante ale familiei operatorilor 
decompozabili (spectrali, scalari, spectrali (scalari) generalizaţi, A-scalari) este 
transportul proprietăţilor spectrale de la un operator la altul prin intermediul 
echivalenţei spectrale ([9], [10]). În cazul familiei operatorilor S − spectrali, 
majoritatea proprietăţilor spectrale se păstrează. Precum se ştie, pentru operatorii 
spectrali 1 2,T T  spectral echivalenţi, proprietăţile spectrale ale lui 1T  se transferă 
la 2T . Pentru operatorii S − spectrali, acest rezultat rămâne parţial adevărat, dar 
spectral echivalenţa nu este “echivalentă” cu egalitatea S −măsurilor spectrale; 
această egalitate implică o proprietate mai slabă numită echivalenţă S − spectrală, 
care de fapt este naturală în acest caz. 

In this paper, we study the spectral equivalence property of a special class of 
operators, namely S − spectral operators (defined and introduced by I. Bacalu in 
[5], [6], [7]), highlighting the link between S − spectral operators and spectral 
equivalence. One of the essential characteristics of the class of decomposable 
(spectral, scalar, generalized spectral (scalar), A − scalar) operators is the transfer 
of the spectral proprieties from one operator to another using spectral equivalence 
([9], [10]). The family of S − spectral operators preserves the most interesting 
properties of spectral operators. As is known, for the spectral operators 1 2,T T  
which are spectral equivalent, the spectral properties of 1T  transfer to 2T . For 
S − spectral operators, this fact remains partially true, but the spectral equivalence 
is not "equivalent" to equality of S − spectral measures; this equality involves only a 
weaker property called S − spectral equivalence, which is natural in this case.  

Keywords: spectral space; spectral ( S − spectral) measure; spectral ( S − spectral) 
operator; spectral ( S − spectral) equivalence. 
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1. Introduction 

Let X  be a Banach space, let ( )XB  be the algebra of all linear bounded 

operators on X , let XP  be the set of all projectors on X  and let SB  be the family of 
all Borelian sets B  of the complex plane ^  which have the property that B S = ∅∩  or 
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B S⊃ , where S  is a compact set of ^ . If ( )T X∈B  and Y  is a linear (closed) 

subspace of X  invariant to T , let us denote by |T Y  the restriction of T  to Y  and by 

T�  the operator induced by T  in the quotient space /X X Y=� . We also denote by 
( )Tσ  ( ( ) ( )\T Tρ σ= ^ ) the spectrum (the resolvent set) of T  and by 

( ) ( ) 1,R T I Tλ λ −= − , with ( )Tλ ρ∈ , the resolvent of T .  

An operator ( )T X∈B  is said to have the single-valued extension property 

(SVEP) if for any analytic function : ff D X→  (where fD ⊂ ^  is an open set), with 

( ) ( ) 0I T fλ λ− ≡  it results that ( ) 0f λ ≡  ([9], [10], [12]). 

For an operator ( )T X∈B  that has SVEP and for x X∈ , we consider the set 

( )T xρ  of all elements 0λ ∈^  such that there is a X -valued analytic function 

( )xλ λ→  defined in a neighborhood of 0λ  which verifies the relation 

( ) ( )I T x xλ λ− ≡ ; ( )x λ  is unique, ( )T xρ  is open and ( ) ( )TT xρ ρ⊂ . We take 

( ) ( ) ( )\T T Tx x xσ ρ ρ= = ^  and ( ) ( ){ };T TX F x X x Fσ= ∈ ⊂ , where F ⊂ ^  

is closed. ( )T xρ  is called the local resolvent set of x  with respect to T  and ( )T xσ  is 

the local spectrum of x  with respect to T  ([3], [9], [17]). 
Let ( )T X∈B  and let Y  be a closed subspace of X . We recall that Y  is a 

spectral maximal space of T  if it is an invariant subspace to T  such that for any other 
subspace Z  of X , invariant to T , the inclusion ( ) ( )| |T Z T Yσ σ⊂  implies the 
inclusion Z Y⊂  ([10], [13]). 

An operator ( )T X∈B  is decomposable if for any finite open covering 

{ } 1
n

i iG =  of ( )Tσ , there is a system { } 1
n

i iY =  of spectral maximal spaces of T  such that 

( )| i iT Y Gσ ⊂  ( )1,2,...,i n=  and 1 2 ... nX Y Y Y= + + +  ([10], [13]). An operator 

( )T X∈B  is strongly decomposable if |T Y  is decomposable for any spectral maximal 
space Y  of X  ([3], [4]). 

In order to study the link between S − spectral operator and spectral equivalence, 
we need several notions from the theory of residually spectral decompositions brought up 
by F.H. Vasilescu in [17], [18], [19]. 

An open set Ω ⊂ ^  is said to be a set of analytic uniqueness for ( )T X∈B  if 

for any open set ω ⊂ Ω  and any analytic function 0 :f Xω →  satisfying the equation 

( ) ( )0 0I T fλ λ− ≡ , it follows that ( )0 0f λ ≡  in ω . For ( )T X∈B  there is a 
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unique maximal open set TΩ  of analytic uniqueness ([17], 2.1.). We shall denote by 
\T T TS = Ω = Ω^  and call it the analytic spectral residuum of T  ([17], [19]). 

For x X∈ , a point λ  is in ( )T xδ  if in a neighborhood Vλ  of λ  there is at 

least an analytic function xf  (called T -associated to x ) such that ( ) ( )xI T f xμ μ− ≡ , 

for all Vλμ ∈ . We shall put  

( ) ( ) ( ) ( ) ( ) ( ) ( ), ,T T T T T T T T Tx x x x x x x Sγ δ ρ δ σ ρ γ= = Ω = =∩ ∪  and 

( ) ( ){ };T TX F x X x Fσ= ∈ ⊂  

where TS F⊂ ⊂ ^  ([17]). 

An operator ( )T X∈B  has SVEP if and only if TS = ∅ ; then we have 

( ) ( )T Tx xσ γ=  and there is in ( ) ( )T Tx xρ δ=  a unique analytic function ( )x λ , 

T − associated to x , for any x X∈ . We shall recall that if ( )T X∈B , TS ≠ ∅  and 

( )TX F  is closed, for F ⊂ ^  closed, TS F⊂ , then ( )TX F  is a spectral maximal 

space of T  and ( )( )| TT X F Fσ ⊂  ([17], Propositions 2.4. and 3.4.). 

2. Preliminaries 

Definition 2.1. A family of open sets { } 1
n

S i iG G =∪  is said to be an 

S − covering of the closed set σ ⊂ ^  if 
1

n
S i

i
G G Sσ

=

⎛ ⎞
⎜ ⎟ ⊃
⎜ ⎟
⎝ ⎠

∪ ∪∪  and iG S = ∅∩  

( )1,2,...,i n=  (where S ⊂ ^  is also closed) ([17]). 

Definition 2.2. Let ( )T X∈B  and let ( )S Tσ⊂  be a compact set. T  is called 
S − decomposable (respectively, strongly S − decomposable) if for any finite open 

S − covering { } 1
n

S i iG G =∪  of ( )Tσ , there is a system { } 1
n

S i iY Y =∪  of spectral 

maximal spaces of T  such that 
i) ( ) ( ) ( )| , | 1,2,...,S S i iT Y G T Y G i nσ σ⊂ ⊂ = , 

ii) 
1

n
S i

i
X Y Y

=
= +∑  (respectively, ( ) ( )

1

n
S i

i
Z Z Y Z Y

=
= + ∑∩ ∩ , where  

Z  is any spectral maximal space of T ) ([5], [6], [8]). 
Obviously, for S = ∅  we obtain a decomposable operator ([13]), respectively a 

strongly decomposable operator ([4]). 
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Definition 2.3. For ( )1 2,T T X∈B , not necessarily permutable, we use the 

notation ( )[ ] ( )1 2 1 2
0

1
n

n n k k n k

k

n
T T T T

k
− −

=

⎛ ⎞
− = − ⎜ ⎟

⎝ ⎠
∑ . 

We say that ( )1 2,T T X∈B  are spectral equivalent (or quasi-nilpotent 
equivalent) ([9], [10]) and write 1 2T T∼  if 

( )[ ]
1

1 2lim 0n n
n

T T
→∞

− =  and ( )[ ]
1

2 1lim 0n n
n

T T
→∞

− = . 

This relation is reflexive, symmetric and transitive. 

To show the relevance and the necessity of studying the spectral equivalence 
property for the family of S − decomposable operators (in particular, S − spectral 
operators), we emphasize the consistency of this class, in the sense of how many and 
varied are the subfamilies that compose it: the restrictions and the quotients (with respect 
to an invariant subspace or a spectral maximal space) of decomposable (unitary, self-
adjoint, normal, spectral (scalar), generalized spectral (scalar), A -scalar, A -unitary) 
operators are S − decomposable; the perturbations and the direct sums composed by one 
decomposable operator and another operator are S − decomposable; the 
subdecomposable (subnormal, subscalar) operators are S − decomposable (practically, 
S -normal, S -scalar), as restrictions of decomposable (normal, scalar) operators; the 
quasinormal operators (i.e. T  commutes with *T T ), being subnormal, are 
S − decomposable; for cosubnormal operators (i.e. *T  is subnormal), the adjointable 
operators *T  are S -decomposable; Cesaro operators are subscalar, hence S − scalar; 
the operators which admit scalar dilatations or A − scalar dilatations are 
S − decomposable. M. Putinar showed that the hiponormal operators are subscalar, hence 
S -decomposable ([16]). In fact, E.J. Albrecht and J. Eschmeier showed that any operator 
is the quotient of a restriction or the restriction of a quotient of decomposable operators 
([1]), thus any operator is S − decomposable or similar to an S − decomposable operator. 

In what follows, we mention briefly the important results for decomposable and 
spectral operators, respectively for S − decomposable operators ( )1 2,T T X∈B : if 

1 2T T∼ , then ( ) ( )1 2T Tσ σ=  and 
1 2T TS S=  ([9], [10], [7]); if 1 2T T∼  and 

1 2
,T TS S≠ ∅ ≠ ∅ , then ( ) ( )

1 2T Tx xγ γ= , for x X∈  ([7]); if 1 2T T∼  and 1T  has 

SVEP, then 2T  has SVEP and ( ) ( )
1 2T Tx xσ σ= , for x X∈  ([9], [10]); if 1 2T T∼  

and 1T  is decomposable (spectral), then 2T  is decomposable (spectral) and 

( ) ( )
1 2T TX F X F= , for F ⊂ ^  closed ([9], [10]); if 1 2T T∼  and 1T  is 

S − decomposable (strongly S − decomposable), then 2T  is S -decomposable 
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(respectively, strongly S − decomposable) and ( )
1TX F =  ( )

2TX F= , for F ⊂ ^ , 

F S⊃  closed ([7]); if 1 2,T T  are decomposable (respectively, spectral with 1 2,E E  
their spectral measures), then 1T  and 2T  are spectral equivalent if and only if 

( ) ( )
1 2T TX F X F= , for F ⊂ ^  closed (respectively, 1 2E E= ) ([9], [10]). 

3. Spectral equivalence of the S − spectral operators 

Definition 3.1. An application :S S XE →PB  is said to be an S − spectral 
measure if 

1) ( ) ( ), 0S SE I E= ∅ =^  

2) ( ) ( ) ( )1 2 1 2 1 2, ,S S S SE B B E B E B B B= ∈∩ B  

3) ( )
11

, , ,S m S m m S p m
mm

E B x E B x B B B m p
∞ ∞

==

⎛ ⎞
= ∈ = ∅ ≠⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∩∪ B  

4) ( )sup
S

S
B

E B
∈

< ∞
B

. 

An operator ( )T X∈B  will be said to be S − spectral if there is SE  an 
S − spectral measure such that the following conditions are verified: 

5) ( ) ( )S ST E B E B T= , SB∈B  

6) ( )( )| ST E B X Bσ ⊂ , SB∈B . 
For S = ∅ , we obtain a spectral measure and a spectral operator ([12]). 

Remark 3.1. An operator ( )T X∈B  is S − spectral if and only if it is a direct 

sum 1 2T T T= ⊕ , where 1T  is spectral and ( )2T Sσ ⊂ .  
Proof. Indeed, if T  is S − spectral, then one can easily verify that the map 

: XE →PB  (where ∅=B B ) defined by ( ) ( ) ,SE B E B S B= ∈∩ B  is a 

spectral measure for ( )1 | ST T E S X= , hence 1 2T T T= ⊕ , where 2T =  

( )| ST E S X=  and ( )2T Sσ ⊂ .  

Conversely, if ( )1 1T X∈B  is spectral and ( )2 2T X∈B  is not spectral, with 

( ) ( )1 2T Tσ σ⊄ , by putting ( )2S Tσ= , 1 2X X X= ⊕  and 1 2T T T= ⊕ , it 

follows that the map :S S XE →PB  defined by the equalities ( )SE B =  

( ) 0E B= ⊕ , if , SB S B= ∅ ∈∩ B  and ( ) ( ) 2SE B E B I= ⊕ , if , SB S B⊃ ∈B , 
is an S − spectral measure of T  (where E  is the spectral measure of 1T  and 2I  is 
the identity operator in 2X ). 
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Lemma 3.1. Let ( )T X∈B , let Y  be an invariant subspace to T  and let 

T�  be the operator induced by T  in the quotient space /X X Y=� . If T  and T�  

have SVEP, then ( ) ( )( )| \TX T Y T Yσ σ ⊂� . 

Proof. If ( ) ( )( )| \Tx X T Y Tσ σ∈ � , we have ( ) ( ) ( )| \T x T Y Tσ σ σ⊂ � . 

Because the equalities TS = ∅  and TS = ∅�  imply the relations ( ) ( )T Tx xγ σ= , 

( ) ( )T Tx xγ σ=� �� �  and ( ) ( )TT x xσ σ⊂� �  ([7], Proposition 2.1.), then it follows that 

( ) ( ) ( ) ( ) ( )( ) ( )| \TT x x T T Y T Tσ σ σ σ σ σ⊂ ⊂ =∅� � � �� ∩ ∩ , hence 0x = �� , whence x Y∈ . 

In the following propositions, many examples of S − spectral operators 
can be obtained in general conditions, namely the restrictions and the quotients of 
spectral operators with respect to an invariant subspace. 

Proposition 3.1. Let ( )T X∈B  be a spectral (scalar) operator having the 

spectral measure E , let Y  be a closed linear subspace invariant to T , let T�  be 
the operator induced by T  in /X X Y=�  and let : X Xϕ → �  be the canonical 

application. Then 1 2T T T= ⊕� � � , where ( )( )1 |T T E Xϕ σ ′=� �  is spectral (scalar) 

operator, ( )( ) ( ) ( ) ( )2 | , | , \ |T T E X T Y T T Yϕ σ σ σ σ σ σ′= = =� � �  and ( )2T Sσ ⊂ =�  

( ) ( )|T Y Tσ σ= �∩ . 

Proof. The operator ( )|T E Xσ ′  is spectral (scalar) ([12], III, XV, 16) and 

since ( ) ( )TY E X Xσ σ⊂ = , we have ( ) { }0Y E Xσ ′ =∩ . But ( )E X Yσ ′ + =  

( )E X Yσ ′= ⊕  (because ( )E X Yσ ′ +  is closed; see [7], Lemma 1.1.13.), hence 

( )( )E Xϕ σ ′  can be identified with ( )E Xσ ′  and 1T�  with ( )|T E Xσ ′  ([7], Remark 

1.1.15.), therefore 1T�  is spectral (scalar). It is easily to verify that 

( )( ) ( ) ( )T T TX X X Sϕ σ σ= =� �� �  is a spectral maximal space of T�  ([7], Theorem 

1.1.19. and Corollary 1.1.20.), consequently ( ) ( )( )( )2 | TT T X Sσ σ ϕ σ= ⊂� � . 

Proposition 3.2. Let ( )T X∈B  be a spectral (scalar) operator with its spectral 

measure E , let Y  be an invariant subspace to T , let T�  be the operator induced by 
T  in /X X Y=� , with ( )TX Yσ ⊂  (where ( ) ( )| \T Y Tσ σ σ= � ). Let also 
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( ) ( )|S T Y Tσ σ= �∩  and let |YT T Y= . Then ( )|YT E Yσ  and ( )|Y TT X σ  are 

spectral (scalar) operators and ( )( ) ( )( )| |Y Y YT T E Y T E S Yσ= ⊕ , where 

( )( ) i ( )|Y YT E S Y S Tσ σ⊂ ∩ . 

Proof. The set σ  being open in ( )Tσ , there is a growing sequence of 

open sets ( )n nσ ∈`  with n
n

σ σ
∈

= ∪̀ ; from the continuity of the measures ( )E x⋅  

it results that ( ) ( )lim n
n

E Eσ σ
→∞

= , therefore ( ) ( ) ( )n T n TE X X Xσ σ σ= ⊂  

implies ( ) ( )TE X X Yσ σ⊂ ⊂ . The closed subspaces ( )E Xσ  and ( )TX σ  are 

invariant to T  and to spectral measure E , hence ( )|YT E Yσ  and ( )|Y TT X σ  

are spectral (scalar) operators ([11]). From ( )( ) ( )( )| |TY X T Y E T Y Xσ σ⊂ =  it 

follows that ( )( ) ( ) ( )|Y E T Y Y E Y E S Yσ σ= = + , hence Y  is invariant to ( )E σ  and 

( )E S ; consequently ( ) |E Yσ  and ( ) |E S Y  are projectors in Y , ( )E Yσ  and 

( )E S Y  are closed subspaces and ( ) ( )Y E Y E S Yσ= ⊕ . We also obtain that 

( )( ) ( )( )| |Y Y YT T E Y T E S Yσ= ⊕  and 

( )( ) ( )( )k ( ) i ( )| | | |YT E S Y T E S X T Y S T Yσ σ σ σ⊂ ⊂∩ ∩ , 

where i \S D∞= ^ , D∞  being the unbounded component of \ S^ , equivalent to 
the condition as \S S= ^  to be connected. 

Theorem 3.1. Let ( )T X∈B  be a spectral operator and let Y  be a closed 

subspace invariant to T  such that ( )TX Yσ ⊂ , where ( ) ( )| \T Y Tσ σ σ= �  and 

iS S= , where ( ) ( )|S T Y Tσ σ= �∩ . Then |T Y  and T�  are S − spectral operators. 

Proof. These assertions follow by Propositions 3.1., 3.2. and Remark 3.1. 
Theorem 3.2. Let ( )T X∈B  be an S − spectral operator and let SE  be 

its S − spectral measure. Then for any F ⊂ ^  closed such that F S⊃  we have 
( ) ( )S TE F X X F= . 

Proof. Since ( )( )| ST E F X Fσ ⊂ , we obviously have ( ) ( )S TE F X X F⊂ . 

Let us verify the inverse inclusion. Let ( )Tx X F∈ , hence ( ) \T x Fρ ⊃^ . 
Let σ  be a closed (compact) set such that Fσ = ∅∩ . Let us proved that 

( ) 0SE xσ = . We consider an admissible system Γ  of simple Jordan curves that 
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contains in "exterior" σ  and leaves in "interior" the set F , hence \ FΓ ⊂ ⊂^  
( )T xρ⊂ . If ( )x λ  is the analytic function defined on ( )T xρ  such that 

( ) ( )x I T xλ λ= − , then ( ) 0x dλ λ
Γ

=∫ . 

Hence we have the following relations: 

( ) ( ) ( )

( )( ) ( )

( )( ) ( )

( ) ( )( )

( ) ( ) ( ) ( )

1

1

1 ,
2

1 , |
2

1 , |
2

1 , |
2

1 1 0.
2 2

S S
T

S S
T

S S

S S

S S

E x R T E x d
i

R T E X E x d
i

R T E X E x d
i

E R T E X x d
i

E x d E x d
i i

σ λ σ λ
π

λ σ σ λ
π

λ σ σ λ
π

σ λ σ λ
π

σ λ λ σ λ λ
π π

+

+

Γ

Γ

Γ Γ

= =

= =

= =

= =

= = =

∫

∫

∫

∫

∫ ∫

 

The set \ F^  being open we have \ n
n

F σ
∈

=
`

^ ∪ , with nσ ⊂ ^  closed, 

1n nσ σ +⊂  (also nσ  can be replaced with the compact sets ( )n Tσ σ∩ , n∈` ); 
consequently 

( )( ) ( ) ( )\ lim 0S S S n S n
nn

I E F x E F x E x E xσ σ
→∞∈

⎛ ⎞− = = = =
⎜ ⎟
⎝ ⎠`

^ ∪ , 

hence ( ) ( )S Sx E F x E F X= ∈ , whence ( ) ( )T SX F E F X⊂ . 

Corollary 3.1. Let ( )T X∈B  be an S − spectral operator and let SE  be 
one of its S − spectral measure. Then the map SE  defined by the equality 

( ) ( )S SF E F X=E , for SF ∈F  
is the S − spectral capacity of the strongly S − decomposable operator T , where 

SF  is the family of all closed sets F ⊂ ^  such that F S = ∅∩  or F S⊃ . 
Proof. T  being S − spectral, then it is strongly S − decomposable ([7], 

Proposition 1.4.11.), hence it admits an S − spectral capacity SE  which is unique 
([7], Theorem 2.5.5.). From the previous theorem, it follows that ( )SE F X =  

( )TX F=  if F S⊃  and ( )S FE F X Y=  if F S = ∅∩ , where ( )SE F S X =∪  

( ) ( ) ( ) ( )S S T F TE F X E S X X F S Y X S= ⊕ = = ⊕∪ . In [7], Theorem 2.5.5. 
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and Corollary 2.5.6, it is proved that the S − spectral capacity of a strongly 
S − decomposable operator is given by the equalities ( ) ( )S TF X F=E , for 

F S⊃  and ( )S FF Y=E , for F S = ∅∩ , where the spectral maximal space FY  

is given by the relation ( ) ( )T F TX F S Y X S= ⊕∪ . 
Remark 3.2. a) According to Theorem 3.2. and Corollary 3.1., it follows 

that if T  is S − spectral and SE  is its S − spectral measure, then ( )SE F X  is a 
spectral maximal space of T , hence a subspace of X  ultrainvariant to T , for any 

SF ∈F . 
b) From the assertion and the proof of the previous corollary it follows that 

( )S FE F X Y= , for F ⊂ ^  closed, F S = ∅∩ , where FY  is the spectral maximal 

space of T  given by the equalities ( ) ( ) ( )S T F TE F S X X F S Y X S= = ⊕∪ ∪  and 

( )| FT Y Fσ ⊂ . 

Theorem 3.3. Let ( )1 2,T T X∈B . If 1T  is S − spectral and 1 2,T T  are 
spectral equivalent, then 2T  is S − spectral. 

Proof. Let SE  be the S − spectral measure of 1T . 
Since an S − spectral operator is strongly S − decomposable and the 

spectral equivalence transfers the property of S − decomposability (respectively 
strongly S − decomposability) from one operator to another (i.e. if 1T  is 
S − decomposable, respectively strongly S − decomposable, and 1 2T T∼ , then 2T  
is S − decomposable, respectively strongly S − decomposable), it results that 2T  
is strongly S − decomposable and the spectral spaces of 1T  are also the spectral 
spaces of 2T . 

Therefore we have ( ) ( )
1 2T TX F X F= , from F ⊂ ^  closed, F S⊃  and 

1 2F FY Y= , from F ⊂ ^  closed, F S = ∅∩ , where the spaces 1 2,F FY Y  are 

defined by the equality ( ) ( ) ( )
1 1 21 2T T F T FX S F X S Y X S Y= ⊕ = ⊕∪ . According to 

Theorem 3.2., it follows that ( ) ( ) ( )
1 2S T TE F X X F X F= = , for F S⊃  and 

( ) 1 2S F FE F X Y Y= = , for F S =∅∩ , where ( ) ( ) ( )S S SE F S X E F X E S X= ⊕ =∪  

( )
11F TY X S= ⊕ . It results that ( )SE F X  is spectral maximal space of both 1T  and 

2T , hence ( )SE F X  is invariant to 1T  and also to 2T , for SF ∈F . 

The inclusion ( ) ( )2 S ST E F X E F X⊂  is equivalent to the equality 

( ) ( ) ( ) ( )2 2 1S S SE F T E F T E F=  



40                                                               Ioan Bacalu, Mariana Zamfir 

for any F ⊂ ^  closed, F S⊃  or F S = ∅∩ . 
We first show that the equality ( )1  is verified, for any G ⊂ ^  open, G S⊃  or 

G S = ∅∩  and then also for any Borelian set B , B S⊃  or B S = ∅∩ . 
We use the fact that in a metric space every open set G  is of type Fσ , i.e. 

1
n

n
G F

∞

=
= ∪ , with 1n nF F +⊂ , nF  closed, nF S⊃  or nF S = ∅∩ . Hence, for any 

G ⊂ ^  open, G S⊃  or G S = ∅∩  we have 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

2 2

2 2 2

2

lim lim

lim lim lim

,

S S S n S n
n n

S n S n S n S n
n n n

S

E G T E G E F T E F

E F T E F T E F T E F

T E G

→∞ →∞

→∞ →∞ →∞

= =

= = = =

=

 

Thus ( ) ( ) ( )2 2S S SE G T E G T E G= . 

From the relations \G F F= =^ , ( ) ( ) ( ) ( )S S S SE G E E F I E F= − = −^  
and from the previous equality we have successively 

( ) ( ) ( )( ) ( )( ) ( )
( )( )

2 2 2

2

S S S S S

S

E G T E G I E F T I E F T E G

T I E F

= − − = =

= −
 

( )( ) ( ) ( )( ) ( )( )2 2 2S S S ST I E F E F T I E F T I E F− − − = −  

( ) ( ) ( ) ( ) ( )2 2 2 2 2 2S S S S ST T E F E F T E F T E F T T E F− − + = −  
and by reducing the terms it results that 

( ) ( ) ( ) ( )2 2 2S S SE F T E F E F T=
for F ⊂ ^  closed, F S⊃  or F S = ∅∩ . 

From equalities (1) and (2), for F ⊂ ^ , F S⊃  or F S = ∅∩  we have 
( ) ( )2 2S ST E F E F T= . 

For every x X∈  and ( )* * ,x X X∈ = ^B , by using the regularity of the 

S − scalar measures ( ) , *SE x x⋅ , ( )2 , *ST E x x⋅ , ( ) 2 , *SE T x x⋅  we obtain 

( ) ( )2 2, * , *S ST E B x x E B T x x=  

for any SB∈B  Borelian, hence 

( ) ( ) ( )2 2 . 3S ST E B E B T=  
It is known that if Y  is a closed linear subspace of X  invariant to 
( )T X∈B , then |T Y T≤ , therefore 
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( ) ( ) [ ] ( )[ ]
1 1

1 2 1 2| | n nn n
S ST E B X T E B X T T− ≤ −⎡ ⎤⎣ ⎦ . 

But 1T  and 2T  are spectral equivalent and from the previous inequality it 
follows that ( )1 | ST E B X  and ( )2 | ST E B X  ( SB∈B  Borelian) are spectral 
equivalent, thus their spectra are equal   

( )( ) ( )( )1 2| |S ST E B X T E B Xσ σ= , SB∈B . 

Because 1T  is S − spectral, we have ( )( )1 | ST E B X Bσ ⊂ , therefore 

( )( ) ( )2 | , . 4S ST E B X B Bσ ⊂ ∈B  
According to relations (3) and (4) it results that 2T  is S − spectral. 
Remark 3.3. We note that the proof from the case of spectral operators 

([10]) can be easily adapted to obtain the previous proof from the case of 
S − spectral operators.. 

Using the similar result from the case of spectral operators, we remark that 
the assertion of Theorem 3.3. is a consequence of [11]. 

Indeed, since 2T  is spectral equivalent to 1T  and ( )1 1 | ST T E Xσ= ⊕  

( )1 | ST E S X⊕  (where \ Sσ = ^ ) and the spectral equivalence property is 
transferred from operators to restrictions with respect to invariant subspaces, it 
follows that ( )1 | ST E Xσ  is spectral equivalent to ( )2 | ST E Xσ ; hence 

( )2 | ST E Xσ  is spectral since ( )1 | ST E Xσ  is spectral, ( )2 | ST E S X  and 

( )1 | ST E S X  are spectral equivalent and their spectra are equal. 

Therefore, ( ) ( )2 2 2| |S ST T E X T E S Xσ= ⊕  is a direct sum between a 

spectral operator and an operator with the spectrum in S , thus 2T  is S − spectral. 

Theorem 3.4. Let ( )1 2,T T X∈B  be two S − spectral operators which are 

spectral equivalent. Then their S − spectral measures 1SE  and 2 SE  are equal, their 

spectral maximal spaces are equal, ( ) ( )
1 2T TX F X F= , for F ⊂ ^  closed, F S⊃ , 

respectively 1 2F FY Y= , for F S = ∅∩ , where 1FY , 2 FY  are given by the equalities  

( ) ( ) ( ) ( )
1 1 2 21 2,T F T T F TX F S Y X S X F S Y X S= ⊕ = ⊕∪ ∪ . 

Proof. We remark that 1 2,T T  are strongly S − decomposable and their spectral 
spaces are equal. The arguments that were used in this proof are exactly the same as in 
the case of spectral operators ([9], [10], [12]) and the same as in the proof of 
Theorem.3.3.: the equalities ( ) ( ) ( )

1 21S T TE F X X F X F= = =  ( )2SE F X=  (for 
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F ⊂ ^  closed, F S⊃ ), ( ) ( ) ( )2 1 1S S SE F E F E F=  (for F ⊂ ^  closed) and the 

fact that an open set G  of a metric space (particularly ^ ) is of type Fσ  (i.e. 

1
n

n
G F

∞

=
= ∪ , 1n nF F +⊂ , nF ⊂ ^  closed).  

We find the equality ( ) ( ) ( )2 1 1S S SE G E G E G= , for G ⊂ ^  open, with 

G S⊃  or G S = ∅∩  and it follows that ( ) ( ) ( )2 1 2S S SE F E F E F= , thus 

( ) ( )1 2S SE F E F= , for F ⊂ ^  closed, F S⊃  or F S = ∅∩ . Finally, to obtain the 

equality ( ) ( )1 2S SE B E B= , for SB∈B  Borelian, the regularity of the scalar 

measures ( ) ( )1 2, * , , *S SE x x E x x⋅ ⋅  is used. 

We can verify the assertions of the theorem also in a simple and different manner, 
using similar arguments from the case of spectral operators ([10]): if 1T , ( )2T X∈B  are 

spectral operators and 1 2T T∼ , then their spectral measures 1E , 2E  are equal 

( 1 2E E= ) and also their spectral spaces are equal ( ( )
1TX F =  ( )

2TX F= , F ⊂ ^  

closed). Indeed, 1 2,T T  being S -spectral, then they are strongly S − decomposable, 

hence the spectral spaces ( ) ( )
1 2

,T TX F X F  are equal (for F S⊃ ) and the spaces 

1 2,F FY Y  are also equal (for F S = ∅∩ ), where 1 2,F FY Y  are defined by the 

equalities ( ) ( )
1 11T F TX F S Y X S= ⊕ =∪  ( ) ( )

2 22F T TY X S X F S= ⊕ = ∪ .  

According to Remark 3.1., the operators 1 2,T T  are direct sums: 

1 1 1 2 2 2' '', ' ''T T T T T T= ⊕ = ⊕ , 
where 

( ) ( )1 1 1 1 1 1' | , '' |S ST T E X T T E S Xσ= =  

( ) ( )2 2 2 2 2 2' | , '' |S ST T E X T T E S Xσ= =   ( ( ) ( )1 2\ \T S T Sσ σ σ= = ) 

and 1 'T  and 2 'T  are spectral operators with the spectral measures 1 1 |S SE E′ ′= B , 

2 2 |S SE E′ ′= B , where { }; ,S SB B B S′ = ∈ = ∅∩B B . 
Since the restrictions to the same invariant subspace of two spectral equivalent 

operators are also spectral equivalent, it results that 1 'T  is spectral equivalent to 2 'T  and 
according to [10], Corollary 2.2.4., these operators have the same spectral measures 

1 2' 'E E= , whence ( ) ( )1 2S SE B E B= , for SB∈B  Borelian, B S = ∅∩ . We use 

the same argument also for Borelian sets SB∈B , with B S⊃  noting that 

( )\B B S S= ∪ : 



Spectral equivalence of the S − spectral operators                                               43 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 1 1 1 1

2 2 2

\ \

\
S S S S

S S

E B E B S E S E B S E S

E B S E S E B

′= + = + =

′= + =
 

(we have ( ) ( ) ( ) ( )
1 21 2S T T SE S X X S X S E S X= == = ). 

For the case of spectral operators, as is known, two operators 1T  and 

( )2T X∈B  are spectral equivalent if and only if their spectral measures are equal ([9], 
[10]). This fact seems not be true in the case of S − spectral operators; according to 
Theorems 3.3. and 3.4., the spectral equivalence transfers the property of an operator to 
be S − spectral to another operator and also implies the equality of the S − spectral 
measures; but conversely, the equality of the S − spectral measures does not really 
involve the spectral equivalence. Because we want also to fit these cases into a coherent 
theory, let us impose the concept of S − spectral equivalence (residually spectral 
equivalence or spectral equivalence modulo S ). 

Definition 3.2. Let ( )1 2,T T X∈B  be S − decomposable or S − spectral 

operators with ( ) ( )1 2T Tσ σ= . We say that 1 2,T T  are S − spectral equivalent 
(or spectral equivalent modulo S ) if for any spectral maximal space Y  of 1T  or 

2T , with ( )1 |T Y Sσ = ∅∩  or ( )2 |T Y Sσ = ∅∩ , the restrictions 1 |T Y  and 

2 |T Y  are spectral equivalent. 
Theorem 3.5. Let ( )1 2,T T X∈B  be S − spectral operators with the 

S − spectral measures 1 2,S SE E . If 1 2S SE E= , then 1 2,T T  are S − spectral 

equivalent. Moreover, if the "residual parts" ( )
11 1'' | TT T X S=  and ( )

22 2'' | TT T X S=  are 

spectral equivalent , then 1T  and 2T  are spectral equivalent (where 1 ''T  and 2 ''T  are 

defined in Remark 3.1, ( ) ( ) ( ) ( )
1 2 1 2T T S SX S X S E S X E S X= = = ). 

Proof. For the case of spectral operators, if two spectral operators have their 
spectral measures equal, then they are spectral equivalent ([10], 2.2.4.).  

We use this argument for the "spectral parts" ( )1 1 1' | ST T E Xσ=  and 

( )2 2 2' | ST T E Xσ=  (where ( ) ( )1 2\ \T S T Sσ σ σ= = ) which, according to 

Remark 3.1., are spectral operators. But the spectral measures 1 2', 'E E  of 1 'T , 
respectively 2 'T  are restrictions of the S − spectral measures of 1 2,T T , so they are also 
equal, 1 2' 'E E= , hence it follows that 1 'T  is spectral equivalent to 2 'T , whence 1T  ad 

2T  are S − spectral equivalent. 

Moreover, if ( )
11 1'' | TT T X S=  and ( )

22 2'' | TT T X S=  are also spectral equivalent, 

then 1 1 1' ''T T T= ⊕  and 2 2 2' ''T T T= ⊕  are spectral equivalent. 
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4. Conclusions 
The S − spectral operators belong to the class of S − decomposable operators 

defined by I. Bacalu ([5], [6], [8]) and occur mainly as restrictions and quotients of 
decomposable (respectively, spectral, normal, self-adjoint, etc.) operators. 

In this paper, certain results of the spectral theory for spectral operators are 
generalized to S − spectral operators. In the case of S − spectral operators, we proved 
that the spectral equivalence transfers the property of an operator to be S − spectral to 
another operator and also the equality of the S − spectral measures (similar with the case 
of spectral operators). But conversely, the equality of the S − spectral measures of two 
S − spectral operators does not involve the spectral equivalence; this equality involves 
only a weaker property called the S − spectral equivalence, notion which was defined in 
this paper (see Definition 3.2.). 
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