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SPECTRAL EQUIVALENCE OF S-SPECTRAL
OPERATORS

Mariana ZAMFIR!, loan BACALU?

In aceastd lucrare studiem proprietatea de spectral echivalenti a unei clase
speciale de operatori, operatorii S —spectrali (definiti si introdusi de I. Bacalu in
[5], [6], [7]), pundnd in evidenta legatura dintre acest tip de operatori si aceastd
proprietate. Una dintre trdsaturile importante ale familiei operatorilor
decompozabili (spectrali, scalari, spectrali (scalari) generalizati, A-scalari) este
transportul proprietdtilor spectrale de la un operator la altul prin intermediul
echivalentei spectrale ([9], [10]). In cazul familiei operatorilor S —spectrali,
majoritatea proprietdtilor spectrale se pastreazd. Precum se stie, pentru operatorii
spectrali Ty, To spectral echivalenti, proprietdtile spectrale ale lui Ty se transferd
la T, . Pentru operatorii S —spectrali, acest rezultat ramdne partial adevarat, dar

spectral echivalenta nu este “echivalentd” cu egalitatea S —masurilor spectrale;
aceastd egalitate implica o proprietate mai slaba numita echivalenta S —spectrald,

care de fapt este naturald in acest caz.

In this paper, we study the spectral equivalence property of a special class of
operators, namely S —spectral operators (defined and introduced by 1. Bacalu in
[5], [6], [7)), highlighting the link between S —spectral operators and spectral
equivalence. One of the essential characteristics of the class of decomposable
(spectral, scalar, generalized spectral (scalar), A—scalar) operators is the transfer
of the spectral proprieties from one operator to another using spectral equivalence
([91, [10]). The family of S —spectral operators preserves the most interesting
properties of spectral operators. As is known, for the spectral operators Ty, T,
which are spectral equivalent, the spectral properties of Ty transfer to T, . For
S —spectral operators, this fact remains partially true, but the spectral equivalence
is not "equivalent” to equality of S —spectral measures; this equality involves only a
weaker property called S —spectral equivalence, which is natural in this case.

Keywords: spectral space; spectral (S —spectral) measure; spectral (S —spectral)
operator; spectral (.S —spectral) equivalence.
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1. Introduction

Let X be a Banach space, let B(X) be the algebra of all linear bounded

operators on X, let Py be the set of all projectors on X and let 25 ¢ be the family of
all Borelian sets B of the complex plane C which have the property that B(1.S =& or
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B> S, where § is a compact set of C. If T e B(X) and Y is a linear (closed)
subspace of X invariant to 7', let us denote by 7'| Y the restriction of 7 to Y and by

T the operator induced by 7 in the quotient space X =X/Y. We also denote by
o(T) (p(T)=C\o(T)) the spectrum (the resolvent set) of 7 and by
R(A,T)=(AI-T)™*, with A e p(T), the resolvent of T.

An operator T € B(X ) is said to have the single-valued extension property
(SVEP) if for any analytic function f:D , — X (where D, C is an open set), with
(A1 -T) f(A)=0 itresults that f(A)=0 ([9], [10], [12]).

For an operator T € B(X) that has SVEP and for x € X, we consider the set
pT(x) of all elements Ay e C such that there is a X -valued analytic function
A —>x(A) defined in a neighborhood of Ay which verifies the relation
(A1-T)x(A)=x; x(A) is unique, pz(x) is open and p(T)c pr(x). We take
or(x)=Cp7r(x)=C\pz(x) and XT(F)Z{XEX;O'T(X)CF},Where FcC
is closed. p7(x) is called the local resolvent set of x with respect to T and o (x) is
the local spectrum of x with respect to T ([3], [9], [17]).

Let T e B(X) and let Y be a closed subspace of X . We recall that Y is a
spectral maximal space of T if it is an invariant subspace to 7" such that for any other
subspace Z of X, invariant to 7', the inclusion o(T|Z)co(T|Y) implies the
inclusion Z c Y ([10], [13]).

An operator T e B(X) is decomposable if for any finite open covering

{Gl-}l'.l:1 of o(T), there is a system {Yi}?zl of spectral maximal spaces of 7 such that

o(T|Y;)=G; (i=12,..,n) and X =Y +Yp+..+Y, ([10], [13]). An operator
T e B(X ) is strongly decomposable if T |Y is decomposable for any spectral maximal

space Y of X ([3], [4]).

In order to study the link between S — spectral operator and spectral equivalence,
we need several notions from the theory of residually spectral decompositions brought up
by F.H. Vasilescu in [17], [18], [19].

An open set Q c C is said to be a set of analytic uniqueness for T € B(X) if
for any open set @ < Q2 and any analytic function f(:@ — X satisfying the equation
(AI1-T)fo(A)=0, it follows that f(A)=0 in @. For T €B(X) there is a
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unique maximal open set Q of analytic uniqueness ([17], 2.1.). We shall denote by
Sr = EQT =C\ Q7 and call it the analytic spectral residuum of T ([17], [19]).

For xe X, apoint A isin &7 (x) if in a neighborhood ¥, of A there is at
least an analytic function f, (called T -associated to x) such that (I —T) f(4)=x,
forall eV ,.We shall put

rr(x)=C67(x), pr(x)=07(x)NQ7, o7 (x)=Copr(x)=y7(x)USt and
XT(F)z{xeX; O'T(X)CF}
where S < F < C ([17]).

An operator 7 e€B(X) has SVEP if and only if Sy =&; then we have
or(x)=y7(x) and there is in p7(x)=3J7(x) a unique analytic function x(A4),
T —associated to x, for any x e X . We shall recall that if 7T eB(X), S7 # & and
X7(F) is closed, for F < C closed, S7 < F, then X 7(F) is a spectral maximal
space of T and O'(T | X 7 (F)) c F ([17], Propositions 2.4. and 3.4.).

2. Preliminaries

Definition 2.1. A family of open sets GgU{G;}"

is said to be an
i=1

n —
S — covering of the closed set o= C if GgU| | JG; |[ooUS and G;iNS =0
i=1
(i=12,...n) (where S < C isalso closed) ([17]).
Definition 2.2. Let 7 € B(.X') and let S  o(T') be a compact set. 7 is called
S —decomposable (respectively, strongly S —decomposable) if for any finite open
S—covering GgU{G,}"_ of o(T), there is a system YgU{Y;}"_ of spectral
maximal spaces of 7" such that
) o(T|Ys)cGg,o(T|Y;)cG; (i=12,...n)

n n
i) X =Yg+ Y, (respectively, Z=(ZNYg)+ D (ZNY;), where
i=1l i=1
Z is any spectral maximal space of T') ([5], [6], [8]).
Obviously, for S = we obtain a decomposable operator ([13]), respectively a
strongly decomposable operator ([4]).
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Definition 2.3. For Ty, T, € B(.X), not necessarily permutable, we use the
n
notation (T3 —7,)"] = 3 (~1)"* [Zjle T3k,
k=0

We say that Ty, T, e B(X) are spectral equivalent (Or quasi-nilpotent
equivalent) ([9], [10]) and write 77 ~ T if

lim H(Tl—Tz)["] n =0 and lim H(TZ—Tl)[”] n=0.

n—0 n—>0
This relation is reflexive, symmetric and transitive.

To show the relevance and the necessity of studying the spectral equivalence
property for the family of S —decomposable operators (in particular, S —spectral
operators), we emphasize the consistency of this class, in the sense of how many and
varied are the subfamilies that compose it: the restrictions and the quotients (with respect
to an invariant subspace or a spectral maximal space) of decomposable (unitary, self-
adjoint, normal, spectral (scalar), generalized spectral (scalar), A -scalar, A -unitary)
operators are S —decomposable; the perturbations and the direct sums composed by one
decomposable operator and another operator are S —decomposable; the
subdecomposable (subnormal, subscalar) operators are S —decomposable (practically,
S -normal, § -scalar), as restrictions of decomposable (normal, scalar) operators; the
quasinormal operators (i.e. 7 commutes with 7*T), being subnormal, are
S —decomposable; for cosubnormal operators (i.e. 7* is subnormal), the adjointable
operators 7* are S -decomposable; Cesaro operators are subscalar, hence S —scalar;
the operators which admit scalar dilatations or A4 —scalar dilatations are
S —decomposable. M. Putinar showed that the hiponormal operators are subscalar, hence
S -decomposable ([16]). In fact, E.J. Albrecht and J. Eschmeier showed that any operator
is the quotient of a restriction or the restriction of a quotient of decomposable operators
([1]), thus any operator is S —decomposable or similar to an .S —decomposable operator.

In what follows, we mention briefly the important results for decomposable and

spectral operators, respectively for § —decomposable operators T3, T eB(X): if
Ty ~T,, then o(Ty)=0(T,) and St,=Sr, (8 [10], [7]); if T3~T, and
St, #D, S, # D, then yp. (x)=yr,(x), for xe X ([7]); if Ty ~T5 and Ty has
SVEP, then T has SVEP and o-Tl(x):aTz(x), for xe X ([9], [10]); if 1 ~T»
and 77 is decomposable (spectral), then 75 is decomposable (spectral) and
XTl(F):XTZ(F), for FcC closed ([9], [10]); if 73 ~T, and Ty is

S —decomposable (strongly S —decomposable), then 75, is S -decomposable
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(respectively, strongly S —decomposable) and XTl(F): =Xr, (F), for FcC,
F > S closed ([7]); if T7, T, are decomposable (respectively, spectral with Eq,E»
their spectral measures), then 77 and 7, are spectral equivalent if and only if
Xr, (F)= Xr, (F),for F < C closed (respectively, Eq = E;) ([9], [10]).

3. Spectral equivalence of the S —spectral operators

Definition 3.1. An application Eg:2¢— Py is said to be an S —spectral

measure if

1) Eg(C)=1,Eg(2)=0

An operator T e B(X) will be said to be S —spectral if there is Eg an
S —spectral measure such that the following conditions are verified:

5) TES(B):ES(B)T, BeBg

6) o(T|Eg(B)X)c B, BeBg.
For S =(J, we obtain a spectral measure and a spectral operator ([12]).

Remark 3.1. An operator T € B(X) is S —spectral if and only if it is a direct

sum T =T; ®T,, where T} isspectral and o (T5) < S
Proof. Indeed, if T is S —spectral, then one can easily verify that the map
E:B > Py (where B=By) defined by E(B)=Eg(BNCS),BeB is a

spectral measure  for T1:T|ES(ES)X, hence T =T7,®T,, where Tp=
=T|Eg(S)X and o(T,)cS.

Conversely, if 73 € B(Xy) is spectral and T € B(.X ;) is not spectral, with
o(Ty)zo(Ty), by putting S=0(T3), X=X;©X, and T=T1®T,, it
follows that the map Eg:%Bg— Py defined by the equalities Eg(B)=
=E(B)®0, if BNS=0, BeBg and Eg(B)=E(B)®I,, if B5S, Be By,
isan S —spectral measure of 7 (where E is the spectral measure of 77 and 7, is
the identity operator in X'5).



36 loan Bacalu, Mariana Zamfir

Lemma 3.1. Let T e B(X), let Y be an invariant subspace to T and let

T be the operator induced by T in the quotient space X=XIY. If T and T
have SVEP, then X r (O'(T | Y)\ O'(T)) cY.

Proof. If xe Xp(o(T1¥)\o(T)), we have o7 (x) = o(T1¥)\o(T).
Because the equalities Sy =& and S =& imply the relations rr(x)=0or(x),
y;(¥)=0:(x) and o;(x)cor(x) ([7], Proposition 2.1.), then it follows that
GT(X)CGT(X)HG(T)C(G(TlY)\O'(T))ﬂJ(T)=@, hence x = 0, whence xe7.

In the following propositions, many examples of S —spectral operators
can be obtained in general conditions, namely the restrictions and the quotients of
spectral operators with respect to an invariant subspace.

Proposition 3.1. Let T € B(X) be a spectral (scalar) operator having the

spectral measure E | let Y be a closed linear subspace invariant to T , let T be
the operator induced by T in X=X1Y and let ¢: X — X be the canonical

application. Then Tle(-DTZ, where T1=T|¢(E(0')X) is spectral (scalar)
operator, TZ :T|¢(E(O')X), o=0o(T|Y), 0"=0'(T)\0'(T|Y) and G(TZ)CSZ
=o(T|Y)No(T).

Proof. The operator T | E(c").X is spectral (scalar) ([12], II, XV, 16) and
since Y E(0)X=Xg (o), we have YNE(o')X ={0}. But E(c')X+Y =
=E(c')X@®Y (because E(c')X +Y is closed; see [7], Lemma 1.1.13), hence
go(E(a')X) can be identified with £(c")X and T, with T|E(co')X ([7], Remark
1.1.15.), therefore Tl is spectral (scalar). It is easily to verify that
(”(XT(O')):XT'(U):XT'(S) is a spectral maximal space of 7 ([7], Theorem
1.1.19. and Corollary 1.1.20.), consequently J(Tz) = J(T lo(X 7 (0))) cS.

Proposition 3.2. Let T € B(X) be a spectral (scalar) operator with its spectral

measure E | let Y be an invariant subspace to T, let T be the operator induced by
T in X=X1Y, with Xr(o)cY (where 6=0‘(T|Y)\0(T)). Let also
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S=0'(T|Y)ﬂ0'(T) and let Ty =T|Y . Then Ty |E(c)Y and Ty|X7(o) are
spectral (scalar) operators and Ty =(TY |E(O')Y)®(TY|E(S)Y), where
o(Ty |E(S)Y)=SNo(Ty).

Proof. The set o being open in o(T), there is a growing sequence of
opensets (o),  With o= | J o, ; from the continuity of the measures £(-)x

neN
it results that E(o)= lim E(o,,), therefore E(o,)X=Xr(0o,)cXr(0o)

n—0

implies E(c)X c X7 (o)cY. The closed subspaces E(c)X and Xy (o) are

invariant to 7' and to spectral measure £, hence Ty |E(c)Y and Ty | X7 (o)
are spectral (scalar) operators ([11]). From Y < X7(o(T|Y))=E(o(T|Y))X it
follows that Y= E(o(T|Y))Y =E(c)Y+E(S)Y, hence Y is invariantto £ (o) and
E(S); consequently E(c)|Y and E(S)|Y are projectors in Y, E(c)Y and
E(S)Y are closed subspaces and ¥ = E(c)Y @ E(S)Y . We also obtain that

Ty =(Ty |E(c)Y)@®(Ty | E(S)Y) and

o(Ty |E(S)Y)co(TIE(S)X)Na(T|Y)=SNa(T|Y),
where S=C\D®, D® being the unbounded component of C\ S, equivalent to

the condition as CS = C\ S to be connected.
Theorem 3.1. Let T € B(X) be a spectral operator and let Y be a closed

subspace invariant to T such that Xy (o)< Y, where o =0 (T| Y)\O'(T) and

S =S, where S=o(T| Y)ﬂa(f). Then T'|Y and T are S —spectral operators.
Proof. These assertions follow by Propositions 3.1., 3.2. and Remark 3.1.
Theorem 3.2. Let T € B(X) be an S —spectral operator and let Eg be

its S —spectral measure. Then for any F c C closed such that F > S we have

Es(F)X=Xp(F).
Proof. Since o(T| Eg(F)X)<F, we obviously have Eg(F)X c X7 (F).
Let us verify the inverse inclusion. Let x € X 7 (F), hence p7(x)>C\F.

Let o be a closed (compact) set such that oV F =. Let us proved that
Eg(o)x=0.We consider an admissible system I" of simple Jordan curves that
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contains in “exterior" o and leaves in “interior” the set 7', hence Tc C\F c
c pr(x). If x(4) is the analytic function defined on pr(x) such that
x=(A1=T)x(2), then [x(4)di=0.

r
Hence we have the following relations:

Es(o)x==— [ R(AT)Es(c)xdr=
Tl
|7+

:% [ R(ATIEg(0)X)Eg(o)xdA=
|7+

:2%1[1{(11 |Es(0)X)Eg(c)xdi=
=i£ES(a)R(/1,T |Eg(0)X)xdA=

1 1

=—|E A)dA=E — | x(4)dA=0.
3] Es(0)+(2)dA=Es(@) 7 [ (1)
The set C\ F' being open we have C\ F' = U o, ,Wwith o, < C closed,
neN

o, <o,y (also o, can be replaced with the compact sets o, No(T), neN);
consequently

(I—ES(F))szS((C\F)szS( U anxz lim Eg(c,)x=0,

neN n—»o0
hence x=Eg(F)xe Eg(F)X,whence X7 (F)cEg(F)X.
Corollary 3.1. Let T € B(X) be an S —spectral operator and let Eg be
one of its S —spectral measure. Then the map ‘E ¢ defined by the equality
Es(F)=Eg(F)X,for FeFg

is the S —spectral capacity of the strongly S —decomposable operator T , where
F is the family of all closed sets F < C such that F(\S =& or F > .

Proof. T being S —spectral, then it is strongly S —decomposable ([7],
Proposition 1.4.11.), hence it admits an S —spectral capacity E ¢ which is unique

([71, Theorem 2.5.5.). From the previous theorem, it follows that Eg(F)X =
=Xp(F)if FoS and Eg(F)X =Yg if FNS=¢, where Eg(FUS)X =
=Eg(F)X®E4(S)X=X7(FUS)=Yr®X(S). In [7], Theorem 2.5.5.



Spectral equivalence of the S —spectral operators 39

and Corollary 2.5.6, it is proved that the S —spectral capacity of a strongly
S —decomposable operator is given by the equalities Eg(F)=X7(F), for

FoS and Eg(F)=Yg, for FNS =, where the spectral maximal space Y
is given by the relation X 7 (FUS)=Yr ® X7 (S).

Remark 3.2. a) According to Theorem 3.2. and Corollary 3.1., it follows
that if 7 is S —spectral and Eg is its S —spectral measure, then Eg(F)X is a

spectral maximal space of T', hence a subspace of X ultrainvariant to 7', for any
FeFy.

b) From the assertion and the proof of the previous corollary it follows that
Eg(F)X =Yg, for F cC closed, F\S =4, where Y is the spectral maximal

space of 7' given by the equalities Eg(FUS)X =X7(FUS)=Yr®X7(S) and
o(T|Yp)cF.

Theorem 3.3. Let Ty, T, €eB(X). If Ty is S—spectral and Ty, T, are
spectral equivalent, then Ty is S —spectral.

Proof. Let E ¢ be the S —spectral measure of 77 .

Since an S —spectral operator is strongly S —decomposable and the
spectral equivalence transfers the property of S —decomposability (respectively
strongly S —decomposability) from one operator to another (i.e. if 7; is

S —decomposable, respectively strongly S —decomposable, and 73 ~ T, then T’
is S —decomposable, respectively strongly S —decomposable), it results that 7
is strongly S —decomposable and the spectral spaces of 7; are also the spectral
spaces of 7.

Therefore we have Xy, (F)=Xy, (F), from F < C closed, > S and
Yip=Yop, from FcC closed, F(\S =, where the spaces Y;p, Y, are
defined by the equality X7, (SUF)=X7, (S)®Y1f =Xr,(S)®Y,p. According to
Theorem 3.2, it follows that Eg(F)X=Xr (F)=Xr,(F), for F>S and
Eg(F)X=Y,p=Y,p, for FNS=Q, where Eg(FUS)X=Eg(F)X®Eg(S)X=
=Nrp®Xp (S). It results that Eg(F )X is spectral maximal space of both 77 and
T, hence ES(F)X isinvariantto 77 and alsoto 7', for F € Fy.

The inclusion T,E ¢ (F)X < Eg(F)X is equivalent to the equality

Eg(F)TEs(F)=TEgs(F) (1)
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forany F < C closed, F oS or FNS=0.
We first show that the equality (1) is verified, forany G — C open, G > S or

G S = and then also for any Borelianset B, B> S or B(1S =J.
We use the fact that in a metric space every open set G is of type F', i.e.

0]
G=|JF, with F,cF,, F, closed, F,>S or F,1S=Q. Hence, for any
n=1
GcC open, G S or G S =< we have
ES(G)TZES(G)zES( lim Fn)TZES( lim Fn)z
n—o0

n—o
= lim Eg(F,)ToEg(F,)= lim TZES(Fn)zTZES( lim Fn)z
n—»o n—»00 n—»o0
=T, Eg(G),

Thus Eg(G)T, Eg(G)=T, Eg(G).
From the relations G=CF=C\F, Eg(G)=Eg(C)-Eg(F)=1-Eg(F)
and from the previous equality we have successively
Eg(G)TyEg(G)=(I1-Eg(F))To(I-Eg(F))=T,Es(G)=
=T5(1-E5(F))
To(1-Es(F))-Es(F)To(1-Es(F))=To(I1-Eg(F))
Ty-TyEs(F)-Es(F)Ty+Eg(F)TEg(F)=T,-ToEg(F)
and by reducing the terms it results that
Es(F)TEs(F)=Es(F)T; (2)
for Fc C closed, F> S or FNS=.
From equalities (1) and (2), for Fc C, F > S or F(1S = we have

TyEg(F)=Eg(F)T,.
For every xe X and x*e X*=B(X,C), by using the regularity of the
S —scalar measures (Eg(-)x,x*), (Tp Eg(-)x,x*), (Eg(-)T2x,x*) we obtain
(TyEg(B)x,x*)=(Es(B)Tyx,x*)
for any B e & ¢ Borelian, hence
TyEs(B)=Es(B)T. (3)
It is known that if Y is a closed linear subspace of X invariant to
T eB(X),then |T|Y|<|T], therefore
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1
"< n

H[THES(B)X_TZ|ES(B)X][n] (Tl—Tz)[n]

But 77 and T, are spectral equivalent and from the previous inequality it
follows that 7;|Eg(B)X and T,|Eg(B)X (BeBg Borelian) are spectral
equivalent, thus their spectra are equal

o(T1|Eg(B)X)=0(Ty|E5(B)X), BeBy.

Because 7 is S —spectral, we have o-(Tl |Eg (B)X) B , therefore

o(T,|Es(B)X)c B, Be By. (4)

According to relations (3) and (4) it results that 7, is S —spectral.

Remark 3.3. We note that the proof from the case of spectral operators
([10]) can be easily adapted to obtain the previous proof from the case of
S — spectral operators..

Using the similar result from the case of spectral operators, we remark that
the assertion of Theorem 3.3. is a consequence of [11].

Indeed, since T, is spectral equivalent to 73 and T3 =T1|Eg(0)X @

®T|Eg(S)X (where o=C\S) and the spectral equivalence property is

transferred from operators to restrictions with respect to invariant subspaces, it
follows that 7y|Eg(o)X is spectral equivalent to T,|Eg(o)X; hence

To|Eg(c)X is spectral since Tp|Eg(o)X is spectral, T|Eg(S)X and
7| ES(S)X are spectral equivalent and their spectra are equal.

Therefore, T, =T |Eg(o)X ®T,|Eg(S)X is a direct sum between a
spectral operator and an operator with the spectrum in .S, thus 7', is S —spectral.

Theorem 3.4. Let Ty, To e B(X) be two S —spectral operators which are
spectral equivalent. Then their S —spectral measures Eqg and Eog are equal, their
spectral maximal spaces are equal, XTl (F) = XTz (F), for F cC closed, FDS,
respectively Y1 =Yo p, for F(\S =&, where Y1, Yo are given by the equalities

X7, (FUS) =Yy ® X7, (S), X1, (FUS) =Yor ® X7, (S).

Proof. We remark that 77, T'» are strongly S —decomposable and their spectral

spaces are equal. The arguments that were used in this proof are exactly the same as in
the case of spectral operators ([9], [10], [12]) and the same as in the proof of

Theorem.3.3.: the equalities Eqg(F)X =X (F)=Xr, (F)= =Eyg(F)X (for
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FcC closed, F>S8), Epg(F)E1g(F)=Eyg(F) (for F = C closed) and the

fact that an open set G of a metric space (particularly C) is of type F, (i.e.
[e e}

G=|JF,. F,cF,. F,cC closed).
=1

We find the equality E,g(G)E15(G)=E15(G), for G<=C open, with
G>S or GNS=Q and it follows that E,g(F)Eyg(F)=Epg(F), thus
Ei5(F)=E5(F), for F<C closed, F > or F()S=4. Finally, to obtain the
equality Ejg(B)=E,g(B), for BePBg Borelian, the regularity of the scalar
measures<E1S(-)x,x*>, <E2S(-)x,x*> is used.

We can verify the assertions of the theorem also in a simple and different manner,
using similar arguments from the case of spectral operators ([10]): if 77, T € B(X ) are

spectral operators and 7, ~T,, then their spectral measures E;, E, are equal
(E1=E>) and also their spectral spaces are equal (XTl(F)Z =Xr, (F), FcC
closed). Indeed, 77,7> being S -spectral, then they are strongly S —decomposable,
hence the spectral spaces XTl(F), Xr, (F) are equal (for F > S) and the spaces
YiF, Yop are also equal (for F(S =), where Yy, Yor are defined by the
equalities X7 (FUS)=Y1p ® X1, (S)= =Yor @ X1, (S)=X7, (FUS).

According to Remark 3.1., the operators 77, T are direct sums:

I=T1'"®T1", Try=T,"®Ty",
where

I'=T1|Eg(0)X, T1"=T1| E15(S)X

Ty'=Ty|Exg(0) X, Tp"=T5 | Ezg(S)X (o=0(T)\S=0(T5)\S)
and T;' and T,' are spectral operators with the spectral measures £ = Eqg | B,

Ey =E,g| B, where B's ={B; Be Bg,BNS=02}.

Since the restrictions to the same invariant subspace of two spectral equivalent
operators are also spectral equivalent, it results that 77" is spectral equivalent to 7' and
according to [10], Corollary 2.2.4., these operators have the same spectral measures
E1'=E,', whence Eig(B)=E,g(B), for Be B¢ Borelian, B(1S=J. We use
the same argument also for Borelian sets BeZg, with B> S noting that
B=(B\S)US:
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Eys(B)=E15(B\S)+E15(S)=E1 (B\S)+Eq5(S)=
=Ey (B\S)+Ep5(S)=Ezs(B)
(we have Eqg(S)X =X, (S)=Xr,(S)=E25(5)X).
For the case of spectral operators, as is known, two operators 77 and

Ty e B(X ) are spectral equivalent if and only if their spectral measures are equal ([9],

[10]). This fact seems not be true in the case of S —spectral operators; according to
Theorems 3.3. and 3.4., the spectral equivalence transfers the property of an operator to
be § —spectral to another operator and also implies the equality of the S —spectral
measures; but conversely, the equality of the S —spectral measures does not really
involve the spectral equivalence. Because we want also to fit these cases into a coherent
theory, let us impose the concept of S —spectral equivalence (residually spectral
equivalence or spectral equivalence modulo S').

Definition 3.2. Let Ty, T, e B(.X) be S—decomposable or S —spectral
operators with o (7y)=o0(T). We say that Ty, T, are S—spectral equivalent
(or spectral equivalent modulo S') if for any spectral maximal space Y of 73 or
Ty, with o(Ty|Y)NS=D or o(T,|Y)NS =, the restrictions 7;|Y and
T, |Y are spectral equivalent.

Theorem 35. Let Ty,Ty € B(X) be S —spectral operators with the
S —spectral measures Eq1g,Epg. If E1g=FEog, then Ty, Ty are S —spectral
equivalent. Moreover, if the "residual parts” T;" =T | XTl (S) and T2"=T2|XT2(S) are
spectral equivalent , then T1 and Ty are spectral equivalent (where T1" and T)" are
defined in Remark 3.1, XT1 (S) = XT2 (S) =Eqg (S)X = EZS(S)X).

Proof. For the case of spectral operators, if two spectral operators have their
spectral measures equal, then they are spectral equivalent ([10], 2.2.4.).

We use this argument for the “spectral parts" 71'=T;|E;g(c)X and
Ty'=Ty|Eys(0)X (where o=0(T;)\S=0(T)\S) which, according to
Remark 3.1., are spectral operators. But the spectral measures Ej', Ep' of T7',
respectively 75" are restrictions of the .S —spectral measures of 77, T'», so they are also
equal, £1'=E,", hence it follows that 77" is spectral equivalentto 75", whence 7; ad
T, are S —spectral equivalent.

Moreover, if 71"=T1| X7, (S) and T5"=T,| X7, (S) are also spectral equivalent,
then 7 =7,"@® 1" and Tp =T, @ T, " are spectral equivalent.
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4. Conclusions

The § —spectral operators belong to the class of S —decomposable operators
defined by I. Bacalu ([5], [6], [8]) and occur mainly as restrictions and quotients of
decomposable (respectively, spectral, normal, self-adjoint, etc.) operators.

In this paper, certain results of the spectral theory for spectral operators are
generalized to S —spectral operators. In the case of S —spectral operators, we proved
that the spectral equivalence transfers the property of an operator to be S —spectral to
another operator and also the equality of the S —spectral measures (similar with the case
of spectral operators). But conversely, the equality of the S — spectral measures of two
S —spectral operators does not involve the spectral equivalence; this equality involves
only a weaker property called the S —spectral equivalence, notion which was defined in
this paper (see Definition 3.2.).
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